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ABSTRACT 

The conventional wisdom in the scientific computing community is that the best way to 
solve large-scale numerically intensive scientific problems on today's parallel MIMD 
computers is to use Fortran or C programmed in a data-parallel style using low-level 
message-passing primitives. This approach inevitably leads to nonportable codes and 
extensive development time, and restricts parallel programming to the domain of the 
expert programmer. We believe that these problems are not inherent to parallel com
puting but are the result of the programming tools used. We will show that comparable 
performance can be achieved with little effort if better tools that present higher level 
abstractions are used. The vehicle for our demonstration is a 20 electromagnetic finite 
element scattering code we have implemented in Mentat, an object-oriented parallel 
processing system. We briefly describe the application, Mentat, the implementation, and 
present performance results for both a Mentat and a hand-coded parallel Fortran 
version. © 1994 John Wiley & Sons, Inc. 

1 INTRODUCTION 

Developing scientific applications on current par
allel computers is difficult due to the absence of 
suitable programming tools and models to man
age the complex details of parallel programming. 
The majority of today's systems are programmed 
in an architecture-specific way using low-level 
message-passing primitives that are hard to use 
and lead to nonportable codes. These systems are 
typically programmed in Fortran or C in a data-
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parallel SPMD style. We believe that the problem 
lies not with the architectures, but with the tools 
that have been used to program them. We will 
show in this article that one can parallelize a real 
scientific application and obtain good perfor
mance with little effort if the right tools are used. 

The tool that we have used is :\len tat [ 1 J, an 
object-oriented parallel processing system devel
oped at the university of Virginia. using Mentat, 
the user is responsible for identifying object 
boundaries and specifying those object classes 
that have sufficient computational complexity to 
warrant parallel execution. The :\ientat compiler 
and run-time system are responsible for managing 
all aspects of communication, synchronization, 
and scheduling for the user. Mentat performs 
tasks that humans perform poorly, whereas the 
programmer performs tasks (data and program 
decomposition) that compilers perform poorly. 
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Thus, Mentat exploits the capabilities of both 
compilers and humans. Mentat is currently avail
able on a range of platforms from networks of het
erogeneous workstations to tightly coupled paral
lel machines such as the Intel iPSC/860. An im
portant benefit of the "Ylentat approach is that 
applications developed on one platform are 
source code portable from one platform to an
other. This eliminates another problem common 
to writing software for parallel architectures, that 
applications are not portable across platforms. 

The vehicle for our demonstration is a 2D elec
tromagnetic finite element scattering code (EM). 
The application was chosen for three reasons: ( 1) 
it is a real, nontrivial, scientific code: (2) the se
quential Fortran code was readily available; and 
(3) the application had previously been hand par
allelized for a number of "YIIMD computers 
(Caltech/JPL .Mark Illfp Hypercube, Intel iPSC/ 
860, and Intel Delta) using explicit message-pass
ing primitives, providing us with the opportunity 
to compare the performance of hand-generated 
parallelism against our compiled "Ylentat version. 
The code computes the electric or magnetic field 
on an unstructured finite element mesh that de
fines the scattering objects as well as the space 
surrounding it. 

Our work on the Men tat implementation of this 
code focuses on two issues: what is the overhead 
penalty that must be paid in order to use ~entat 
for this application, and how easy is it to apply 
"'1entat to a scientific application like the finite ele
ment scattering code. What we have found is that 
the application domain mapped well to the object
oriented paradigm, and that the performance of 
the "Ylentat version is comparable to the hand
coded version. For the initial version of the "Men tat 
implementation described here, the latter claim is 
only true for small numbers of processors. An op
timized version of the "Ylentat implementation is 
also discussed. This version addresses the short
comings in the initial version and has much better 
scaling properties. The results of the initial and 
optimized .Mentat versions are presented. 

This article is organized as follows. Section 2 
discusses the EM application and finite element 
method (FEM). Section 3 provides an overview of 
~lentat. Section 4 discusses the object-oriented 
redesign of the EM application. Section 5 de
scribes the parallel EM implementation via Men
tat. Section 6 presents some preliminary results 
obtained with the Mentat version, and Section 7 
provides a summary and future work. 

