
High Performance Fortran:
A Practical Analysis

ALLAN KNIES1, MATTHEW 0'KEEFE2 , AND TOM MACDONALD3

1School of Electrical Engineering, Purdue University, West Lafayette, IN 47907-1285
2Department of Electrical Engineering, University of Minnesota, Minneapolis, MN 55455
3MPP Compilers, Cray Research Incorporated, Eagan, MN 55121

ABSTRACT

The recently released high performance Fortran forum (HPFF) proposal has stirred
much interest in the high performance computing industry. HPFF's most important de­
sign goal is to create a language that has source code portability and that achieves high
performance on single instruction multiple data (SIMD), distributed-memory multiple
instruction multiple data (MIMD), and shared-memory MIMD architectures. The HPFF
proposal brings to the forefront many questions about design of portable and efficient
languages for parallel machines. In this article, we discuss issues that need to be ad­
dressed before an efficient production quality compiler will be available for any such
language. We examine some specific issues that are related to HPF's model of computa­
tion and analyze several implementation issues. We also provide some results from
another data parallel compiler to help gain insight on some of the implementation
issues that are relevant to HPF. Finally, we provide a summary of options currently
available for application developers in industry. © 1994 John Wiley & Sons, Inc.

1 INTRODUCTION

In recent years, the high performance computing
market has been expanding to include many di­
verse and new architectures. This has made lan­
guage design and implementation critical to solv­
ing software portability problems for large
production application codes. To help meet this
challenge. the High Performance Fortran Forum
(HPFF) research group was formed and within the
last year has produced a Fortran specification in­
tended to span high performance computing. lts
main goal is to retain source code portability while

He"Pived September 1 99:3
Hevised Januarv 199-t

© 199'1: bv John \'filcv lx Sons. Inc.

Scientific Pro!!'ramrninf!. Yol. :). pp. 187-199 ~:199-t:'
CCC 1058-92H/9'!:/0:l0187-n

providing high performance across architectures
as diverse as distributed memory single instruc­
tion multiple data (SLviD) and multiple instruction
multiple data (.VIL\1D), and shared memory Ml.V1D
[1].

HPF has garnered much interest from industry
due to the expectation of portability and high per­
formance. It has also brought discussion of porta­
ble high performance languages to the forefront of
parallel systems research. The strengths of the
HPFF proposal are clear.. broad. and high level: a
simplified programming model for parallel ma­
chines. the development of a single language that
can be used on many machines, a large standard­
ized library of support routines. and a proposal
developed jointly by industry and academic ex­
perts. However. it does have a number of unre­
solved issues that lie in the low-level details of por­
tability .. compiler development and technology.

188 Kl'\IES, O'KEEFE. A:'o/D MACDO:'-IALD

and application implementation that are not im­
mediately obvious. ln this article, we will analyze
some of these unresolved issues in the HPFF pro­
posal as a guide for application developers and for
future language development efforts.

In Section 2, we provide an informal discussion
of portability and high performance to set the
stage for our analysis. In Section 3, we outline
general architectural issues that affect portable
languages as they relate to the performance of
parallel programs, In Section 4, we discuss spe­
cific problem areas in HPF as they related to the
discussion in Section 3 and their affect on com­
piler implementation and efficiency of generated
code. Section 5 discussed HPF and application
implementation issue by looking at the results of
the CM Fortran compiler on several application
codes. Section 6 provides a brief overview of im­
plementation possibilities for application devel­
opers now.

2 PORTABILITY AND HIGH EFFICIENCY

In section 2.2, the HPF specification notes:

Although SIMD processor arrays, MIMD
shared-memory machines, and MIMD dis­
tributed-memory machines use very differ­
ent low-level primitives, there is a broad
similarity with respect to the fundamental
factors that affect the performance of par­
allel programs on these machines. Thus,
achieving high efficiency across different
parallel machines with the same high level
HPF program is a feasible goal.

It is important to define what can be meant by
high efficiency (high performance) and portability.
It is possible for a language to exhibit both porta­
bility (all programs run without change on other
machines) and high performance (programs writ­
ten in the language can be made to run efficiently
on any given machine) without exhibiting both
characteristics simultaneously. We believe this
distinction is important to the high performance
community. Therefore, we propose an informal
definition to describe what it means for a language
to simultaneously exhibit both high performance
and portability:

For any system, a program written in a por­
table high performance language that
solves a particular problem should achieve

wall-clock runtime comparable to a well­
written program that solves the same prob­
lem in the native high-level language on
that svstem.

This definition says that a portable high perfor­
mance language* should be expected to achieve
performance similar to that already achievable on
that machine by native high-level languages. 1'\o­
tice that if we are willing to accept portability with­
out claiming high performance, then this defini­
tion is too stringent. The rest of this article
discusses issues in the development of languages
that facilitate writing codes that are simulta­
neously portable and efficient with emphasis on
HPF.

3 ARCHITECTURAL ISSUES

In this section, we outline architectural attributes
(latency, bandwidth, network topology, etc.) that
are related to parallel machines. This discussion is
intended to focus attention on architectural fea­
tures over which a portably efficient language
might allow direct control. We are not advocating
that such control be allowed in a portably efficient
language. Rather, we are pointing out that either
the programmer or the compiler must make deci­
sions regarding these issues and it is not clear that
compilers with such analytic capabilities exist in
production systems.

3.1 Bandwidth and Latency

A key feature of distributed memory architectures
is the difference between remote memorv band­
width and local memory bandwidth [2]. This is­
sue is particularly important when considering
the effects of communicating large data sets be­
tween processors (i.e., when the network needs to
transmit large amounts of data). Programmers
trade off the cost of data redistribution versus the
penalty for using a suboptimal algorithm that may
be better suited for the current distribution of
data. If a particular architecture can redistribute
data much faster than another, then it becomes
feasible for data to be redistributed rather than
using a less efficient code sequence amendable to
the current distribution.

