
Object-Oriented Implementation of Adaptive
Mesh Refinement Algorithms

WILLIAM Y. CRUTCHFIELD AND MICHAEL L. WELCOME

Applied Mathematics Group, Lawrence Livermore National Laboratory, Livermore, CA 94550

ABSTRACT

We describe C++ classes that simplify development of adaptive mesh refinement
(AMR) algorithms. The classes divide into two groups, generic classes that are broadly
useful in adaptive algorithms, and application-specific classes that are the basis for our
AMR algorithm. We employ two languages, with C++ responsible for the high-level
data structures, and Fortran responsible for low-level numerics. The C++ implementa
tion is as fast as the original Fortran implementation. Use of inheritance has allowed us
to extend the original AMR algorithm to other problems with greatly reduced develop
ment time. © 1994 by John Wiley & Sons, Inc.

1 INTRODUCTION

Advanced finite difference methods, by them
selves, are unable to provide adequate resolution
of three-dimensional (3D) phenomena without
overwhelming currently available computer re
sources. High-resolution 3D modeling requires al
gorithms that focus computational effort where it
is needed. Adaptive mesh refinement (AMR) algo
rithms for hyperbolic systems of conservation laws
have been shown to be effective for concentrating
the computational effort [1-3]. A~1R is based on
a sequence of nested grids with finer and finer
mesh spacing in both time and space. These fine
grids are recursively embedded in coarser grids

Received April 199:3
Revised June 199:~

\Vork performed under the auspices of the L.S. Department
of Energy by the Lawrence Livermore "'ational Laboratorv
under contract l'io. \'"-7403-Eng-48. Partial support was pro~
vided by the Applied :\Iathematical Sciences Program of the
Office of Energy Research under Contract ::\o. W-7403-Eng-
48.

© 1994 bv John Wiley & Sons. Inc.

Scientific Programming. Vol. 2, pp. 145-156 (l9'X3)
CCC 1038-9244/94/040145-12

until the solution is sufficientlv resolved. The ac
curacy of the solution is automatically estimated
and rectangular fine grid patches are dynamically
created or removed to achieve a desired accuracv.
Special difference equations are used at the inter
face between coarse and fine grids to enforce con
servation. This is all handled dvnamicallv without . .
user intervention. On large-scale calculations in
shock physics, this AYIR algorithm has been
shown to be one to two orders of magnitude more
efficient than comparable uniform grid or expo
nentially stretched grid algorithms [3].

A:\IIR is a complex algorithm, requiring approx
imately 10,000 lines in a Fortran implementation
of the core algorithm, exclusive of user interface.
Only 20% of the lines are the finite difference inte
grator. The rest of the lines are devoted to main
taining the hierarchy of grids. The following oper
ations are typical of the grid maintenance issues.

1. The hierarchy of grids must be properly
nested, with each grid of level n + 1 sepa
rated by l\"PROPER cells of level n from a
boundary with grids of level n - 1.

2. Grids are advanced recursively. Advancing
the grids at level n for one of their time-steps

145

146 CRuTCHFIELD AND WELCOME

causes the grids of level n + 1 to be ad
vanced several of their time-steps until both
levels of refinement are at the same time.

3. When different levels of refinement reach
the same point in time, consistency must be
enforced. The conservation laws are en
forced for all coarse grid cells overlain by
fine grid cells, and at boundaries between
fine and coarse grids.

4. In time advancing a grid, boundary infor
mation may be taken from adjoining grids of
the same resolution. adjoining grids of
coarser resolution, or from the boundary
conditions.

5. ~When new grid locations are being com
puted, cells with high truncation error are
tagged, then buffering cells tagged, then an
efficient partition of tagged cells into prop
erly nested rectangular grid patches is com
puted.

All of these operations require manipulation of
complex data structures. which is difficult in For
tran. The basic ideas of A:YlR are easy to under
stand because they are primarily geometric in na
ture. However geometric concepts are not
naturally expressible in Fortran because that lan
guage only directly supports algebraic imperative
statements. The basic data representation of the
solution changes its structure in time in order to
represent the changing solution. Grid locations
change, the number of grids in a refinement level
change, even the number of levels of refinement
changes. The dynamic character of the algo
rithm's data structures is difficult to express in
Fortran. which does not even have the concept of
a data pointer built into the language. AMR is nat
urally recursive in its time-stepping, whereas stan
dard Fortran 77 does not support recursion. All
these characteristics of A31R make it difficult to
express in Fortran.