2 THE EM PROBLEM 

The FEM has been in use for many years in struc
tural mechanics [2] and has become popular in 
recent years as a technique for use on EM prob
lems [3]. FEM has the advantage of being able to 
deal with the specific geometry of objects by using 
unstructured gridding that follows an object's 
shape. This can be of particular importance in EM 
scattering problems, where the correct representa
tion of a scatterer's surface is necessary for accu
rate computation. Finite elements are used in 2D 
and 3D EM scattering problems to model objects 
of complex composition. The "hand-coded" 
FEM code has been implemented on several 
MI"YID computers, using explicit message passing. 
A complete description of this code, along with 
parallel implementation description and perfor
mance, is found [ 4]. For this work, we have con
centrated on a 2D FEM problem. 

The general scattering problem solved by the 
2D EM code is illustrated in Figure 1. The code 
solves a Helmholtz equation for the electric or 
magnetic fields in the vicinity of a set of scatterers: 

(
V'E) w2 V' · - +- sE = 0 

J-t c2 
(1) 

Here E is the electric field, and J-t and s are 
materials constants. An absorbing boundary con
dition on the boundary r uniquely specifies the 
problem. The FEM solves the equivalent "weak 
form" integral equation: 
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The general 20 EM scattering problem. 



FIGURE 2 A simple finite element mesh. 

The 2D integral equation is transformed into a 
set of linear equations by decomposing the prob
lem domain into a set of finite elements. The 
problem domain !1 is meshed with nodal points at 
which the solution is to be found, matching the 
geometry of the objects. These nodes are then 
tiled with a set of finite elements as in Figure 2. In 
2D, the elements might be triangles or quadrilat
erals. A set of basis functions are defined at each 
node in the mesh, which have nonzero value only 
within the elements of which it is a part. These 
basis functions are generally some polynomial 
function. which is 1 at the node defining it, 0 at all 
other nodes in the element, and 0 along the edges 
of the element opposite the defining node. An ex
ample of a linear basis function at a node in a 
section of finite element mesh is given in Figure 3. 
The function is continuous inside and across ele
ments, dropping to zero at the element edges, 
which do not intersect the node. On all other ele
ments in the grid, the basis function is identically 
zero. 

~(x) 

FIGURE 3 Node-based linear basis function. 

OBJECT-ORIE.'\ITED COMPCTATI0.'\1 135 

The field quantities (electric or magnetic) may 
be expressed as a linear combination of these ba
sis functions: 

E(x) (3) 

where gi(x) is the basis function at the ith node, 
and di is its coefficient in the representation for E. 
l\otice that because, by definition, all other basis 
functions are () at node i, the value of di is in fact 
the value of E at the ith node. We also write the 
test function T in terms of these basis functions. 
Substituting these into Equation (2), and recog
nizing that the test function T must be arbitrary, 
results in a matrix equation for the field coeffi
cients di: 

K · d = F (4) 

where d is the vector of field coefficients di from 
Equation (3), and K and F, known as the stiffness 
matrix and force vector, respectively, are given by 
expressions involving integrals of individual basis 
functions or products of basis functions. Because 
all basis functions are localized to a handful of 
finite elements, these integrals are nonzero only 
for those elements that contain the basis functions 
involved. This results in a K matrix, which is quite 
sparse. As a matter of practice, these integrals are 
computed on an element by el~ment basis, wi~h 
each element's contribution to K and F added m 
its turn. In this manner, the complexity of inte
grating over a domain of irregular geometries. is 
reduced to integrating over a set of regular fimte 
sized elements. 

This is the basic FEM. The EM finite element 
application consists of two primary computation 
phases: ( 1) matrix assembly and (2) matrix solve. 
In matrix assembly. the finite elements compute 
contributions (i.e.: matrix values) that are ~_ssem
bled (i.e., added) into the stiffness matrix K. The 
stiffness matrix is banded and symmetric, in addi
tion to being very sparse. During matrix assembly, 
the force vector F is also computed by the ele
ments. This vector becomes the right-hand vector 
during the matrix solve computation. 

In matrix solve. the svstem of equations repre
sented bv the stiffness ~atrix with the force vector 
as the right-hand side, is solved by a conjugate
gradient algorithm known as the bi-conj~gate gra
dient (BCG) [ 5 ~. The algorithm reqmres three 
basic operations: matrix-vector multiplication, 
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vector dot product, and vector saxpy. The solve 
phase poses challenges to achieving good perfor
mance on parallel machines due to the sparse na
ture of the matrix-vector operations. 