* We will also usc the phrase portah(y efficient to refer to

portable hi!(h performance languages.

Although bandwidth affects the feasibility of
large data transfers, the latency of a remote refer­
ence determines the acceptable granularity of
communication. On some parallel machines, the
difference between local and remote memorv la­
tency can be two orders of magnitude or more [2,
3]. In such cases, the programmer must try to
minimize startup overhead by grouping data
transfers into single messages. On a machine like
the Cray YMP-C90, memory latency is more or
less uniform for all processors and the penalty for
references can sometimes be hidden by pipelined
functional units (memory and computation). Such
machines are capable of handling much finer
grained transactions between memory and the
processors. This tradeoff can be seen by studying
the performance of the l\AS IS benchmark [4]
where the shared-memory machines do signifi­
cantlv better than the distributed memorv rna-

• 0

chines because of their abilitv to do low-latencv
0 0

fine-grained memory accesses.
Given this tradeoff, how should the granularity

of communications be factored in for a given ma­
chine: If the latency is very low, then a fine­
grained approach might yield the best results, but
if the latency is very high, then coarse-grained
messages might be better.

3.2 Node Level Issues

The effect of memorv latencv is also an issue at the
0 0

node level as the performance of all current micro­
processors is heavily dependent on keeping data
in cache. In some cases, cache performance may
be the limiting performance factor for micro­
processor-based machines. A good programmer
takes into account blocking factors based on the
size and configuration of the cache when writing
loops. This has some affect on the size of mes­
sages used to communicate between processors
while executing such loops. This area is particu­
larly critical on microprocessors where multiple
cache misses [5] can cause the processor to stall
until one or more of the outstanding memory
rea-ds is resolved. The degree to which local data
accesses can be optimized greatly affects the per­
formance of an individual processor and hence
the svstem as a whole.

This issue becomes more difficult as the size of
the problem increases and less of the data will fit
into cache. In such cases, completely new block­
ing sizes and techniques such as software pipelin­
ing are needed to keep the processor from stalling
due to outstanding memory references.

HIGH PERFOR.\1A:\'CE FORTRA:\" 189

Cache coherency is another important node
level issue. If a distributed memory machine al­
lows processors to directly access another proces­
sor's memory (i.e., global address space) without
hardware-assisted coherence, then sophisticated
analysis will be required to guarantee that a par­
ticular piece of data can be safely cached. One
wav to do this is to differentiate between shared
and private data: Private data is not directly ac­
cessible by other processing elements (PEs) and is
thus cachable; shared data is not cachable unless
the compiler can determine it is safe to do so [6].

Finally, many machines have different levels of
parallelism and locality (such as the Thinking Ma­
chines CM-5 [2]). Locality effects are present at
multiple levels in the CM -5: within vector units,
each having direct access to one of four memory
banks: across groups of four vector units, con­
trolled by a single SP ARC processor: and across
groups of four nodes, where the bandwidth is
higher than communications with other nodes. To
get good performance from such machines. the
compiler must be able to determine which kind of
parallelism is appropriate for a given code se­
quence. If a program is written in a language that
does not provide support for expressing multilevel
parallelism, then the compiler must make these
decisions without the programmer's help.

3.3 Synchronization

Another area where system performance varies
widely amongst architectures is the cost of syn­
chronizing processors. The cost can vary from
zero cycles on SI..\1D architectures such as the
Maspar MP-2 to thousands of cycles on MI.MD
architectures such as the nCUBE-2 [3].

Because of this, it is important to be careful
with the use of barriers and other svnchroniza­
tions. If such svnchronizations occur too fre­
quently, then the performance of such codes will
be good on some machines and poor on others.

3.4 Network Topology

An area that has historically received attention is
the topological aspects of the interconnection net­
work. Network conflict penalties impact the num­
ber of communication patterns that can be effi­
ciently executed on a given machine. All parallel
machines suffer from contention for blocks of
memory (memory banks in the shared memory
machine and access to aPE's network interface in
a distributed memory machine), but the penalty

190 K:\IES. o·KEEFL Al'\D :\IACDOl'\ALD

for unstructured cornn1unication vanes dramati­
cally. On a Y~1P-C90 there is relati\·cly little con­
tention in the network except for the time a bank is
busy servicing- a request (i.e.' the dday is erenerally
at the node. not within the network). This means
that a YMP-C90 is very effective at doing- g-ather/
scatter operations provided the number of hank
conflicts is not high. On the other hand. YMP-C90
memory performance will degrade much more
quickly if the prog-rammer sequentially accesses
elements whose addresses are separated by a large
power of two [?]. A distributed memory machine
is somewhat different in that it will suffer not only
from accL .,; to a g-iven PE 's network interface. but
also intraversing- the network. This means that a
prog-rammer will want accesse,; to be made so that
network conflicts are minimized. In generaL this
means that communications pattern,; should be
highly structured and not clustered in bursts that
will overwhelm the network.

As an example of how this difference could
cause problems, on a Y:V1P-C90. a programmer
will write code to avoid the problems associated
with power of two strides to yield good memory
performance. If the same program is to be opti­
mized for a hypercube connected machine. com­
munications are frequently made between ele­
ments that are separated by a power of two
elements! Such coding practices inherently show
up in the loop bounds and index expressions of
arrav references.

3.5 Algorithm Issues

Thus far. our discussion has centered on how a
particular algorithm might need to he imple­
mented differently. independently of the algo­
rithm selected. There are cases where the archi­
tectural parameters are so extreme that one
algorithm simply is not feasible on that machine.
Thi,; issue is clearly beyond the scope of a pure
discussion of language. but is worth pointing out
as a factor that influences any language ·s claim to
be portable and efficient.

