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ABSTRACT 

The recently released high performance Fortran forum (HPFF) proposal has stirred 
much interest in the high performance computing industry. HPFF's most important de­
sign goal is to create a language that has source code portability and that achieves high 
performance on single instruction multiple data (SIMD), distributed-memory multiple 
instruction multiple data (MIMD), and shared-memory MIMD architectures. The HPFF 
proposal brings to the forefront many questions about design of portable and efficient 
languages for parallel machines. In this article, we discuss issues that need to be ad­
dressed before an efficient production quality compiler will be available for any such 
language. We examine some specific issues that are related to HPF's model of computa­
tion and analyze several implementation issues. We also provide some results from 
another data parallel compiler to help gain insight on some of the implementation 
issues that are relevant to HPF. Finally, we provide a summary of options currently 
available for application developers in industry. © 1994 John Wiley & Sons, Inc. 

1 INTRODUCTION 

In recent years, the high performance computing 
market has been expanding to include many di­
verse and new architectures. This has made lan­
guage design and implementation critical to solv­
ing software portability problems for large 
production application codes. To help meet this 
challenge. the High Performance Fortran Forum 
(HPFF) research group was formed and within the 
last year has produced a Fortran specification in­
tended to span high performance computing. lts 
main goal is to retain source code portability while 
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providing high performance across architectures 
as diverse as distributed memory single instruc­
tion multiple data (SLviD) and multiple instruction 
multiple data (.VIL\1D), and shared memory Ml.V1D 
[1]. 

HPF has garnered much interest from industry 
due to the expectation of portability and high per­
formance. It has also brought discussion of porta­
ble high performance languages to the forefront of 
parallel systems research. The strengths of the 
HPFF proposal are clear.. broad. and high level: a 
simplified programming model for parallel ma­
chines. the development of a single language that 
can be used on many machines, a large standard­
ized library of support routines. and a proposal 
developed jointly by industry and academic ex­
perts. However. it does have a number of unre­
solved issues that lie in the low-level details of por­
tability .. compiler development and technology. 
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and application implementation that are not im­
mediately obvious. ln this article, we will analyze 
some of these unresolved issues in the HPFF pro­
posal as a guide for application developers and for 
future language development efforts. 

In Section 2, we provide an informal discussion 
of portability and high performance to set the 
stage for our analysis. In Section 3, we outline 
general architectural issues that affect portable 
languages as they relate to the performance of 
parallel programs, In Section 4, we discuss spe­
cific problem areas in HPF as they related to the 
discussion in Section 3 and their affect on com­
piler implementation and efficiency of generated 
code. Section 5 discussed HPF and application 
implementation issue by looking at the results of 
the CM Fortran compiler on several application 
codes. Section 6 provides a brief overview of im­
plementation possibilities for application devel­
opers now. 

2 PORTABILITY AND HIGH EFFICIENCY 

In section 2.2, the HPF specification notes: 

Although SIMD processor arrays, MIMD 
shared-memory machines, and MIMD dis­
tributed-memory machines use very differ­
ent low-level primitives, there is a broad 
similarity with respect to the fundamental 
factors that affect the performance of par­
allel programs on these machines. Thus, 
achieving high efficiency across different 
parallel machines with the same high level 
HPF program is a feasible goal. 

It is important to define what can be meant by 
high efficiency (high performance) and portability. 
It is possible for a language to exhibit both porta­
bility (all programs run without change on other 
machines) and high performance (programs writ­
ten in the language can be made to run efficiently 
on any given machine) without exhibiting both 
characteristics simultaneously. We believe this 
distinction is important to the high performance 
community. Therefore, we propose an informal 
definition to describe what it means for a language 
to simultaneously exhibit both high performance 
and portability: 

For any system, a program written in a por­
table high performance language that 
solves a particular problem should achieve 

wall-clock runtime comparable to a well­
written program that solves the same prob­
lem in the native high-level language on 
that svstem. 

This definition says that a portable high perfor­
mance language* should be expected to achieve 
performance similar to that already achievable on 
that machine by native high-level languages. 1'\o­
tice that if we are willing to accept portability with­
out claiming high performance, then this defini­
tion is too stringent. The rest of this article 
discusses issues in the development of languages 
that facilitate writing codes that are simulta­
neously portable and efficient with emphasis on 
HPF. 

3 ARCHITECTURAL ISSUES 

In this section, we outline architectural attributes 
(latency, bandwidth, network topology, etc.) that 
are related to parallel machines. This discussion is 
intended to focus attention on architectural fea­
tures over which a portably efficient language 
might allow direct control. We are not advocating 
that such control be allowed in a portably efficient 
language. Rather, we are pointing out that either 
the programmer or the compiler must make deci­
sions regarding these issues and it is not clear that 
compilers with such analytic capabilities exist in 
production systems. 

3.1 Bandwidth and Latency 

A key feature of distributed memory architectures 
is the difference between remote memorv band­
width and local memory bandwidth [2]. This is­
sue is particularly important when considering 
the effects of communicating large data sets be­
tween processors (i.e., when the network needs to 
transmit large amounts of data). Programmers 
trade off the cost of data redistribution versus the 
penalty for using a suboptimal algorithm that may 
be better suited for the current distribution of 
data. If a particular architecture can redistribute 
data much faster than another, then it becomes 
feasible for data to be redistributed rather than 
using a less efficient code sequence amendable to 
the current distribution. 