3 MENTAT OVERVIEW 

Mentat is a parallel object-oriented programming 
environment developed at the University of Vir
ginia. Mentat was designed to address two prob
lems that plague programming parallel MI.\1D ar
chitectures. First, writing parallel programs by 
hand is very difficult. The programmer must man
age communication, synchronization, and sched
uling. The burden of correctly managing the envi
ronment often overwhelms programmers, and 
requires a considerable investment of time and 
energy. Second, once implemented on a particular 
MIMD architecture, the resulting codes are usually 
not portable. Thus, considerable effort must be 
reinvested to port the application to a new archi
tecture. 

Mentat offers a solution to these problems by 
providing: (1) easy-to-use parallelism; (2) high 
performance via parallel execution; and (3) appli
cation portability across a range of platforms. The 
premise underlying .\1entat is that writing pro
grams for parallel machines does not have to be 
hard. Instead, it is the lack of appropriate abstrac
tions that has made parallel architectures difficult 
to program, and hence, inaccessible to main
stream, production system programmers. 

The .\1entat approach exploits the object-ori
ented paradigm to provide high-level abstractions 
that mask the complex aspects of parallel pro
gramming, communication, synchronization, and 
scheduling from the programmer. Instead of wor
rying about and managing these details, the pro
grammer is free to concentrate on the details of the 
application. The programmer uses application 
domain knowledge to specify those object classes 
(Men tat classes) that are of sufficient computa
tional complexity to warrant parallel execution. 
The remaining complex tasks are handled by 
Men tat. 

There are two primary components of Mentat: 
the Mentat Programming Language (MPL) [6] 
and the Mentat run-time system [7]. MPL is an 
object-oriented programming language based on 
C++ [ 8] that masks the complexity of the parallel 
environment from the programmer. Mentat 
classes consist of contained objects (local and 

member variables), their procedures, and a thread 
of control. Instances of Mentat classes, known as 
.\1entat objects, are the computation grains. Be
cause Mentat is based on a lavered virtual ma
chine model, and each layer introduces some 
amount of overhead, .\1entat classes must be me
dium-to-large-grained to mask these overheads. 

.\1entat classes are denoted by the inclusion of 
the keyword "mentat" in the class definition, as in 
the mentat class sparse_worker shown below. 
Mentat classes may be defined as either persistent 
or regular. 

persistent mentat class sparse_worker { 
II private data and function members 
public: 

}; 

complexvec* m_vec_mult 
(complexvec* vee) ; 

Instances of regular .\1entat classes are logically 
stateless, thus the implementation may create a 
new instance to handle every member function in
vocation. Persistent .\1entat classes maintain state 
information between member function invoca
tions. This is an advantage for operations that re
quire large amounts of data, or that require per
sistent semantics. Instances of Mentat classes are 
used exactly like C++ classes, as in the fragment 
below. One difference is that persistent .\1entat 
objects are instantiated by the create command. 

sparse_worker worker; 

worker. create (); 
result = worker.m_vec_mul (rhs_vec); 

Mentat supports a notion of parallelism encap
sulation. Parallelism encapsulation takes two 
forms that we call intra-object and inter-object 
encapsulation. Intra-object encapsulation of par
allelism means that callers of a .\1entat object 
member function are unaware of whether the im
plementation of a member function is sequential 
or parallel. Inter-object encapsulation of parallel
ism means that programmers of code fragments 
(e.g., a Mentat object member function) need not 
concern themselves with the parallel execution 
opportunities between the different Mentat object 
member functions they invoke. Thus, the data 
and control dependencies between Mentat class 
instances involved in invocation, communication, 
and synchronization are automatically detected 



and managed by the compiler and run-time sys
tem without further programmer intervention. 

The computation model underlying Mentat is 
the macro data flow model [7], a large-grain, 
graph-based, data-driven computation model. 
The Men tat run -time system supports the macro 
data flow model via the provision of a virtual 
macro data flow machine. Because the compiler 
uses a virtual machine model, porting applica
tions to a new architecture does not require any 
user source level changes. Once the virtual rna
chine has been ported, user applications are re
compiled and can execute immediately. 