A.\1R has been used for 3D calculations in gas
dynamics that strain the capacity of the largest
currently available vector supercomputers. In typ
ical applications .. the time required to manage the
grid hierarchy is too small to be reliably measured.
1\"early all the time is spent in routines that act
upon regular arrays of numbers, e.g .. finite differ
ence time-step integration, interpolation, Ri
chardson extrapolation. For the routines that per
form these actions, Fortran is an excellent choice
of language. First, the only data structure required
by such routines is the rectangular array of float
ing point numbers, which Fortran is adequate to
handle. Second, Fortran compilers are still more

efficient at producing vectonzmg code for these
routines than any other language known to the
authors. Because these routines dominate the
computational cost of the A.VIR algorithm, use of a
less optimized language would be unacceptable.

AMR for systems of hyperbolic conservation
laws is a generic numerical technology that is ap
plicable to any set of hyperbolic conservation
laws. However, our experience with the Fortran
implementation was that the AMR implementa
tion became intertwined with the underlying set of
partial differential equations (PDEs). For exam
ple, even the upper levels of the Fortran imple
mentation were hard-wired with the number of
variables per cell required by the PDE. This inter
twining made it nontrivial to replace one PDE
package with another, even if both packages mod
eled hyperbolic systems of conservation laws. By
way of comparison, the standard method for uti
lizing mathematical software is to call a subrou
tine from a precompiled library. Obviously if a hy
pothetical mathematical subroutine had to be
recompiled with modifications for every use, er
rors would be much more common. If the A.\1R
logic could be decoupled from the underlying
PDE, it would become much more accessible to
users.

The A.\IR algorithm for systems of hyperbolic
conservation laws has been undergoing continual
development and enhancement. Between 1986
and January 1991, the Applied Math Group at
Lawrence Livermore 1\"ational Laboratorv devel
oped nine separate implementations of the AMR
algorithm. Several other similar implementations
were developed by collaborators of the Applied
Math Group. These implementations represented
major new applications of the AMR methodology.
e.g., A31R on quadrilateral grids [4 l, or A.VIR with
front tracking [5]. At the same time, algorithmic
improvements to the A.VIR internals took place,
along with numerous bug-fixes. ·with so many
versions to maintain, it became difficult to keep all
implementations of the A.\1R algorithm up-to
date with the latest fixes and improvements.

Our experience with Fortran implementations
of the hyperbolic AMR methodology was that writ
ing and debugging an implementation took about
two thirds of a man-year for an experienced im
plementer. As we began to look toward using AMR
in new physical regimes, i.e., introducing elliptic
and parabolic terms to the system of hyperbolic
conservation laws, we felt the need to look for
methods of reducing the development time.

In early 1991, we began to address these prob
lems by reimplementing our AMR algorithms in

the object-oriented language C++. We began
with an A~R algorithm for the hyperbolic equa
tions of in viscid gas dynamics (Euler equations) in
conservative form. Our objective was to produce
an efficient implementation that would be easier
to develop and maintain. The ability to define ab
stract data types (ADT) in C++ made it easy to
define objects with an intuitive geometric basis,
which made the A.\1R algorithms easier to under
stand. The initial A:YIR implementation would
then provide a basis for further AMR algorithms.
Subsequent AMR algorithms would draw upon
the object-oriented libraries developed for A:YIR
inviscid gas dynamics. and also achieve reuse of
code via inheritance. For reasons of efficiency, we
chose not to totally reimplement A.\1R in C++.
Low level numerical routines remain in Fortran.
Only the high-level, organizational levels of the
A:YIR algorithm were written in C++ (approxi
mately soo;;) of total lines of code). In brieL each
language was given a job commensurate to its
abilities.

As of March 1993, we have three major imple
mentations of A.\IR for three different classes of
PDEs: hyperbolic systems of conservation laws.
hyperbolic systems of conservation laws with a
Cartesian grid representation of boundaries, and
coupled hyperbolic and parabolic systems of con
servation laws. The implementations draw upon
the same object libraries, and are coupled through
the use of inheritance. At this time. we have three
more implementations in various stages of com
pletion: coupled hyperbolic, parabolic, and ellip
tic systems of PDEs, hyperbolic systems with front
tracking, and multifluid hyperbolic systems.