* We will also usc the phrase portah(y efficient to refer to 

portable hi!(h performance languages. 



Although bandwidth affects the feasibility of 
large data transfers, the latency of a remote refer­
ence determines the acceptable granularity of 
communication. On some parallel machines, the 
difference between local and remote memorv la­
tency can be two orders of magnitude or more [2, 
3]. In such cases, the programmer must try to 
minimize startup overhead by grouping data 
transfers into single messages. On a machine like 
the Cray YMP-C90, memory latency is more or 
less uniform for all processors and the penalty for 
references can sometimes be hidden by pipelined 
functional units (memory and computation). Such 
machines are capable of handling much finer 
grained transactions between memory and the 
processors. This tradeoff can be seen by studying 
the performance of the l\AS IS benchmark [ 4] 
where the shared-memory machines do signifi­
cantlv better than the distributed memorv rna-

• 0 

chines because of their abilitv to do low-latencv 
0 0 

fine-grained memory accesses. 
Given this tradeoff, how should the granularity 

of communications be factored in for a given ma­
chine: If the latency is very low, then a fine­
grained approach might yield the best results, but 
if the latency is very high, then coarse-grained 
messages might be better. 

3.2 Node Level Issues 

The effect of memorv latencv is also an issue at the 
0 0 

node level as the performance of all current micro­
processors is heavily dependent on keeping data 
in cache. In some cases, cache performance may 
be the limiting performance factor for micro­
processor-based machines. A good programmer 
takes into account blocking factors based on the 
size and configuration of the cache when writing 
loops. This has some affect on the size of mes­
sages used to communicate between processors 
while executing such loops. This area is particu­
larly critical on microprocessors where multiple 
cache misses [ 5] can cause the processor to stall 
until one or more of the outstanding memory 
rea-ds is resolved. The degree to which local data 
accesses can be optimized greatly affects the per­
formance of an individual processor and hence 
the svstem as a whole. 

This issue becomes more difficult as the size of 
the problem increases and less of the data will fit 
into cache. In such cases, completely new block­
ing sizes and techniques such as software pipelin­
ing are needed to keep the processor from stalling 
due to outstanding memory references. 
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Cache coherency is another important node 
level issue. If a distributed memory machine al­
lows processors to directly access another proces­
sor's memory (i.e., global address space) without 
hardware-assisted coherence, then sophisticated 
analysis will be required to guarantee that a par­
ticular piece of data can be safely cached. One 
wav to do this is to differentiate between shared 
and private data: Private data is not directly ac­
cessible by other processing elements (PEs) and is 
thus cachable; shared data is not cachable unless 
the compiler can determine it is safe to do so [ 6]. 

Finally, many machines have different levels of 
parallelism and locality (such as the Thinking Ma­
chines CM-5 [2]). Locality effects are present at 
multiple levels in the CM -5: within vector units, 
each having direct access to one of four memory 
banks: across groups of four vector units, con­
trolled by a single SP ARC processor: and across 
groups of four nodes, where the bandwidth is 
higher than communications with other nodes. To 
get good performance from such machines. the 
compiler must be able to determine which kind of 
parallelism is appropriate for a given code se­
quence. If a program is written in a language that 
does not provide support for expressing multilevel 
parallelism, then the compiler must make these 
decisions without the programmer's help. 

3.3 Synchronization 

Another area where system performance varies 
widely amongst architectures is the cost of syn­
chronizing processors. The cost can vary from 
zero cycles on SI..\1D architectures such as the 
Maspar MP-2 to thousands of cycles on MI.MD 
architectures such as the nCUBE-2 [3]. 

Because of this, it is important to be careful 
with the use of barriers and other svnchroniza­
tions. If such svnchronizations occur too fre­
quently, then the performance of such codes will 
be good on some machines and poor on others. 

3.4 Network Topology 

An area that has historically received attention is 
the topological aspects of the interconnection net­
work. Network conflict penalties impact the num­
ber of communication patterns that can be effi­
ciently executed on a given machine. All parallel 
machines suffer from contention for blocks of 
memory (memory banks in the shared memory 
machine and access to aPE's network interface in 
a distributed memory machine), but the penalty 
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for unstructured cornn1unication vanes dramati­
cally. On a Y~1P-C90 there is relati\·cly little con­
tention in the network except for the time a bank is 
busy servicing- a request (i.e.' the dday is erenerally 
at the node. not within the network). This means 
that a YMP-C90 is very effective at doing- g-ather/ 
scatter operations provided the number of hank 
conflicts is not high. On the other hand. YMP-C90 
memory performance will degrade much more 
quickly if the prog-rammer sequentially accesses 
elements whose addresses are separated by a large 
power of two [?]. A distributed memory machine 
is somewhat different in that it will suffer not only 
from accL .,; to a g-iven PE 's network interface. but 
also intraversing- the network. This means that a 
prog-rammer will want accesse,; to be made so that 
network conflicts are minimized. In generaL this 
means that communications pattern,; should be 
highly structured and not clustered in bursts that 
will overwhelm the network. 