Mentat runs on Sun 3s, Sun 4s, the Intel iPSC/ 
2 and iPSC/860, and the Silicon Graphics Iris. 
We are currently porting ~en tat to the IBM RS-
6000, TMC C~-5, and the Intel Paragon. Perfor
mance results on a range of applications are avail
able, and are quite encouraging [9]. 

4 OBJECT -ORIENTED EM DESIGN 

Converting the sequential Fortran EM code into a 
parallel object-oriented code via Mentat requires 
two major steps: ( 1) porting the existing code to a 
sequential object-oriented language (C++) and 
(2) porting the C++ implementation to Mentat. 
Both pose different challenges. The Mentat con
version will be discussed in the next section. The 
C++ conversion requires a redesign or "paradigm 
shift" from the Fortran domain to the object-ori
ented domain. This is a nontrivial conversion even 
before opportunities for parallelism are consid
ered. The use of global structures, aliasing, and 
the lack of data abstraction in Fortran made the 
transition to C++ challenging. 

4.1 The Approach 

There are several approaches that can be taken to 

convert an existing Fortran implementation to 
C++, and of these we considered two candidates: 
(1) reuse the Fortran artifact and wrap C++ 
classes around the existing code and (2) redo 
everything in C++. Although we operated on a 
very short time budget, we believed that option 2 
was clearlv the best choice because this affords us 
the greatest flexibility in experimenting with dif
ferent problem decompositions. \Ve also believe 
that a "pure" object-oriented system is easier to 

extend than a mixed-language implementation. 
Because this work is part of a continuing research 
effort, this is an important factor. The downside is 

OBJECT-ORIE:"'TED COMPUTATION 137 

a performance loss experienced in the sequential 
object-oriented code due to disparities in current 
compiler technology and the quality of existing 
Fortran numeric libraries. We expect this gap to 
close in the future, however. 

Our approach then was to treat the Fortran 
code as a functional specification of the behavior 
of the EM application at an algorithmic level. For 
example, the element computation implementa
tion in C++ mirrored the Fortran. The Fortran 
code was used as a guide or reference for low-level 
details and the mathematics. At the high level, we 
selected a class-object hierarchy that reflected our 
knowledge of the problem domain. Once a natural 
class structure was established, we inspected the 
Fortran code for algorithmic details that were nec
essary to faithfully reimplement the numeric com
putations encapsulated in the C++ member func
tions. 

During this conversion the main difficulty was 
the lack of data abstraction in the Fortran code
this is not surprising because Fortran does not 
support this notion. The data structures were typi
cally represented as collections of separate arrays. 
Data that were logically connected had to be in
ferred by its use or by the code comments. An 
example of this was the absence of an explicit rep
resentation for the elements themselves. The im
plicit element representation was scattered across 
numerous global arrays. The object-oriented ap
proach requires just the opposite: that logically 
connected data be represented together and en
capsulated. Another difficulty with the conversion 
was the use of complex numbers extensively in the 
Fortran code. We had to implement a fairly exten
sive complex class in C++. Our implementation 
was less efficient than the built-in, optimized, 
complex data type provided by Fortran. 

One of the research objectives of this work is to 
consider the effort involved in converting existing 
scientific applications to an object-oriented plat
form (C++) and then to Mentat. The port from 
the sequential Fortran implementation to a fully 
tested C++ code took two graduate students 6 
weeks (about one man-month of effort). Part of 
this time was needed to gain familiarity with the 
problem domain, which was unfamiliar, and to 
review the details ofF ortran. We feel that the short 
time frame validates our decision to implement a 
C++ version and also provides further evidence 
for the suitability of the object-oriented paradigm 
as applied to scientific applications like the EM 
problem. However, although this evidence sug
gests a good fit between the object-oriented para-
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digm and this particular problem domain, there 
are performance trade-offs. These are discussed 
in the final section. 

4.2 C++ Classes 

The heart of the sequential EM implementation is 
its decomposition into C++ classes. Some of the 
C++ classes will become parallel or :yfentat 
classes in the parallel E:yf implementation. Dis
cussion of Men tat classes is deferred until the next 
section. The problem domain can be broken down 
into two phases: element assembly and matrix 
solve. The class-object hierarchies reflect this de
composition. 