In the following sections, we will describe our
object-oriented implementation of AY1R algo
rithms. In Section 2 we will describe the A.\IR al
gorithm for systems of hyperbolic conservation
laws in abstract. In Section 3 we describe the ob
ject-oriented component libraries we base our im
plementation upon. In Section 4 we will describe
classes that are specific to our implementation of
hyperbolic AMR. In Section 5 we describe how we
have reused the hyperbolic A.\IR-specific classes
in the derivation of related A:YIR algorithms. In
conclusion, we describe the best and worst points
of our experience with the object-oriented imple
mentation of AMR.

2 THE AMR ALGORITHM

Because the requirements of hyperbolic A~R mo
tivate our object-oriented classes, we will discuss

ADAPTIVE .\1ESH REFI~EME~T ALGORITHYIS 14 7

in this section the A~R algorithm for hyperbolic
systems. For a less terse description. the reader is
referred to Berger and Colella [2]. The A~IR algo
rithm for hyperbolic systems of conservation laws
is exemplified by our original A~R for inviscid gas
dvnamics.

The AMR algorithm for hyperbolic systems of
conservation laws calculates its solution on a se
quence of adaptively refined rectangular grid
patches. The class of solutions of these equations
consists of regions of smooth solution separated
by discontinuities or steep gradients in the solu
tion variables. To compute an accurate solution
on a finite difference grid, the mesh spacing must
be sufficiently refined to match the length scales of
the important features of the solution. In the
smooth regions a coarse grid solution is satisfac
tory but a refined grid is necessary to accurately
capture the discontinuities as steep gradients. The
AMR algorithm begins with an underlying (level 0)
coarse grid (or collection of grids) that covers the
entire computational domain. An error estimation
procedure identifies cells where the solution is not
resolved to a given error tolerance. These tagged
cells are grouped into rectangular patches that are
spatially and temporally refined to form the level 1
grids. The refinement ratio between the levels is
an even constant specified at runtime. This proce
dure is recursive: error estimation is performed on
the level L grids, and tagged cells are grouped
and refined to form the level L + 1 grid patches.
The process is repeated until either the error toler
ance is satisfied or a specified maximum level is
reached. The grid patches at each level must be
properly nested in the underlying coarse level.
Proper nesting requires that the union of level L +
1 grids be properly contained in the interior of the
region covered by the level L grids (except at the
boundary of the physical domain where all levels
can be refined up to the edge).

An example of the AMR grid structure can be
seen in Figure 1, which shows the density contour
map for the interaction of a shock with an inclined
plane in inviscid gas dynamics. The inclined plane
is modeled with a Cartesian Grid representation of
the body. The Cartesian Grid A~R code is dis
cussed brieflv in Section 5. Note that the finest
level boxes track the large gradients in the solu
tion. The grid placement is calculated without hu
man intervention.

For the inviscid gas dynamics A~R algorithm,
we use an explicit second order Godunov method
to advance the solution on each grid patch. The
stability requirement for this method is that a sig
nal not be able to pass entirely through a finite

148 CRUTCHFIELD AND WELCOME

~--------------~-------

FIGURE 1 Density contour~ for shock-ramp interac
tions. 1\'ote that grids are automatically placed on re
gions of large gradients in the solution.

difference cell in anv given time-step. This re
quirement is enforced by restricting the time-step
such that S * dt/ dx < CFL < 1 where S is the
speed of the fastest wave in the problem and CFL
is the Courant number specified by the user. From
this we can see that as we move from one level to
the next finest with a refinement ratio of R the
time-steps taken on the finer grids must be re
duced by a factor of R. Further, for the fine grids
to be advanced to the same point in time as the
coarse level we must advance them R times for
each coarse grid advancement. The time stepping
algorithm is recursive: The grids at level L are ad
vanced with a time-step dt(L). The grids at level
L + 1 are advanced R times with time-step dt (L +
1) = dt(L)/R. Finally, a synchronization step is
performed between level L and L + 1. Note the
costs involved in refining a region in 3D with a
refinement ratio of R. The storage increases by a
factor of H~ and the computational effort increases
by a factor of R 4

. R is a small even integer, typi
cally 2 or 4.