4 IMPLEMENTATION AND MODEL ISSUES
IN HPF

4.1 HPF Ovll!rview

The HPF language is Fortran 90 with added di­
rectives. new syntax and ,;ernantics. and a ,;et of

new library routines. The directives are special
comments that give the compiler additional infor­
mation about processor arrangement. data distri­
bution. data alignment. and statement indepen­
dence. The new svntax includes the FORALL
statement. and the kevwords EXTRINSIC. PURE.
and NEW. Kew semantics restrict the support of
Fortran storage association and sequence associ­
ation (e.g., EQUIVALENCE). l\ew library routines
include system inquiry. array, and bit manipula­
tion intrinsic functions. HPF also defines a subset
that vendors can choose to implement.

In the remainder of this section. we provide a
detailed analysis of the impact of several of the
features of HPF's computational modeL The dis­
cussion is structured around the issues described
in Section 3.

4.2 Node Level Issues

Address Computation

Every high-level programming language has im­
plicit overhead associated with it that is not in­
curred by an assembly language programmer. A
tradeoff is made by the programmer because the
high -level language increases productivity and
portability. When a feature is added to a lan­
guage. the implicit overhead introduced by the
feature needs to be understood. For example.
there is an expectation that there is more implicit
overhead associated with making a function call
than inlining the executable statements inside the
function. Again. there is a tradeoff. This time it is
maintainability. good software engineering prac­
tices. and productivity. However. language fea­
tures that have the appearance of simplicity but
introduce significant implicit overhead need to be
examined and understood by programmers hop­
ing to get good performance.

This is particularly true in HPF with respect to
addressing distributed objects. HPF allows arrays
to be distributed across multiple processors to
provide a global name space for data and a niPch­
anism for increasing the locality of references. The
set of distributions provided by HPF is very pow­
erful: Arrays can be aligned with other arrays or
with templates: alignments can specify dummy
variables to indicate offsets along a dimension .. di­
mensional transposes. collapses. or replications.
The templates are then distributed onto proce,;­
sors. The dimen:-;ional distributions can he

blocked, cyclic. or "on-processor" (i.e .. an entire
dimension is distributed as a whole object).

One of the main advantages of the global name
space is that it provides an intuitive model for ac­
cessing data and is relatively easy for a new pro­
grammer to understand. The alternative is a more
cumbersome communication mechanism through
an explicit functional interface.

The data distribution features in HPF let array
references provide implicit communication when
necessary, and increased locality when desired via
data alignment and distribution. Because a data
reference no longer provides explicit information
about its location, the compiler must determine
this before data can be accessed. In HPF. this
adds additional implicit overhead when the com­
piler generates code to reference elements of a dis­
tributed arrav. This means HPF has additional
implicit overhead on distributed memory ma­
chines that is not present on shared memory rna­
chines when referencing expressions such as:

A (I, J)

The additional overhead exists because the pro­
cessor number and local address for this arrav ele­
ment are extracted from the subscript expression.
A shared memory machine need only compute an
address. Furthermore, each index of the subscript
(I and J) contributes a portion to both the proces­
sor number and the local address. That is. a se­
quence of execution time and compile time com­
putations extract the relevant information from
the indices, seale them appropriately, and pro­
duce two distinct values. The more complicated
the distribution. the more implicit overhead is as­
sociated with extracting the processor number
and local address. This overhead is independent
of the network costs associated with actually ac­
cessing the remote reference.

Insight into this implicit overhead is gained by
examining the calculations used to extract a pro­
cessor number and offset for a distributed array.
An example of a one-dimensional distribution is
the following:

REAL A (10000)

!HPF$ DISTRIBUTE A(CYCLIC(3))

In generaL an array declaration looks like:

DIMENSION A(L1:U1, L2: U2,
! HPF$ DISTRIBUTE A (a1, a 2,

HIGI I PEH.FOH.\1:\.\.CE FOH.TH.A:\ 191

where a 1 is the distribution pattern for dimension i
and is one of

BLOCKt
CYCLIC
CYCLIC(M)

* i.e., nondistributed dimension.

Each a 1 represents the distribution of a block of
elements across the processors. The block size is
computed as:

1
M

+ U,- Li)l
N, if a 1 = BLOCK

if a 1 = CYC'LIC

1 + U,- L,
if a 1 = CYC'LIC(M)
if a 1 = *

where N; is the number of processors over which
the array elements in dimension i are distributed.

With the information from B; and N; about the
data distribution, and given an index vector such
that each / 1 represents an index used in the array
subscript expression, the local offset and proces­
sor number can be computed as follows:

r

Offset = W, = 2: ((((/1 - L;) mod B 1)
i=1

i-1

X n r(1 + uk- Lk)/Nkl)
k~1

Processor = P1

r i-1

= 2:((l(l,- L,)!B,Jmod N;) x 0Nk)
i~1 k~l

The offset is the number of elements into the local
portion of the array on a processor. The computa­
tions are shown in Fortran below. The !EXTENTS
array assumes the 1 + Uk - Lk calculation has
already been performed. The INDEXES arrays as­
sumes the I 1 - L1 calculation has already been
performed.

IPROC = 0

LA = 0
LA._FACTOR 1
IP_FACTOR 1

"J" Then" is also a BLOCK (M) distribution that is similar to tlw
CYCLIC!\!) distribution.