As an example of how this difference could 
cause problems, on a Y:V1P-C90. a programmer 
will write code to avoid the problems associated 
with power of two strides to yield good memory 
performance. If the same program is to be opti­
mized for a hypercube connected machine. com­
munications are frequently made between ele­
ments that are separated by a power of two 
elements! Such coding practices inherently show 
up in the loop bounds and index expressions of 
arrav references. 

3.5 Algorithm Issues 

Thus far. our discussion has centered on how a 
particular algorithm might need to he imple­
mented differently. independently of the algo­
rithm selected. There are cases where the archi­
tectural parameters are so extreme that one 
algorithm simply is not feasible on that machine. 
Thi,; issue is clearly beyond the scope of a pure 
discussion of language. but is worth pointing out 
as a factor that influences any language ·s claim to 
be portable and efficient. 

4 IMPLEMENTATION AND MODEL ISSUES 
IN HPF 

4.1 HPF Ovll!rview 

The HPF language is Fortran 90 with added di­
rectives. new syntax and ,;ernantics. and a ,;et of 

new library routines. The directives are special 
comments that give the compiler additional infor­
mation about processor arrangement. data distri­
bution. data alignment. and statement indepen­
dence. The new svntax includes the FORALL 
statement. and the kevwords EXTRINSIC. PURE. 
and NEW. Kew semantics restrict the support of 
Fortran storage association and sequence associ­
ation (e.g., EQUIVALENCE). l\ew library routines 
include system inquiry. array, and bit manipula­
tion intrinsic functions. HPF also defines a subset 
that vendors can choose to implement. 

In the remainder of this section. we provide a 
detailed analysis of the impact of several of the 
features of HPF's computational modeL The dis­
cussion is structured around the issues described 
in Section 3. 

4.2 Node Level Issues 

Address Computation 

Every high-level programming language has im­
plicit overhead associated with it that is not in­
curred by an assembly language programmer. A 
tradeoff is made by the programmer because the 
high -level language increases productivity and 
portability. When a feature is added to a lan­
guage. the implicit overhead introduced by the 
feature needs to be understood. For example. 
there is an expectation that there is more implicit 
overhead associated with making a function call 
than inlining the executable statements inside the 
function. Again. there is a tradeoff. This time it is 
maintainability. good software engineering prac­
tices. and productivity. However. language fea­
tures that have the appearance of simplicity but 
introduce significant implicit overhead need to be 
examined and understood by programmers hop­
ing to get good performance. 

This is particularly true in HPF with respect to 
addressing distributed objects. HPF allows arrays 
to be distributed across multiple processors to 
provide a global name space for data and a niPch­
anism for increasing the locality of references. The 
set of distributions provided by HPF is very pow­
erful: Arrays can be aligned with other arrays or 
with templates: alignments can specify dummy 
variables to indicate offsets along a dimension .. di­
mensional transposes. collapses. or replications. 
The templates are then distributed onto proce,;­
sors. The dimen:-;ional distributions can he 



blocked, cyclic. or "on-processor" (i.e .. an entire 
dimension is distributed as a whole object). 

One of the main advantages of the global name 
space is that it provides an intuitive model for ac­
cessing data and is relatively easy for a new pro­
grammer to understand. The alternative is a more 
cumbersome communication mechanism through 
an explicit functional interface. 

The data distribution features in HPF let array 
references provide implicit communication when 
necessary, and increased locality when desired via 
data alignment and distribution. Because a data 
reference no longer provides explicit information 
about its location, the compiler must determine 
this before data can be accessed. In HPF. this 
adds additional implicit overhead when the com­
piler generates code to reference elements of a dis­
tributed arrav. This means HPF has additional 
implicit overhead on distributed memory ma­
chines that is not present on shared memory rna­
chines when referencing expressions such as: 

A (I, J) 

The additional overhead exists because the pro­
cessor number and local address for this arrav ele­
ment are extracted from the subscript expression. 
A shared memory machine need only compute an 
address. Furthermore, each index of the subscript 
(I and J) contributes a portion to both the proces­
sor number and the local address. That is. a se­
quence of execution time and compile time com­
putations extract the relevant information from 
the indices, seale them appropriately, and pro­
duce two distinct values. The more complicated 
the distribution. the more implicit overhead is as­
sociated with extracting the processor number 
and local address. This overhead is independent 
of the network costs associated with actually ac­
cessing the remote reference. 

Insight into this implicit overhead is gained by 
examining the calculations used to extract a pro­
cessor number and offset for a distributed array. 
An example of a one-dimensional distribution is 
the following: 

REAL A (10000) 

!HPF$ DISTRIBUTE A(CYCLIC(3)) 

In generaL an array declaration looks like: 

DIMENSION A(L1:U1, L2: U2, 
! HPF$ DISTRIBUTE A (a1, a 2, 
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where a 1 is the distribution pattern for dimension i 
and is one of 

BLOCKt 
CYCLIC 
CYCLIC(M) 

* i.e., nondistributed dimension. 

Each a 1 represents the distribution of a block of 
elements across the processors. The block size is 
computed as: 

1 
M 

+ U,- Li)l 
N, if a 1 = BLOCK 

if a 1 = CYC'LIC 

1 + U,- L, 
if a 1 = CYC'LIC(M) 
if a 1 = * 

where N; is the number of processors over which 
the array elements in dimension i are distributed. 