The first phase involves the finite element com
putations needed to construct the sparse stiffness 
matrix and right-hand-side vector. During this 
phase, each element computes a contribution to 
the matrix. We represented the elements as C++ 
objects contained within a finite element class hi
erarchy, shown in Figure 4. 

The hierarchy is rooted by the virtual base class 
element and the derived classes reflect the differ
ent types of finite elements that are used in EM 
problems. The element type depends both on the 
physical characteristics of the material (e.g., 2D/ 
3D or triangle/ quadrilateral), and on the way the 
element computes its matrix contribution (e.g., 3 
pt/6 pt quadrature). A part of the C++ specifica
tion for the finite element hierarchy is shown in 
Figure 5. 

The element representation is simply the nodal 
points that define its boundaries. The derived 
classes contain element-specific information, 
such as the basis functions, that are needed in the 
element computations. The element contributions 
are computed by get_kf and are assembled into 
the sparse stiffness matrix during the first phase. 
This sparse matrix is stored as a list of sparse 

element 

FIGURE 4 Finite element class hierarchy. 

II Base class of the element hierarchy 
class element { 

int *nodes; II nodal points 
int num_nodes; 

public: 

}; 

II returns matrix and force-vector contributions 
virtual KF_contrib* get_kf (); 
element (); 

II 3pt triangle 2D element 
class 2D_3pt element 2D_element 
II basis fns 

public: 

}; 

KF_contrib* get_kf (); 
2D_3pt_element (int *nodes, ... ) : 

FIGURE 5 Finite element class specification. 

vectors, and each row is represented by the 
sparse_ vee class. The sparse matrix is a special 
class known as a Mentat class and this is dis
cussed in the next section. 

During the second phase of the computation, 
matrix solve, "dense" vectors of complex num
bers are computed by the application. The repre
sentation of complexvec is a memory-contiguous 
variable-sized array of complex type. The com
plexvec class specification is given in Figure 6. 
Memory contiguity is important in the parallel do
main for objects that are transported between ad
dress spaces (such as objects of type complex
vee). 

Both the sparse_ vee and complexvec 
classes had been implemented previously and we 
were able to reuse them with slight modification 
(to use complex numbers). The C++ classes form 
the basis for the parallel E:yf design. The remain
ing C++ classes in the application have a dual 
role: these classes can be treated as C++ classes 
as in the sequential version or as Mentat classes in 
the parallel version. These are discussed next. ln 
the next section we will also show how everything 
fits together in the parallel EM implementation. 

class complexvec : public DD_array { 
int start_index, range; 
II memory continguous representation 
complex a [1]: 

public: 

); 

complexvec (int cols); 
complexvec* saxpy(complexvec *f, complex& m); 
complexvec* ssxpy(complexvec *f, complex& rn}; 
complexvec* dot_product (complexvec* f); 

FIGURE 6 Complexvec class specification. 



5 MENTAT EM DESIGN 

The design decisions that guided the transforma
tion from the sequential Fortran implementation 
to the sequential C++ were motivated by three 
factors: ( 1) flexibility I extensibility, (2) fidelity. 
and (3) support for parallelization. Points 1 and 2 
have been discussed and this section addresses 
point 3, transitioning to the parallel E:\1 code. 

The parallel E::VI code is based on the parallel 
object-oriented model of computation provided 
by '\len tat. Although the design of the parallel E::VI 
code is concerned with points 1 and 2 above, it is 
driven by performance and scalability. In the par
allel domain, the most critical factors affecting 
performance are computation granularity and 
load balance. In ::VIentat, computation granularity 
is specified via a mechanism known as :\lentat 
classes, and load balance is achieved by an even 
partitioning of work across the instantiated Men tat 
objects. 

The parallel E:\1 system design based on :\len
tat is illustrated in Figure 7. The assembly (phase 
1) and solve computations (phase 2) are shown. 
The remainder of this section will describe the 
Mentat classes used, the rationale for choosing 
them, and other important details of the parallel 
EM design and Mentat implementation. 