192 KNIES, O'KEEFE, AND MACDONALD

c
DO I = 1, !RANK for every index in subscript

IX= INDEXES(!) current index in subscript
IBK = IBK_SIZES(I) block size of this dim
IP = N (I) number of procs in dim
!BLOCK= MOD(IX,IBK) extract block info
LA= LA+ !BLOCK* LA_FACTOR !factor block info into local addr
IX = IX 1 IBK ! right justify proc info
IPROC = IPROC + MOD (IX, IP) * IPJ'ACTOR ! extract proc info
IX = IX I IP right justify cyc.le
IP_FACTOR = IP _FACTOR * IP
LA = LA + IX * IBK * LA_FACTOR factor cycle info into local addr
LA_FACTOR = LA_FACTOR * ((!EXTENTS(!) + IP- 1) I IP)

END DO

The offset into the array is the value of LA and
the processor number is the value of IPROC after
the loop finishes execution. The above calcula­
tions do not show any additional work required if
the distributed array is aligned (with the ALIGN
directive) such that corresponding elements are
not necessarily on the same processor. There are
many optimizations that can be performed if the
implementation knows more information about
the distribution at compile time. There are also
table lookup techniques that can also help reduce
the number of calculations, but a time versus
space tradeoff is made [8]. The above formulas

and Fortran code show the general solution. In
particular, the use of the division and remainder
operations are necessary because the extents and
block sizes can be arbitrary integers. On some mi­
croprocessors, these instructions are extremely
expensive [5 J .

Such complex computations are not always
necessary. As an example of a simple distribution
where the array bounds are known statically and
are powers of two and the dimensional distribu­
tions are simple, we will examine the following ex­
ample declaration:

REAL A(256, 128)
!HPF$ DISTRIBUTE A(CYCLIC(4), CYCLIC(4))
c
C Assume:
c
c
c
c
c

power of two array extents and simple distributions with
power of two block sizes and power of two PEs allocated across
each dimension (say 8 and 4 for a total of 32 PEs), and that all
quantities except the values of I and J are known
at compile time, and that constant folding is performed.

Now, to access the following element:

A(I, J)

the compiler generates code that computes the same result as the following code sequence:

IX I
LA MOD (I, 4)
IX IX I 4
IPROC = MOD(IX,8)
IX IX I 8
LA LA + IX * 4
JX J
LA LA + MOD (JX, 4) * 32

mask off 2 bits
shift right 2 bits
mask off 3 bits
shift right 2 bits
shift left 2 bits and add

mask off 2 bits, shift left 5 bits and add

HIGH PERFORMANCE FORTRA:\' 193

JX = JX I 4 shift right 2 bits
IPROC = MOD(JX,4) * 8
JX JX I 4

mask off 2 bits and shift left 3 bits
shift right 2 bits

LA = LA + JX * 128 shift left 7 bits and add

Note that the example above permits the use of
shift and mask instructions because the sizes are
all powers of two and that several constants have
been folded. The normal cost of addressing dis­
tributed arrays in HPF is somewhere in between
these two examples. It is important to remember
that features such as relative alignment and un­
known argument distributions will increase the
complexity of addressing from what is shown
above.

At some point the cost associated with extract­
ing the processor and local address computation
exceeds the network cost associated with access­
ing the remote data. This crossover point is highly
machine dependent and critical to achieving high
performance. For example, if the individual pro­
cessor speed is several orders of magnitude faster
than the network speed (this well might be the
case if the network uses an Ethernet link, for ex­
ample), then the overhead associated with com­
puting the processor number and local address is
still overwhelmed by the long latency overhead of
the network communication. In this case a com­
plex data distribution may pay off because in­
creasing the locality of references is far more im­
portant than decreasing the cost of the address
computation. However, another architecture may
strive to decrease the difference between the pro­
cessor speed and the network speed. Now the
complex data distributions hinder performance
because it is actually faster to perform the remote
reference than to compute the processor number
and local address.

Compiler analysis of loops often allows certain
array references to be simplified. For example, a
stride one array reference through a loop can be
simplified to a pointer increment. With distributed
arrays, there is a considerable performance bene­
fit if the compiler is able to determine that array
references are local to the processor. For example,
if all the references are to corresponding elements
of identically distributed arrays, then no com­
munication is necessary and each processor can
be assigned iterations involving strictly local refer­
ences. The overhead associated with computing
the processor number and local offset of these dis­
tributed arrays (e.g., as in the examples above) is
greatly reduced, because the same transforma-

tions can be used that allow simple pointer incre­
ments.

However, if some array has different dimension
extents, distribution, or a different reference pat­
tern, then such transformations may not be possi­
ble. The problem associated with recognizing
when references to different data elements are all
local is much more difficult because elements are
distributed in contiguous blocks. Different ex­
tents, distributions, and reference patterns can all
cause the boundary point at which the next re­
mote element is encountered to be different arrav
references. Therefore, the set of local references
for one array can be very different than for an­
other array for a given loop. Fairly simple loops
can be quite difficult to analyze and transform if
different data distributions, extents, or reference
patterns are involved. The worst case scenarios
involve vector valued array references such as:

X(IX(I))

because the reference pattern is random as far as
the compiler is concerned.

Private Data and Serialized Access

Another important node level issue is that of opti­
mizing computations that reference processor lo­
cal data.

Independent loops (not part of the subset) also
permit certain variables to be declared as NEW
variables, and is one form of local private data
available in HPF. The primary limitation imposed
on NEW variables is that their scope is limited to a
single iteration as they effectively become unde­
fined at the end of each iteration.

Another form of local data is available through
PURE routines. A PURE routine must be side-effect
free (i.e., no modification of global variables, no
110, and no STOP statement). Because local vari­
ables cannot be distributed, specified on a SAVE
statement, or data initialized, they can be stored
as local private data on each processor. A PURE
routine offers good access to local data when side­
effect free computation is possible.

Consider a ray tracer application. Each ray can
follow a path that is completely independent of the

194 KNIES, O'KEEFE, AND MACDONALD

other rays and would be naturally implemented
using PURE routines. One ray tracing technique
generates more rays when a particular ray hits cer­
tain objects (e.g., diffuse reflection), and adds
them to a queue of rays waiting to be processed.
Since PURE routines are not allowed to update
global data, adding rays to a global queue be­
comes less straightforward and might introduce a
load that is not well balanced. It may also be diffi­
cult to report error conditions inside PURE rou­
tines because 110 is not allowed.