With the information from B; and N; about the 
data distribution, and given an index vector such 
that each / 1 represents an index used in the array 
subscript expression, the local offset and proces­
sor number can be computed as follows: 

r 

Offset = W, = 2: ((((/1 - L;) mod B 1) 
i=1 

i-1 

X n r(1 + uk- Lk)/Nkl) 
k~1 

Processor = P1 

r i-1 

= 2:((l(l,- L,)!B,Jmod N;) x 0Nk) 
i~1 k~l 

The offset is the number of elements into the local 
portion of the array on a processor. The computa­
tions are shown in Fortran below. The !EXTENTS 
array assumes the 1 + Uk - Lk calculation has 
already been performed. The INDEXES arrays as­
sumes the I 1 - L1 calculation has already been 
performed. 

IPROC = 0 

LA = 0 
LA._FACTOR 1 
IP_FACTOR 1 

"J" Then" is also a BLOCK (M) distribution that is similar to tlw 
CYCLIC!\!) distribution. 
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c 
DO I = 1, !RANK for every index in subscript 

IX= INDEXES(!) current index in subscript 
IBK = IBK_SIZES(I) block size of this dim 
IP = N (I) number of procs in dim 
!BLOCK= MOD(IX,IBK) extract block info 
LA= LA+ !BLOCK* LA_FACTOR !factor block info into local addr 
IX = IX 1 IBK ! right justify proc info 
IPROC = IPROC + MOD (IX, IP) * IPJ'ACTOR ! extract proc info 
IX = IX I IP right justify cyc.le 
IP_FACTOR = IP _FACTOR * IP 
LA = LA + IX * IBK * LA_FACTOR factor cycle info into local addr 
LA_FACTOR = LA_FACTOR * ((!EXTENTS(!) + IP- 1) I IP) 

END DO 

The offset into the array is the value of LA and 
the processor number is the value of IPROC after 
the loop finishes execution. The above calcula­
tions do not show any additional work required if 
the distributed array is aligned (with the ALIGN 
directive) such that corresponding elements are 
not necessarily on the same processor. There are 
many optimizations that can be performed if the 
implementation knows more information about 
the distribution at compile time. There are also 
table lookup techniques that can also help reduce 
the number of calculations, but a time versus 
space tradeoff is made [8]. The above formulas 

and Fortran code show the general solution. In 
particular, the use of the division and remainder 
operations are necessary because the extents and 
block sizes can be arbitrary integers. On some mi­
croprocessors, these instructions are extremely 
expensive [ 5 J . 

Such complex computations are not always 
necessary. As an example of a simple distribution 
where the array bounds are known statically and 
are powers of two and the dimensional distribu­
tions are simple, we will examine the following ex­
ample declaration: 

REAL A(256, 128) 
!HPF$ DISTRIBUTE A( CYCLIC(4), CYCLIC(4) ) 
c 
C Assume: 
c 
c 
c 
c 
c 

power of two array extents and simple distributions with 
power of two block sizes and power of two PEs allocated across 
each dimension (say 8 and 4 for a total of 32 PEs), and that all 
quantities except the values of I and J are known 
at compile time, and that constant folding is performed. 

Now, to access the following element: 

A(I, J) 

the compiler generates code that computes the same result as the following code sequence: 

IX I 
LA MOD (I, 4) 
IX IX I 4 
IPROC = MOD(IX,8) 
IX IX I 8 
LA LA + IX * 4 
JX J 
LA LA + MOD (JX, 4) * 32 

mask off 2 bits 
shift right 2 bits 
mask off 3 bits 
shift right 2 bits 
shift left 2 bits and add 

mask off 2 bits, shift left 5 bits and add 
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JX = JX I 4 shift right 2 bits 
IPROC = MOD(JX,4) * 8 
JX JX I 4 

mask off 2 bits and shift left 3 bits 
shift right 2 bits 

LA = LA + JX * 128 shift left 7 bits and add 

Note that the example above permits the use of 
shift and mask instructions because the sizes are 
all powers of two and that several constants have 
been folded. The normal cost of addressing dis­
tributed arrays in HPF is somewhere in between 
these two examples. It is important to remember 
that features such as relative alignment and un­
known argument distributions will increase the 
complexity of addressing from what is shown 
above. 

At some point the cost associated with extract­
ing the processor and local address computation 
exceeds the network cost associated with access­
ing the remote data. This crossover point is highly 
machine dependent and critical to achieving high 
performance. For example, if the individual pro­
cessor speed is several orders of magnitude faster 
than the network speed (this well might be the 
case if the network uses an Ethernet link, for ex­
ample), then the overhead associated with com­
puting the processor number and local address is 
still overwhelmed by the long latency overhead of 
the network communication. In this case a com­
plex data distribution may pay off because in­
creasing the locality of references is far more im­
portant than decreasing the cost of the address 
computation. However, another architecture may 
strive to decrease the difference between the pro­
cessor speed and the network speed. Now the 
complex data distributions hinder performance 
because it is actually faster to perform the remote 
reference than to compute the processor number 
and local address. 