The selection of ::Vlentat classes is based on ex
ploiting opportunities for parallelism and achiev
ing an acceptable computation granularity given 
Ylentat overheads and the characteristics of the 
target architecture. Our target is the Intel iPSC/ 
860, a very unbalanced machine in which com
munication costs dominate computation costs by 
several orders of magnitude. The ::VIentat classes 
will need to be "computationally heavy", i.e., 
large-grained, to achieve reasonable performance 
given these factors. The E::VI application performs 
two main computations, element assembly and 

problem sparse_ worker [] 

Phase 1 - assembly Phase 2 - solve 

FIGURE 7 Parallel EM architecture. 
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persistent mentat class elmt_coll 
element** elements; 
int element num; 

public: -
II element setup and partitioning 
void initialize (string *f, inti, int num_coll); 

II compute and assemble all elements 
void assemble (sparse_matrix *K, svector *F); 

); 

FIGURE 8 Ylentat class elmLcoll specification. 

matrix solve, and these will be implemented via 
Mentat classes. 

For element assembly, there are many opportu
nities for parallelism because the element compu
tations are independent and may proceed in par
allel. To exploit maximal parallelism, we would 
turn the finite element classes (of Fig. 4) into Men
tat classes. However, a single element assembly 
computation is too fine grained for :\lentat and 
this will lead to unacceptably poor performance. 
Instead, we define a ::VIentat class that computes 
the contributions for a collection of elements, 
elmt_coll (see Fig. 8). 1\'otice that the elmt 
_coll class contains C++ objects (of type ele
ment) as part of its representation. 

A number of elmt_coll objects are instan
tiated at runtime and each computes in parallel. 
Each elmt_coll is assigned enough elements to 
achieve an acceptable computation granularity. 
The number of elmt_coll objects instantiated 
and how the individual elements get assigned to a 
particular elmt_coll are discussed later. Once 
the elmt_colls compute the matrix contribu
tions and right-hand-side force-vector values 
associated with their contained elements (via 
get_kf), these values must be assembled into the 
stiffness matrix and force-vector, respectively. 
The assemble member function defined on 
elmt_coll initiates the element computations 
and invokes an assemble operation on the matrix. 
The :\len tat class sparse_matr ix represents the 
stiffness matrix (see Fig. 9). Matrix assembly is 
performed via the member function assemble 
called bv each elmt_coll. The definition of 
the :\len tat class svector. the force-vector. is 
omitted. 

::VIost of the computation time is spent in the 
matrix solve phase. The solve computation is per
formed by an iterative preconditioned BCG algo
rithm [5] implemented by the solve member func
tion of the Mentat class sparse_matrix. Our 
implementation exploits the most profitable op
portunity for parallelism in the algorithm, namely 
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persistent mentat class sparse matrix 
II sparse_matrix represent~tion 
sparse_vec** matrix; 
int size; 

II sparse_worker information 
int num_workers; 
sparse_worker* workers; 

public: 

}; 

II Each elmt_coll assembles to matrix 
void assemble (K_list* K_contrib); 

II Solve matrix equation using rhs vector F 
void solve (svector* F); 

II Set up matrix with number of workers 
void initialize (int nurn_workers); 

FIGURE 9 Mentat class sparse_matrix specification. 

the sparse matrix-vector multiplications done in 
each iteration of the BCG algorithm. 

Parallelizing the matrix-vector multiplications 
requires that another class Ylentat class, 
sparse_worker, be defined (see Fig. 10). The 
sparse_ worker class is responsible for perform
ing matrix-vector multiplication on disjoint re
gions of the sparse matrix. A number of sparse_ 
worker objects are instantiated at runtime. and 
the spar se_ma tr ix is partitioned into row-con
tiguous regions and distributed to the sparse_ 
worker objects. This is done via the sparse_ 
worker member function initialize. Once the 
sparse_matrix has been distributed fully to the 
sparse_worker objects, the sparse_~atrix 
object engages the sparse_workers in parallel 
matrix-vector multiply operations (via m_vec_ 
mull) repeatedly during the solve phase. The 
sparse_workers are encapsulated within the 
sparse_matrix (Fig. 9) and this has perfor
mance implications as we will see. 