Another node level issue that HPF compilers
will need to solve is determining which portions of
distributed arrays are cachable. If the machine
has hardware-assisted cache coherence mecha­
nisms, then the problem of correctness will not be
as great, but poorly cached data will still suffer a
large performance impact. On systems where
there is little hardware support for cache coher­
ence, the burden falls on compiler analysis. In
cases where the compiler is unable to determine if
caching is safe, some distributed data will be un­
cachable and operations that manipulate it will be
limited by the speed of main memory rather than
cache.

Finally, there are no mutual exclusion primi­
tives available within HPF. Therefore, even
though iterations can execute in parallel, it is not
possible to serialize access to the globally address­
able data. This makes it very difficult to exploit
control parallelism.

4.3 Synchronization

The HPF specification uses array syntax and
specified loops to indicate parallel operations.
The FORALL statement is one of the primary
mechanisms used to specify a parallel loop. The
abstract execution model for this kind of parallel­
ism requires every processor to participate in the
execution of every statement. More precisely, no
processor is allowed to continue on to the next
executable statement until all results required by
that statement are available. ln the abstract
model, synchronization points are required in be­
tween two adjacent array syntax statements and
after evaluating the right-hand side of an assign­
ment statement. On systems where synchroniza­
tion is expensive, a programmer might be inclined
to use algorithms that do not require as many
global synchronizations. Optimizations can elimi­
nate some unnecessary synchronization points,
but HPF does not provide support for program­
mers to assist in the elimination of unwanted svn-

chronization that the optimizer fails to find. The
advantage of HPF's model is that it is conceptu­
ally more simple and programs are less likely to
have race conditions.

One way of eliminating synchronization is
through control parallelism. Control parallelism
allows different processors to execute indepen­
dent execution streams. Synchronization occurs
explicitly through libraries and language features.
or implicitly at the end of control blocks. Although
PURE routines in HPF do permit a limited form of
control parallelism, the primary mechanism for
exploiting control parallelism is through the IN­
DEPENDENT directive, which specifies that itera­
tions of a loop execute independently of each
other. However, the semantics of this directive are
not completely specified. For example. it is un­
clear exactly what restrictions are placed on sub­
routines called within independent loops. Can in­
dependent iterations allocate globally addressable
memory or do all processors have to participate in
the allocation?

Finally, there are no explicit synchronization
primitives in HPF and this combined with the lack
of serialization primitives further limits the capac­
ity for control parallelism.

5 HPF AND MPP APPLICATIONS

In this section we focus on application issues, es­
pecially as they relate to questions raised in Sec­
tions 3 and 4. Some experience has been gained
with HPF -like languages on massively parallel
machines; we discuss some of these early results
and how they relate to HPF.

5.1 General Issues Relating to
Production Environments

Languages Currently Used for
Applications Development

Supercomputers are mainly used by scientists and
engineers and the trend is likely to continue into
the foreseeable future. For these systems .. pro­
grams are generally written in Fortran 77 or C and
scientists have been reluctant to use new ian­
guages even when they offer attractive features.
This trend has shown that scientists would rather
use a familiar language and one in which they can
get predictable and reliable results and perfor­
mance. As such, HPF definitely provides a famil­
iar feel for those users familiar with Fortran 90.

However, before scientists are likely to rewrite
their codes, they will want assurance that good
compilers will be available on a wide variety of
platforms and that their programs will achieve
reasonable performance. Because HPF and For­
tran 90 compilers will likely be less common and
less efficient than Fortran 77 on workstations for
some time, users may initially be required to
maintain multiple versions of their codes-one in
HPF and another in Fortran 77 for workstations
and vector machines.

Porting Codes

Programmers are concerned both with the time
necessary to port and optimize a code for a partic­
ular machine and the eventual wall-clock time
necessary for a calculation to complete. To port a
Fortran 77 code from a workstation or vector su­
percomputer to HPF will require that data layout
directives be added and code reworked to fit into
the data parallel model. In current ~1PP environ­
ments it is possible for ports of larger applications
to any new language to take months, especially
when the performance of the resulting ported code
is critical (if lower performance is acceptable then
the time to convert the application may be much
less).

The interaction between the architectural and
language issues described in Sections 3 and 4 of­
ten limits the coding styles that yield good perfor­
mance [9, 10]; these styles must be adhered to on
a particular machine to achieve reasonable per­
formance. These styles often change between ma­
chines and even between different versions of the
compiler, as has been observed on the C~-200
and CM-5 [111 and thus. portability becomes dif­
ficult. The sensitivity of performance to program
style is a direct result of the need to efficiently
manage many architectural features at once.

Model of Computation

Many scientific problems fit well into HPF's data
parallel model of computation. For these applica­
tions. the data parallel model is intuitively appeal­
ing because arrays are first class objects. How­
ever, in some cases .. scientists may find the data
parallel model does not match their application
requirements even though that is HPF's primary
means of efficient parallel computation. For ex­
ample, irregular computations, such as those re­
quired on sparse matrices, are not well supported
in HPF (although the HPFF plans to consider this
issue in the future).

HIGH PERFOR.\lA:\CE FORTRA:\ 195

Another limitation of the data parallel model is
that it is difficult for the programmer to directly
express parallelism implicit across multiple loops
and subprograms. Because parallelism is ex­
pressed and optimizations are performed on a
statement-by-statement basis, sophisticated com­
piler technology will be needed to expand the
scope of this optimization. The current HPF spec­
ification provides only indirect mechanisms (local
routines. INDEPENDENT, EXTRINSIC) for the
programmer to indicate this global parallelism. A
possible solution to this problem would be to allow
more features to support control parallelism.

5.2 Applications Codes and CM Fortran

CM Fortran Overview

C~ Fortran [12] represents an HPF -like language
that has been implemented on both SIMD (C:M-
200) and MI:\1D (CM-5) machines. Experience
has been gained on the performance of several
interesting application codes written in C:M For­
tran [4, 13]: this experience can indicate potential
performance of HPF implementations.