Compiler analysis of loops often allows certain 
array references to be simplified. For example, a 
stride one array reference through a loop can be 
simplified to a pointer increment. With distributed 
arrays, there is a considerable performance bene­
fit if the compiler is able to determine that array 
references are local to the processor. For example, 
if all the references are to corresponding elements 
of identically distributed arrays, then no com­
munication is necessary and each processor can 
be assigned iterations involving strictly local refer­
ences. The overhead associated with computing 
the processor number and local offset of these dis­
tributed arrays (e.g., as in the examples above) is 
greatly reduced, because the same transforma-

tions can be used that allow simple pointer incre­
ments. 

However, if some array has different dimension 
extents, distribution, or a different reference pat­
tern, then such transformations may not be possi­
ble. The problem associated with recognizing 
when references to different data elements are all 
local is much more difficult because elements are 
distributed in contiguous blocks. Different ex­
tents, distributions, and reference patterns can all 
cause the boundary point at which the next re­
mote element is encountered to be different arrav 
references. Therefore, the set of local references 
for one array can be very different than for an­
other array for a given loop. Fairly simple loops 
can be quite difficult to analyze and transform if 
different data distributions, extents, or reference 
patterns are involved. The worst case scenarios 
involve vector valued array references such as: 

X(IX(I)) 

because the reference pattern is random as far as 
the compiler is concerned. 

Private Data and Serialized Access 

Another important node level issue is that of opti­
mizing computations that reference processor lo­
cal data. 

Independent loops (not part of the subset) also 
permit certain variables to be declared as NEW 
variables, and is one form of local private data 
available in HPF. The primary limitation imposed 
on NEW variables is that their scope is limited to a 
single iteration as they effectively become unde­
fined at the end of each iteration. 

Another form of local data is available through 
PURE routines. A PURE routine must be side-effect 
free (i.e., no modification of global variables, no 
110, and no STOP statement). Because local vari­
ables cannot be distributed, specified on a SAVE 
statement, or data initialized, they can be stored 
as local private data on each processor. A PURE 
routine offers good access to local data when side­
effect free computation is possible. 

Consider a ray tracer application. Each ray can 
follow a path that is completely independent of the 
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other rays and would be naturally implemented 
using PURE routines. One ray tracing technique 
generates more rays when a particular ray hits cer­
tain objects (e.g., diffuse reflection), and adds 
them to a queue of rays waiting to be processed. 
Since PURE routines are not allowed to update 
global data, adding rays to a global queue be­
comes less straightforward and might introduce a 
load that is not well balanced. It may also be diffi­
cult to report error conditions inside PURE rou­
tines because 110 is not allowed. 

Another node level issue that HPF compilers 
will need to solve is determining which portions of 
distributed arrays are cachable. If the machine 
has hardware-assisted cache coherence mecha­
nisms, then the problem of correctness will not be 
as great, but poorly cached data will still suffer a 
large performance impact. On systems where 
there is little hardware support for cache coher­
ence, the burden falls on compiler analysis. In 
cases where the compiler is unable to determine if 
caching is safe, some distributed data will be un­
cachable and operations that manipulate it will be 
limited by the speed of main memory rather than 
cache. 

Finally, there are no mutual exclusion primi­
tives available within HPF. Therefore, even 
though iterations can execute in parallel, it is not 
possible to serialize access to the globally address­
able data. This makes it very difficult to exploit 
control parallelism. 

4.3 Synchronization 

The HPF specification uses array syntax and 
specified loops to indicate parallel operations. 
The FORALL statement is one of the primary 
mechanisms used to specify a parallel loop. The 
abstract execution model for this kind of parallel­
ism requires every processor to participate in the 
execution of every statement. More precisely, no 
processor is allowed to continue on to the next 
executable statement until all results required by 
that statement are available. ln the abstract 
model, synchronization points are required in be­
tween two adjacent array syntax statements and 
after evaluating the right-hand side of an assign­
ment statement. On systems where synchroniza­
tion is expensive, a programmer might be inclined 
to use algorithms that do not require as many 
global synchronizations. Optimizations can elimi­
nate some unnecessary synchronization points, 
but HPF does not provide support for program­
mers to assist in the elimination of unwanted svn-

chronization that the optimizer fails to find. The 
advantage of HPF's model is that it is conceptu­
ally more simple and programs are less likely to 
have race conditions. 

One way of eliminating synchronization is 
through control parallelism. Control parallelism 
allows different processors to execute indepen­
dent execution streams. Synchronization occurs 
explicitly through libraries and language features. 
or implicitly at the end of control blocks. Although 
PURE routines in HPF do permit a limited form of 
control parallelism, the primary mechanism for 
exploiting control parallelism is through the IN­
DEPENDENT directive, which specifies that itera­
tions of a loop execute independently of each 
other. However, the semantics of this directive are 
not completely specified. For example. it is un­
clear exactly what restrictions are placed on sub­
routines called within independent loops. Can in­
dependent iterations allocate globally addressable 
memory or do all processors have to participate in 
the allocation? 

Finally, there are no explicit synchronization 
primitives in HPF and this combined with the lack 
of serialization primitives further limits the capac­
ity for control parallelism. 

5 HPF AND MPP APPLICATIONS 

In this section we focus on application issues, es­
pecially as they relate to questions raised in Sec­
tions 3 and 4. Some experience has been gained 
with HPF -like languages on massively parallel 
machines; we discuss some of these early results 
and how they relate to HPF. 