The Ylentat classes, sparse_matrix. 
elmt_coll, and sparse_worker. reflect the 
c-omputationally intensive phases of the applica
tiOn and result in a granularity suitable both for 
Mentat and the target architec~ure. These classes 
also allow sufficient parallelism in the application 
to b.e exploited. One important advantage of Men
tat 1s that the serial EYI code requires only a few 
"ifdefs" to tum these Men tat classes int~ C++ 
classes (see Fig. 11 )-under 20 lines of code are 
unique to either the serial or parallel version. 

At runtime, the programmer specifies the num
ber of elmt_coll objects for the assembly phase 
and the number of sparse_worker objects for 
the solve phase. The number of objects should 
match the total number of available processors 

persistent mentat class sparse worker 
II sparse_worker represent~tion 
sparse_vec** my_rows; 

II region of global matrix stored by worker 
region rny_reg; 

II partial result for matrix-vector multiply 
complexvec* result; 

public: 
II Distributes rows to worker 
void initialize (sparse_vec_list* sparse_rows, ... ); 

II Sparse mvec multiplication 
complexvec* m_vec_mult (complexvec* vee); 

); 

FIGURE 10 
tion. 

::\1entat class sparse_worker specifica-

assuming the granularity is sufficient. For large 
applications, this is usually the case. On the iPSC/ 
860 under 1\X, only one o.bject (i.e., process) mav 
be placed on a processor. Because these phase~ 
are nonoverlapping (i.e., solve does not begin until 
assembly has been completed), the number of 
elmt_colls and sparse_workers will be the 
same. 

Achieving acceptable performance in the paral
lel EM code depends upon good load balance. It is 
sufficient to load balance the assemblv and solve 
phases separately because they ar~ indepen
dent-only a synchronization between these 
phases is needed. The assembly load balance re
quires that the elmt_coll obj.ects each perform 
about the same amount of computation. An even 
partition of the elements across the elmt_colls 
would seem to be an easy solution. However, the 
general EM problem will contain elements of dif
ferent types-more complex elements require 
more computation to determine matrix contribu
tions. A good load balance solution ensures that 
each elmt_coll has roughly the same number of 
elements of each type. As an approximation to 
this, our implementation randomizes the element 
input files and randomly assigns elements to the 
elmt_coll objects. 

tifdef Mentat 
persistent mentat class sparse_worker 
#else 
class sparse_worker 
#endif 
II as above 

); 

FIGURE 11 Dual ::\1entat/ C++ class specification 
using "ifdefs." 



Similarly, load balancing the solve phase re
quires that the sparse_worker objects are 
evenly balanced for the matrix-vector multiplica
tions. An even partition of the sparse_matrix 
across the sparse_ workers may not lead to load 
balance because the matrix has nonuniform spar
sity (i.e., the number of nonzeros per row differs) 
and only nonzero positions of the matrix will be 
multiplied by the sparse_workers. Instead, 
load balancing is achieved by ensuring that each 
sparse_worker has about the same number of 
nonzeros in the matrix region that it has been as
signed. 1\"ote that the number of rows assigned to 
each sparse_worker will, in general, be differ
ent. 

The initial parallel K\1 design has a number of 
flaws that limit the scalability and performance of 
the system. The most obvious, as seen clearly in 
Figure 7, is that a single sparse_matrix object 
is a bottleneck for both matrix assemblv and rna
trix solve. During the solve phase, partial results 
from the matrix-vector multiplies are fanned into 
the sparse_matrix, thus creating a communi
cation bottleneck. The problem is due to the en
capsulation of the sparse_workers within the 
sparse_matrix. This is a classic problem with 
the object-oriented paradigm. The single 
sparse_matrix object also limits the size prob
lems that can be run because the entire matrix is 
assembled in one address space before it is dis
tributed to the sparse_workers. Furthermore, 
no attempt was made to parallelize the dot prod
ucts that occur within the BCG loop. These dot 
products are a good source of parallelism, espe
cially for large vectors. The optimized version of 
the parallel EM design has addressed all of these 
problems. 