CM Fortran includes the array syntax of For­
tran 90, a variant of the FORALL construct, and
data layout and alignment directives. These direc­
tives are similar but not as general as those found
in HPF; in particular. an array dimension is either
"on-processor" (contained in a single processor)
or "parallel" (spread across all processors). In
HPF, the BLOCK specification allows contiguous
portions of an array axis to be spread across mul­
tiple processors. With this notable exception. C:M
Fortran's model is quite close to subset HPF [1].

Applications Characteristics

The CM Fortran codes we discuss are based on
finite-difference and finite-volume methods [14].
which are commonly employed to solve a variety
of partial differential equations representing phys­
ical processes, including high Mach number fluid
flows [15:, mesoscale whether phenomena [16],
and ocean circulation [17]. These numerical
methods yield application codes that are particu­
larly well suited for distributed memory architec­
tures.

These applications codes are often character­
ized by logically regular grids representing various
state variables such as pressure, density, temper­
ature, and velocities: these programs step (inte­
grate) forward in time .. updating the state variables
using appropriate equations of state. These regu-

196 KNIES, O'KEEFE, AND MACDONALD

lar grids can be readily decomposed into indepen­
dent patches or bricks that can be mapped di­
rectly to processors; operations within each patch
or brick proceed independently on local data for
most of the time integration step. This grid model
is common to many applications in high perfor­
mance computing and exhibits large amounts of
parallelism and locality both across and within
nodes.

Piecewise Parabolic Method

An example of this kind of code is the Piecewise
Parabolic Method (PPM), a hydrodynamics code
used to study high Mach number compressible
flows with strong shocks and other nonlinear in­
teractions. Several of the current versions of PPM
[15] have been translated to CM Fortran, attain­
ing about 6.5 gigaflops (Gflops) on large 2-D grids
(16 million zones) on the 512-node, 16-gigabyte
(GByte) main memory CM-5 at the University of
Minnesota. These codes are approximately 5,000
lines of clean, almost completely vectorizable For­
tran 77. The CM-5 versions of PPM employs a
domain decomposition where the grid is parti­
tioned into subdomains that are mapped directly
to processors. PPM has been written and trans­
lated so that communication is required only once
per time step; all communication is isolated in one
small subroutine. At the end of each time step,
extra "fake" zones are updated both on the grid
boundaries (to implement boundary conditions)
and on interior patches (to reduce the need for
communication during the time step by maintain­
ing redundant copies).

Although limited, these communication opera­
tions tend to dominate PPM execution time on the
CM-5 and limit speedup even for large grids. Vari­
ous strategies have been employed to reduce the
overhead found in the CM Fortran run-time svs­
tem for these operations, including copying ar~ay
boundary sections in static arrays (using a special
routine that suppresses off-chip communication),
transferring these between processors, then copy­
ing the static array's values back into the state
variable arrays. This approach reduces the cur­
rent run-time system overhead necessarv for the
most straightforward transfer and redu~es com­
munication execution time by a factor of four.

TheARPS

The ARPS is a meso-scale prediction Fortran 77
code under development by the Center for Analv­
sis and Prediction of Storm~ (CAPS) at the Cnive~-

sity of Oklahoma. ARPS is a 3-D, fully compres­
sible, nonhydrostatic weather model that includes
cloud physics (humidity, cloud water, and rain
water), surface effects, and subgrid-scale turbu­
lent mixing.:j: The code for the model is over
50,000 lines of modular Fortran 77 [16].

This code has recently been translated to CM
Fortran by a group at Thinking Machines (using
CMAX, a Fortran 77 to CM Fortran translator
[18]) and by the Fortran P group at Minnesota
[19]. The Thinking Machines group was able to
achieve approximately 3 Gflops on a 512-node
CM-5 on this code, which is impressive in the con­
text of automatic translation but is much less than
the peak speed of the machine. Various run-time
overheads could be playing a significant role in
this performance result. The Fortran P group en­
countered memory inefficiencies related to earlier
versions of the CM Fortran compiler that made it
difficult to achieve efficient execution on the
translated code. More recent releases of the com­
piler seem to have removed some of these prob­
lems [19].

5.3 Potential Overheads in HPF
Applications

In the previous section, we described the charac­
teristics of several applications that have been im­
plemented in CM Fortran. While executing these
translated codes, several overheads associated
with CM Fortran have been observed.

For example, the local nature, in a lexical
sense, of data parallel computations can result in
the generation of large intermediate temporary ar­
rays during expression evaluation. Temporary ar­
rays are often generated at subroutine boundaries
when array sections are used as actual arguments;
the CM Fortran compiler would often generate
communication in these cases. Solutions such as
subroutine cloning are possible for the latter case.

Additionally, communication and run-time
overheads found in CM Fortran have been seen to
play a role in performance problems in these
codes. In particular, the compiler is sometimes
unable to determine whether a memorv access is
local or off-processor, despite explicit data layout
directives. When uncertain, the compiler must
generate more general off-processor communica-

:j: The ARPS uses second-order quadraticallv conservative
spatial discretization and second-order leapfrog (with Asselin
time filter option) temporal discretization, based on an Ara­
kawa C-grid and terrain-following vertical coordinates.

tion operations even if the data exists locally.
These operations are implemented in a run-time
system library called during program execution. In
any case, the run-time system must first decide if
the communication is local or note. On the CM-
200, this phenomena often greatly reduced per­
formance for certain CM Fortran coding styles [9].

In summary, these studies suggest that HPF­
like languages can be used to express typical nu­
merical codes. However, due to limited expres­
siveness of CM Fortran and significant implicit
overheads associated with the language and its
compiler, applications have yielded significantly
less than peak performance on machines such as
the CM-5. Of course, this does not preclude the
possibility of constructing an HPF compiler and
run-time system that can achieve high efficiency.
However, given the amount of work required in
porting CM Fortran to the CM-5 by a well-estab­
lished and experienced MPP company such as
Thinking Machines, it is clear that engineering an
efficient HPF compiler will be challenging.