The same integration module is used to ad
vance both coarse and fine grids. The stencil for

this integrator requires that a certain number of
boundary values be supplied for each grid. The
boundary values are supplied by either (1) copy
ing from adjacent grids, (2) calling user supplied
physical boundary condition functions or (3) in
terpolating (both in space and time) from grids at
a coarser level. When interpolating data from
coarser grids, we obtain the data on the required
sub-patch by a recursive call to this fill algorithm.
Because a time interpolation must be used to sup
ply boundary data on the coarse/fine grid inter
face we must keep two copies of the data on the
coarse levels.

The synchronization step is used to ensure that
the solutions on the coarse and fine levels remain
consistent. It consists of an "average-down" step
followed by a "refluxing" step. Because the nu
merical method discretely respects the conserva
tion laws, it is necessary that the amount of the
conserved quantities contained in a fine grid be
the same as that contained in the underlying
coarse grid region. The average-down step is im
plemented by averaging the fine grid data (in a
volume weighted fashion) down to the coarse grid
region covered by the fine grids.

A conservative scheme updates the solution by
computing fluxes across the faces of each finite
difference cell. The state of the solution in a cell at
the new time is the state at the old time plus the
net flux across each of its faces. The fluxes com
puted on the coarse grid are in general not equal
to the cumulative fluxes over the same physical
region on the fine grids. The "refluxing" step ef
fectively replaces the coarse grid fluxes with the
cumulative fine grid fluxes. The reflux step up
dates the coarse grid cells adjacent to but not cov
ered by the fine grids with a correction term that
represents the difference between the coarse grid
and fine grid fluxes.

As the dynamics evolve in time the important
features of the solution move through the compu
tational domain in a way that cannot be predicted
a priori. The hierarchical grid structure must be
periodically regenerated to capture these features.
Grid generation is performed from the finest level
down to the coarsest. Error estimation is performed
on the old level L grids to determine where the new
level L + 1 grids will be placed. The new level L
grids are determined by an error estimation proce
dure on the level L - 1 grids with the added re
striction that the new level L + 1 grids be properly
nested within the new level L grids. Once the grid
locations are determined for all levels, data space
is allocated and state variables are defined by ei-

ther (1) copying on overlap from the old grid struc
ture, or (2) spatial interpolation from the old grid
structure. Care is taken to release the memory
from the old grid structure as soon as possible and
to delay memory allocation for the new grid struc
ture to minimize memory consumption.

The error estimation procedure consists of both
a Richardson error estimation to detect errors in
the solution as well as a physics-dependent error
estimator that can detect slowly moving or station
ery gradients missed by the Richardson estimator.
High error cells are tagged, then buffered by tag
ging neighbor cells. All the tagged cells are orga
nized into a ''cluster," which consists of a list of
tagged cells and the minimal rectangular box con
taining them. We use a cutting algorithm based on
a combination of signatures and edge detection
used in computer vision and pattern recognition
[6] to find the best place to chop the cluster.
Chopping a cluster consists of sorting the tagged
cells into two lists depending on which side of the
cutting plane they lie. Minimal boxes are com
puted for each cluster after the chop. This process
is performed until the ratio of tagged cells to total
number of cells in a cluster reaches a given effi
ciency value. These clusters may be further
chopped if necessary so that they lie within the
proper nesting domain for the level in which they
reside. The proper nesting domain for a level is the
largest subregion of that level that can be refined
to the next level without violating the proper nest
ing requirement. Finally, the cluster boxes at level
L are refined to level L + 1 to become the new
level L + 1 grid structure.

3 GENERIC OBJECT LIBRARIES FOR
ADAPTIVE ALGORITHMS

In the process of designing the C++ version of
AMR we identified several basic classes that would
serve as the building blocks for many of the larger
classes used in AYIR. Considerable effort was
spent in designing, implementing, optimizing, and
testing these basic classes because their use was
widespread. One of our goals was to implement
k\1R in a dimension-independent manner, with
the dimension specified at compile time. The base
classes implement this goal with a macro for the
class name that expands to the actual name of a
class with the correct dimensionality. For exam
ple, the "box" class is actually three classes,
"box1d", "box2d" and "box3d", but the macro

ADAPTIVE YIESH REFI!\E\1ENT ALGORITHMS 149

FIGURE 2 Derivation/ composition graph for some of
the generic library classes. Dashed lines show class der
ivation and solid lines indicate class composition. Ar
rows point from larger, more composite class to smaller,
more fundamental class.

name "BOX" can be used and will be translated
to the appropriate name at compile time based on
the spatial dimension. In general, the only excep
tions to the dimension-independent interface are
in certain dimension-specific constructors.