5.1 General Issues Relating to 
Production Environments 

Languages Currently Used for 
Applications Development 

Supercomputers are mainly used by scientists and 
engineers and the trend is likely to continue into 
the foreseeable future. For these systems .. pro­
grams are generally written in Fortran 77 or C and 
scientists have been reluctant to use new ian­
guages even when they offer attractive features. 
This trend has shown that scientists would rather 
use a familiar language and one in which they can 
get predictable and reliable results and perfor­
mance. As such, HPF definitely provides a famil­
iar feel for those users familiar with Fortran 90. 



However, before scientists are likely to rewrite 
their codes, they will want assurance that good 
compilers will be available on a wide variety of 
platforms and that their programs will achieve 
reasonable performance. Because HPF and For­
tran 90 compilers will likely be less common and 
less efficient than Fortran 77 on workstations for 
some time, users may initially be required to 
maintain multiple versions of their codes-one in 
HPF and another in Fortran 77 for workstations 
and vector machines. 

Porting Codes 

Programmers are concerned both with the time 
necessary to port and optimize a code for a partic­
ular machine and the eventual wall-clock time 
necessary for a calculation to complete. To port a 
Fortran 77 code from a workstation or vector su­
percomputer to HPF will require that data layout 
directives be added and code reworked to fit into 
the data parallel model. In current ~1PP environ­
ments it is possible for ports of larger applications 
to any new language to take months, especially 
when the performance of the resulting ported code 
is critical (if lower performance is acceptable then 
the time to convert the application may be much 
less). 

The interaction between the architectural and 
language issues described in Sections 3 and 4 of­
ten limits the coding styles that yield good perfor­
mance [9, 10]; these styles must be adhered to on 
a particular machine to achieve reasonable per­
formance. These styles often change between ma­
chines and even between different versions of the 
compiler, as has been observed on the C~-200 
and CM-5 [111 and thus. portability becomes dif­
ficult. The sensitivity of performance to program 
style is a direct result of the need to efficiently 
manage many architectural features at once. 

Model of Computation 

Many scientific problems fit well into HPF's data 
parallel model of computation. For these applica­
tions. the data parallel model is intuitively appeal­
ing because arrays are first class objects. How­
ever, in some cases .. scientists may find the data 
parallel model does not match their application 
requirements even though that is HPF's primary 
means of efficient parallel computation. For ex­
ample, irregular computations, such as those re­
quired on sparse matrices, are not well supported 
in HPF (although the HPFF plans to consider this 
issue in the future). 
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Another limitation of the data parallel model is 
that it is difficult for the programmer to directly 
express parallelism implicit across multiple loops 
and subprograms. Because parallelism is ex­
pressed and optimizations are performed on a 
statement-by-statement basis, sophisticated com­
piler technology will be needed to expand the 
scope of this optimization. The current HPF spec­
ification provides only indirect mechanisms (local 
routines. INDEPENDENT, EXTRINSIC) for the 
programmer to indicate this global parallelism. A 
possible solution to this problem would be to allow 
more features to support control parallelism. 

5.2 Applications Codes and CM Fortran 

CM Fortran Overview 

C~ Fortran [12] represents an HPF -like language 
that has been implemented on both SIMD (C:M-
200) and MI:\1D (CM-5) machines. Experience 
has been gained on the performance of several 
interesting application codes written in C:M For­
tran [ 4, 13]: this experience can indicate potential 
performance of HPF implementations. 

CM Fortran includes the array syntax of For­
tran 90, a variant of the FORALL construct, and 
data layout and alignment directives. These direc­
tives are similar but not as general as those found 
in HPF; in particular. an array dimension is either 
"on-processor" (contained in a single processor) 
or "parallel" (spread across all processors). In 
HPF, the BLOCK specification allows contiguous 
portions of an array axis to be spread across mul­
tiple processors. With this notable exception. C:M 
Fortran's model is quite close to subset HPF [1]. 

Applications Characteristics 

The CM Fortran codes we discuss are based on 
finite-difference and finite-volume methods [ 14]. 
which are commonly employed to solve a variety 
of partial differential equations representing phys­
ical processes, including high Mach number fluid 
flows [ 15:, mesoscale whether phenomena [ 16], 
and ocean circulation [ 17]. These numerical 
methods yield application codes that are particu­
larly well suited for distributed memory architec­
tures. 

These applications codes are often character­
ized by logically regular grids representing various 
state variables such as pressure, density, temper­
ature, and velocities: these programs step (inte­
grate) forward in time .. updating the state variables 
using appropriate equations of state. These regu-
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lar grids can be readily decomposed into indepen­
dent patches or bricks that can be mapped di­
rectly to processors; operations within each patch 
or brick proceed independently on local data for 
most of the time integration step. This grid model 
is common to many applications in high perfor­
mance computing and exhibits large amounts of 
parallelism and locality both across and within 
nodes. 