6 CURRENT PROGRAMMING SYSTEMS
AND THE FUTURE

Presently, we believe that there are no portably
efficient languages available. Parallel machine ar­
chitectures are changing rapidly relative to single
CPU architectures, so any language design effort
based on specific assumptions about current ma­
chine architecture may be obsolete before it can
become widespread. As such, application devel­
opers need to prioritize their time and effort.

For those who seek portability, message pass­
ing is well established and currently provides the
best performance for many machines. Although
message passing leaves many problems unsolved
(such as when and how to redistribute data) and is
considered by many to be more difficult to pro­
gram than shared memory models, it does provide
a well-understood path towards portability and
reasonable performance. Additionally, because it
does not support a global namespace, it does not
suffer from the side effects of a global name space
(cache coherency, hidden data access latency var­
iations, addressing complexity). Message passing
also cleanly exploits all the resources expended on
optimizing compilers for single processors.

Recently, several very large codes have been
successfully ported using this approach. The Inte­
grated Forecast System (IFS) medium-range
weather prediction model developed by the

HIGH PERFORMANCE FORTRAN 197

ECMWF [20] consists of nearly 220,000 lines of
Fortran 77; only a very small port of the code
required changes to add message-passing calls.§
The ECMWF and Cray Research have recently
ported the full 3-D IFS model to the Cray T3D
massively parallel processor.

Similarly, message passing versions of PPM
have been developed by Woodward and his col­
leagues that isolate the message passing code to
one small routine. The most recent message pass­
ing version of PPM has been ported to a cluster of
16 Challenge XL serversll from Silicon Graphics
and achieved nearly 5 Gflops [21]. These efforts
show that with discipline in organizing and de­
signing code message passing can be an easy-to­
use and effective programming paradigm.

However, message passing is not the final an­
swer to portable and efficient parallel program­
ming. Newer machines such as the Cray T3D,
KSR -1, and KSR- 2, and announced products
from Convex and Tera Computer all have some
form of hardware support for fetching remote data
via a common address space. In this context, the
message-passing model adds a level of abstraction
between the programmer and the hardware,
which adds significant unnecessary software over­
head on remote data accesses.

Another near-term solution is the use of stan­
dard, vendor supplied, highly optimized, libraries
of commonly used routines. This is very effective
for problems with simple structure that can be
mapped to the machine using simple rules. How­
ever, if a problem requires that data be distributed
in a complex or unusual way, it is unlikely that the
library will support all the necessary data map­
pings. Another drawback to simple library-based
schemes is that it is very difficult to express nested
parallelism given a fixed functional interface. The
most obvious problem with library routines is that
they are only useful if the needed routines are in
the library.

In the future, automatic translation of serial
languages for massively parallel machines is the
most desirable solution. We expect that automatic
translation will continue to improve via new com­
pilation techniques [22, 23 J, but it is optimistic to
assume they will be able to get performance com­
parable to explicitly parallel languages on MPPs.

§ Message-passing calls were required when transposing
between the different grid spaces employed in the model.

II Each Challenge XL server in the configuration had 20
100-MHz R4400 CPUs, 1.75 GByte of memory, 12 GByte of
local disk, 1 Exabyte tape drive, and 3 FDDI interfaces to a 3-
D toroidal network.

198 KNIES, o·KEEFE, A:'-JD MACDONALD

However, if it is possible for programmers to limit
themselves to a self similar coding style, the For­
tran P translator developed at ~Iinnesota can
translate Fortran 77 codes to MPP form, allowing
the user to maintain and modify the original For­
tran 77 yet exploit new hardware platforms [11].
Similarly, the CMAX translator developed by
Thinking Machines [18] also translates a subset of
Fortran 77 (known as Scalable Fortran) and has
been applied successfully to several codes.

HPF also has a number of features that make it
attractive in the near term. HPF is standardizing
the data parallel approach in the same manner
that MPI [24] is standardizing message passing.
Also, the simplicity of the data parallel model and
a global address space makes programming in
HPF relatively easy as it relieves the programmer
from explicitly specifying communications andre­
mote addressing. HPF also provides a single
source language that will be able to run on many
different architectures even if individual programs
may not port efficiently. It also tends to localize
the source code changes necessary when porting
to the data layout directives. Finally, HPF has
proposed a large library of routine interfaces to be
part of the language, thus guaranteeing program­
mers availability of these routines on systems with
HPF compilers.

7 CONCLUSIONS

HPF is a well-conceived, well-documented lan­
guage proposal that will help future research ex­
plore the issues surrounding language design for
parallel machines.

However, although the HPF specification
claims that HPF programs can achieve both por­
tability and high performance-there is some rea­
son for doubt. Different parallel architectures
have verv different overheads that make it difficult
to try to balance one kind of overhead versus an­
other in a portable source level program in any
language.

There are a large number of implicit synchroni­
zation points in HPF due to its data parallel
model. This raises concerns about performance
and the limitations placed on control parallelism
and local private data. Furthermore, the data dis­
tribution mechanisms available in HPF permit
very complex distributions that can introduce sig­
nificant implicit overhead in the computation of
arrav element addresses as discussed in this ar­
ticle: It is unknown whether the flexibility gained

by such complex distributions will outweigh the
overhead thev introduce.

We have raised many questions about HPF in
this article, and we do not claim that they cannot
be overcome, but rather that there are many open
issues that are unresolved. These questions can
only be answered after HPF compilers are avail­
able and tested-this can be done without the
high performance industry adopting HPF as a
standard before it has been proven. Additionally,
as HPF compilers are developed and performance
results obtained, new questions will be raised. An­
swers to these questions will help identify the lan­
guage features that should be present in a stan­
dard high performance language. The problem is
further complicated by the rapidly evolving state
of parallel architectures and their changing
strengths and weaknesses. Thus, it is important
that HPF and other new languages be imple­
mented and carefully studied to avoid mistakes
that could have been averted so that the best solu­
tions can be adopted as standards in the future.