Once the C++ version of the E:\1 code had 
been fully implemented and tested, the Mentat 
version (about 3,000 lines of code) took 2 weeks to 
complete. One of the major problems we had with 
Mentat on the iPSC/860 was the need to force 
arithmetic operands to be double-word aligned to 
get good performance on this machine. This re
quired some low-level pointer code and was time
consuming to implement and test. The memory 
bottleneck imposed by the single sparse_ 
rna tr ix object did not allow our EM problem to fit 
on an 8-MB iPSC/860 node at ORNL, a 128-
node machine. We eventuallv ran on a 16-MB/ 
node iPSC/860 at Caltech. Fortunately, the Men
tat system binaries ported smoothly to the Caltech 
machine-no recompilation of the Mentat system 
code was necessary. 
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6 PRELIMINARY RESULTS 

The initial Mentat EM code was developed on an 
8-node Intel iPSC/860 at JPL and run on a 64-
node Intel iPSC/860 at Caltech. The data col
lected are from an EM application that consisted 
of 2,304 9 pt quadrilateral elements (9,313 
nodes). This is considered a small problem. We 
computed speedups with respect to the sequential 
C++ EM code run on a single i860 node (see Fig. 
12). 

The results are divided into the several phases: 
(1) problem setup is the time taken for the 
elmt_colls to read the element files from CFS 
and create the element partitions, (2) assembly is 
the time taken for the elmt_colls to complete 
the matrix assembly operations, (3) assembly and 
distribute include the time to distribute the matrix 
to the workers, (4) solve is the time taken for the 
matrix solve operation, and (5) total is the total 
time taken by the application. We should reiterate 
that virtually no optimization of the initial Mentat 
version had been performed. 

Our results are compared with a hand-coded 
optimized parallel Fortran EM implementation 
that has been in development for some time. We 
expected the performance to be worse than the 
hand-coded version, but how much? The results 
indicate that this is indeed the case. but speedups 
were achieved even though the problem was small 
and the given implementation limitations that 
have been discussed (see Fig. 13). Comparison of 
the Mentat and the hand-coded versions indicates 
that the Mentat implementation is competitive 
with the hand-coded version for small numbers of 
processors, but that performance does not scale 
well as the number of processors is increased. 
This is due to the limitations that have been dis
cussed, namely the sparse_matrix bottleneck 
for assembly and matrix-vector communication, 
and the sequential dot products in the solver. It is 
not surprising that the initial Mentat version does 
not scale given the design. 

The optimized :\1entat version does not suffer 
from this problem and the comparative perfor
mance is presented in Figure 14. These results 
indicate that the optimized :\1entat version is scal
ing in a manner similar to the hand-coded For
tran. The assembly phase scales identically to the 
hand-coded version while the solve phase scales 
almost as well. The slight discrepancy is probably 
due to Mentat overheads often seen for small 
problems. For larger problems this overhead is of
ten amortized by the computation. We expect the 
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FIGURE 12 Parallel E.\1 performance with initial Mentat version. 

performance of the Men tat version to more closely 
match the hand-coded version for larger prob
lems. 

allel EM code using Mentat took less than 2 
months, including the time to perform the para
digm shift from Fortran to C++. This indicates to 
us that the parallel object-oriented model in gen
eral, and Mentat in particular, is well suited to this 
problem domain. What we have found is that the 
EM problem has a natural representation in an 
object-oriented framework and performance is 
encouraging. We have also provided further evi-

7 SUMMARY AND FUTUR~ WORK 

The early results of the research are encouraging. 
The initial design and implementation of the par-
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FIGURE 13 Comparison of initial Mentat version to hand-coded EM version. 
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FIGURE 14 Comparison of optimized :Vlentat version to hand-coded EM version. 

dence that Mentat is an easy-to-use programming 
environment for developing parallel object-ori
ented scientific applications. 

Other researchers have begun to report on the 
experience of using object-oriented implementa
tion techniques for scientific problems [ 10. 11 j. 
Our experience is similar to Angus and Stolzy [1 0 l 
in that programmer efficiency seems to be a more 
clear benefit than execution efficiency at present. 
They [1 0: report that the C++ performance is 
within an order of magnitude of the Fortran code 
(ours is within a factor of 2-3 ), and that this pro
vides some hope. 

Although the :\1entat version has similar scaling 
properties to the hand -coded version. total 
elapsed times are not as good due to inefficiencies 
in the serial portions of the code. Some of this 
inefficiency can be attributed to superior numeric 
libraries and compiler optimizations in Fortran 
relative to C++. Future work addressing the serial 
bottlenecks is needed. 
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