Piecewise Parabolic Method 

An example of this kind of code is the Piecewise 
Parabolic Method (PPM), a hydrodynamics code 
used to study high Mach number compressible 
flows with strong shocks and other nonlinear in­
teractions. Several of the current versions of PPM 
[15] have been translated to CM Fortran, attain­
ing about 6.5 gigaflops (Gflops) on large 2-D grids 
(16 million zones) on the 512-node, 16-gigabyte 
(GByte) main memory CM-5 at the University of 
Minnesota. These codes are approximately 5,000 
lines of clean, almost completely vectorizable For­
tran 77. The CM-5 versions of PPM employs a 
domain decomposition where the grid is parti­
tioned into subdomains that are mapped directly 
to processors. PPM has been written and trans­
lated so that communication is required only once 
per time step; all communication is isolated in one 
small subroutine. At the end of each time step, 
extra "fake" zones are updated both on the grid 
boundaries (to implement boundary conditions) 
and on interior patches (to reduce the need for 
communication during the time step by maintain­
ing redundant copies). 

Although limited, these communication opera­
tions tend to dominate PPM execution time on the 
CM-5 and limit speedup even for large grids. Vari­
ous strategies have been employed to reduce the 
overhead found in the CM Fortran run-time svs­
tem for these operations, including copying ar~ay 
boundary sections in static arrays (using a special 
routine that suppresses off-chip communication), 
transferring these between processors, then copy­
ing the static array's values back into the state 
variable arrays. This approach reduces the cur­
rent run-time system overhead necessarv for the 
most straightforward transfer and redu~es com­
munication execution time by a factor of four. 

TheARPS 

The ARPS is a meso-scale prediction Fortran 77 
code under development by the Center for Analv­
sis and Prediction of Storm~ (CAPS) at the Cnive~-

sity of Oklahoma. ARPS is a 3-D, fully compres­
sible, nonhydrostatic weather model that includes 
cloud physics (humidity, cloud water, and rain 
water), surface effects, and subgrid-scale turbu­
lent mixing.:j: The code for the model is over 
50,000 lines of modular Fortran 77 [16]. 

This code has recently been translated to CM 
Fortran by a group at Thinking Machines (using 
CMAX, a Fortran 77 to CM Fortran translator 
[18]) and by the Fortran P group at Minnesota 
[19]. The Thinking Machines group was able to 
achieve approximately 3 Gflops on a 512-node 
CM-5 on this code, which is impressive in the con­
text of automatic translation but is much less than 
the peak speed of the machine. Various run-time 
overheads could be playing a significant role in 
this performance result. The Fortran P group en­
countered memory inefficiencies related to earlier 
versions of the CM Fortran compiler that made it 
difficult to achieve efficient execution on the 
translated code. More recent releases of the com­
piler seem to have removed some of these prob­
lems [19]. 

5.3 Potential Overheads in HPF 
Applications 

In the previous section, we described the charac­
teristics of several applications that have been im­
plemented in CM Fortran. While executing these 
translated codes, several overheads associated 
with CM Fortran have been observed. 

For example, the local nature, in a lexical 
sense, of data parallel computations can result in 
the generation of large intermediate temporary ar­
rays during expression evaluation. Temporary ar­
rays are often generated at subroutine boundaries 
when array sections are used as actual arguments; 
the CM Fortran compiler would often generate 
communication in these cases. Solutions such as 
subroutine cloning are possible for the latter case. 

Additionally, communication and run-time 
overheads found in CM Fortran have been seen to 
play a role in performance problems in these 
codes. In particular, the compiler is sometimes 
unable to determine whether a memorv access is 
local or off-processor, despite explicit data layout 
directives. When uncertain, the compiler must 
generate more general off-processor communica-

:j: The ARPS uses second-order quadraticallv conservative 
spatial discretization and second-order leapfrog (with Asselin 
time filter option) temporal discretization, based on an Ara­
kawa C-grid and terrain-following vertical coordinates. 



tion operations even if the data exists locally. 
These operations are implemented in a run-time 
system library called during program execution. In 
any case, the run-time system must first decide if 
the communication is local or note. On the CM-
200, this phenomena often greatly reduced per­
formance for certain CM Fortran coding styles [9]. 

In summary, these studies suggest that HPF­
like languages can be used to express typical nu­
merical codes. However, due to limited expres­
siveness of CM Fortran and significant implicit 
overheads associated with the language and its 
compiler, applications have yielded significantly 
less than peak performance on machines such as 
the CM-5. Of course, this does not preclude the 
possibility of constructing an HPF compiler and 
run-time system that can achieve high efficiency. 
However, given the amount of work required in 
porting CM Fortran to the CM-5 by a well-estab­
lished and experienced MPP company such as 
Thinking Machines, it is clear that engineering an 
efficient HPF compiler will be challenging. 

6 CURRENT PROGRAMMING SYSTEMS 
AND THE FUTURE 

Presently, we believe that there are no portably 
efficient languages available. Parallel machine ar­
chitectures are changing rapidly relative to single 
CPU architectures, so any language design effort 
based on specific assumptions about current ma­
chine architecture may be obsolete before it can 
become widespread. As such, application devel­
opers need to prioritize their time and effort. 

For those who seek portability, message pass­
ing is well established and currently provides the 
best performance for many machines. Although 
message passing leaves many problems unsolved 
(such as when and how to redistribute data) and is 
considered by many to be more difficult to pro­
gram than shared memory models, it does provide 
a well-understood path towards portability and 
reasonable performance. Additionally, because it 
does not support a global namespace, it does not 
suffer from the side effects of a global name space 
(cache coherency, hidden data access latency var­
iations, addressing complexity). Message passing 
also cleanly exploits all the resources expended on 
optimizing compilers for single processors. 