ACKNOWLEDGMENTS

We would like to thank Prof. Paul Woodward and
Steve Anderson at the Cniversitv of Minnesota for
their many insights on using CM Fortran and PPM
performance on the CM-5. Further thanks go to

Woody Lichtenstein and Gary Sabot of Thinking
Machines for their help and insights on the CM
Fortran compiler and run-time system. \Ve would
also like to thank George Adams for his insights
and comments on early drafts of this article.
Finally, we would like to thank the referees for
their comments and recommendations. Matthew
O'Keefe was supported in part by the Office of
Naval Research grant no. l.\"00014-93-1-0426
and bv contract no. DAAL02-89-C-0038 be­
tween the Armv Research Office and the Univer­
sity of Minnesota for the Army High Performance
Computing Research Center.

REFERENCES

1. "High Performance Fortran Language Specifica­
tion,'' High Performance Fortran Forum, Scien­
tific Programming, Vol. 2, 1\"os. 1 & 2, 1993.

2. Thinking Machines Corporation, Connection ,}la­
chine Model CM-5, Technical Summary, October
1991.

3. nCUBE Corporation, nCUBE2 Programmer's Ref­
erence 1Hanual, 1990.

4. D. Bailey. E. Barsczc, L. Dagum, and H. Simon,
Supercomputing '92. Los Alamitos, CA: IEEE
Computer Society Press. 1992. pp. 386-393.

5. Digital Equipment Corpo., 21064-AA RISC CPC
Aficroprocessor Release .Yates. 1992.

6. D. Pase, T. MacDonald, and A. Yleltzer, /v!PP For­
tran Programming model. Eagan, Ml\": Cray Re­
search, Inc., 1993.

7. Cray Research Incorporated, Y/VIP-C90 Program­
mer's Reference il1anual, 1991.

8. S. Chatterjee, J. Gilbert. F. Long, R. Schreiber.
and S.-H. Teng, Proceedings of the Fourth ACM
SIGPLAN Symposium on Principles and Practice
of Parallel Programming. San Diego. CA. :\ew
York: ACYl, 1993, pp. 149-158.

9. G. Sabot. "CM Fortran optimization notes: Slice­
wise modeL" Thinking Machines Corp .. Technical
Report TMC-184, March 1991.

10. H. G. Dietz, M.T. O'Keefe, T.J. Parr, T. Varghese.
and P.R. Woodward. '"Fortran-P," Cniversi~y of
1l1innesota Supercomputer Institute Technique
Report, December 1991.

11. M. O'Keefe, T. Parr, B.K. Edgar, S. Anderson, P.
Woodward, and H. Dietz, "The Fortran-P transla­
tor: Automatic translation of Fortran 77 programs
for massively parallel processors," Army High
Performance Computing Center Preprint no.
93-021.

12. Thinking Machines Corporation, CM Fortran Ref­
erence Manual, 1991.

13. 0. Lubeck, M. Simmons, and H. ·wasserman, Su­
percomputing '92. Los Alamitos, CA.: IEEE Com­
puter Society Press, 1992, pp. 403-412.

14. R. D. Richtmeyer and K.W . .\lorton, Difference
Methods for initial- Value Problems. :\ew York:
John Wiley and Sons, second edition. 1967.

15. P.R. Woodward. Astroph,ysical Radiation Hydro­
dynamics. D. Reidel Publishing Co .. 1986, pp.
245-326.

HIGI I PERFOR.\IA:\CE FORTRA:\ 199

16. K. Droegemeier. K. Johnson, K. Mills, and .\I.
O'Keefe, Proceedings of the 5th Workshop on the
Use of Parallel Processors in Meteorology. Read­
ing, England. Singapore: World Scientific Publish­
ing, Ltd., pp. 99-129, 1992.

17. R. Bleck and L. Smith, ··A wind -driven isopycnic
coordinate model of the ~orth and Equatorial At­
lantic Ocean,"]. Geophys. Res .. vol. 95, pp.
3273-3285, 1990.

18. G. W. Sabot and S. Wholey. Proceedings of the 7th
International Conference on Supercomputing. To­
kyo, Japan. Los Alamitos. CA.: IEEE Computer
Society Press, 1993.

19. A. Sawdey and M. O'Keefe, Proceedings of the
Conference on HPC in Geosciences. Les Houches.
France: Kluwer, in press.

20. D. Dent, Proceedings of the 5th EC/V!WF Workshop
on the Use of Parallel Processors in Meteorology.
Reading. England. Singapore: World Scientific
Publishing, Ltd., pp. 73-87. 1992.

21. D. Porter, P. Woodward, S. Anderson. K. Chin­
Purcell, R. Hessel, D. Perro. I. Zacharov, J. Ryan,
L Widra, and M. Galles, ''Attacking a grand chal­
lenge in computational fluid dynamics on a cluster
of silicon graphics challenge machines." Techni­
cal Report, Lniversity of :VIinnesota, November
1993.

22. Yl. Gupta and P. Banerjee, "Demonstration of au­
tomatic data partitioning techniques for paralleliz­
ing compilers on multicomputers," IEEE Trans.
Parallel Distrib. Systems, vol. 3, pp. 179-193.
1992.

23. S. Amarasinghe and M. Lam, Proceedings of the
1993 SIGPLAN Conference on Programming Lan­
guage, Design and Implementation. Albuquerque,
NM. New York: ACM. 1993, pp. 126-138.

24. Message Passing Interface Forum, "DRAFT: Doc­
ument for a Standard Ylessage Passing Interface."'
August 14. 1993.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