Recently, several very large codes have been 
successfully ported using this approach. The Inte­
grated Forecast System (IFS) medium-range 
weather prediction model developed by the 
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ECMWF [20] consists of nearly 220,000 lines of 
Fortran 77; only a very small port of the code 
required changes to add message-passing calls.§ 
The ECMWF and Cray Research have recently 
ported the full 3-D IFS model to the Cray T3D 
massively parallel processor. 

Similarly, message passing versions of PPM 
have been developed by Woodward and his col­
leagues that isolate the message passing code to 
one small routine. The most recent message pass­
ing version of PPM has been ported to a cluster of 
16 Challenge XL serversll from Silicon Graphics 
and achieved nearly 5 Gflops [21]. These efforts 
show that with discipline in organizing and de­
signing code message passing can be an easy-to­
use and effective programming paradigm. 

However, message passing is not the final an­
swer to portable and efficient parallel program­
ming. Newer machines such as the Cray T3D, 
KSR -1, and KSR- 2, and announced products 
from Convex and Tera Computer all have some 
form of hardware support for fetching remote data 
via a common address space. In this context, the 
message-passing model adds a level of abstraction 
between the programmer and the hardware, 
which adds significant unnecessary software over­
head on remote data accesses. 

Another near-term solution is the use of stan­
dard, vendor supplied, highly optimized, libraries 
of commonly used routines. This is very effective 
for problems with simple structure that can be 
mapped to the machine using simple rules. How­
ever, if a problem requires that data be distributed 
in a complex or unusual way, it is unlikely that the 
library will support all the necessary data map­
pings. Another drawback to simple library-based 
schemes is that it is very difficult to express nested 
parallelism given a fixed functional interface. The 
most obvious problem with library routines is that 
they are only useful if the needed routines are in 
the library. 

In the future, automatic translation of serial 
languages for massively parallel machines is the 
most desirable solution. We expect that automatic 
translation will continue to improve via new com­
pilation techniques [22, 23 J, but it is optimistic to 
assume they will be able to get performance com­
parable to explicitly parallel languages on MPPs. 

§ Message-passing calls were required when transposing 
between the different grid spaces employed in the model. 

II Each Challenge XL server in the configuration had 20 
100-MHz R4400 CPUs, 1.75 GByte of memory, 12 GByte of 
local disk, 1 Exabyte tape drive, and 3 FDDI interfaces to a 3-
D toroidal network. 
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However, if it is possible for programmers to limit 
themselves to a self similar coding style, the For­
tran P translator developed at ~Iinnesota can 
translate Fortran 77 codes to MPP form, allowing 
the user to maintain and modify the original For­
tran 77 yet exploit new hardware platforms [ 11]. 
Similarly, the CMAX translator developed by 
Thinking Machines [18] also translates a subset of 
Fortran 77 (known as Scalable Fortran) and has 
been applied successfully to several codes. 

HPF also has a number of features that make it 
attractive in the near term. HPF is standardizing 
the data parallel approach in the same manner 
that MPI [24] is standardizing message passing. 
Also, the simplicity of the data parallel model and 
a global address space makes programming in 
HPF relatively easy as it relieves the programmer 
from explicitly specifying communications andre­
mote addressing. HPF also provides a single 
source language that will be able to run on many 
different architectures even if individual programs 
may not port efficiently. It also tends to localize 
the source code changes necessary when porting 
to the data layout directives. Finally, HPF has 
proposed a large library of routine interfaces to be 
part of the language, thus guaranteeing program­
mers availability of these routines on systems with 
HPF compilers. 

7 CONCLUSIONS 

HPF is a well-conceived, well-documented lan­
guage proposal that will help future research ex­
plore the issues surrounding language design for 
parallel machines. 

However, although the HPF specification 
claims that HPF programs can achieve both por­
tability and high performance-there is some rea­
son for doubt. Different parallel architectures 
have verv different overheads that make it difficult 
to try to balance one kind of overhead versus an­
other in a portable source level program in any 
language. 

There are a large number of implicit synchroni­
zation points in HPF due to its data parallel 
model. This raises concerns about performance 
and the limitations placed on control parallelism 
and local private data. Furthermore, the data dis­
tribution mechanisms available in HPF permit 
very complex distributions that can introduce sig­
nificant implicit overhead in the computation of 
arrav element addresses as discussed in this ar­
ticle: It is unknown whether the flexibility gained 

by such complex distributions will outweigh the 
overhead thev introduce. 

We have raised many questions about HPF in 
this article, and we do not claim that they cannot 
be overcome, but rather that there are many open 
issues that are unresolved. These questions can 
only be answered after HPF compilers are avail­
able and tested-this can be done without the 
high performance industry adopting HPF as a 
standard before it has been proven. Additionally, 
as HPF compilers are developed and performance 
results obtained, new questions will be raised. An­
swers to these questions will help identify the lan­
guage features that should be present in a stan­
dard high performance language. The problem is 
further complicated by the rapidly evolving state 
of parallel architectures and their changing 
strengths and weaknesses. Thus, it is important 
that HPF and other new languages be imple­
mented and carefully studied to avoid mistakes 
that could have been averted so that the best solu­
tions can be adopted as standards in the future. 
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