Figure 2 shows the more important of the ge
neric classes we have derived. In addition to the
classes shown in Figure 2, we have implemented
classes for X-Window or postscript graphics and
character strings, such as are found in many class
libraries. In Figure 2, lines indicate relationships
between classes. Solid lines indicate that one class
includes objects of the second class (composition).
Dashed lines indicate that one class inherits from
the second. The lines indicate a direction, going
from the larger, more composite to the smaller,
more fundamental.

The most basic class is ll\TVECT, which im
plements points in !\"-dimensional integer space.
Operations include partial ordering relations, 1/0
operations, selection of individual components,
and basic arithmetic operations.

One very useful class is the BOX class, which
describes rectangular subregions of !\"-dimen
sional integer space. A BOX consists of two
INTVECTs, specifying the diagonal corners of the
region. Boxes have a large number of operations
including intersection, translation, refinement,
and coarsening by a given ratio. BOX expansion,
shrinking, and chopping operations are available
as well as a full complement of access functions.
The BOX class has 59 different member func
tions, exclusive of the constructors, destructors,
and access functions. In addition, a BOX can be
defined to represent a rectangular region in either

150 CRLTCHFIELD AKD WELCOME

cell centered or node centered coordinates in each
index direction. The usefulness of defining a BOX
class for adaptive algorithms can be illustrated
with a code fragment. Very often in the A~IR algo
rithm it is necessary to ask if two rectangular re
gions have a non-null intersection. In Fortran,
such a test would be expressed as:

ixlo maxO(iplo,imlo)
ixhi minO(iphi, imhi)
jxlo maxO(jplo,jmlo)
j xhi minO (j phi , j mhi)
kxlo maxO(kplo,kmlo)
kxhi minO(kphi,kmhi)
if ((ixlo.le.ixhi) .and.
(jxlo.le.jxhi) .and.
(kxlo.le.kxhi)) then

end if

In comparison, with the use of the BOX class. the
same test can be written as:

if (pbox. intersects(mbox)) {

}

Clearly the second case is much easier to read and
write, as well as much more likely to be entered
correctly. By actual count, the hyperbolic A~R
algorithm calls the BOX intersection test 19 times
explicitly. In addition, the A~R algorithm calls
many library functions that implicitly call the BOX
intersection test.

We have also implemented generic singly and
doubly linked list classes. Through derivation
from the BOX class and the doublv linked list
class we have implemented a BOXLIST class. We
have extended this class with functions thac for
example, determine if a given box is contained
in the union of the boxes in the list. ~We have
used this class as the private representation of a
FIDIL_DO~AIN [7] class which is used to
represent arbitrary subregions of 1\"-dimensional
integer space as a list of mutually disjoint boxes.
Some interesting operations of the FIDIL_
DO~AIN class are union, intersection, comple
ment and accrete. We use FIDIL_DOMAINS to
represent the proper nesting regions of each level
during the regridding process of the AMR algo
rithm.

A CLCSTER class consists of a list of

INTVECTS and the minimal BOX containing
them as described in the AMR algorithm above. A
T AGBOX class is also defined. It consists of a
BOX along with an integer tag array used in mark
ing cells of a grid for masking operations.

One of the most useful classes in the base li
brary is the FARRAYBOX class. This class is a
C++ implementation of a Fortran array. It con
sists of a box defining the index extent of the array
and a pointer into heap allocated storage where
the array data are stored. The data are stored in
Fortran column major order so that it can easily
be passed to Fortran worker routines that manip
ulate the data. The majority of data manipulated
in the AMR code, such as the state arrays for a
grid, are implemented as FARRAYBOX's. FAR
RA YBOX operations include copying on intersect,
selection of values, access functions, dynamic re
sizing operations, index shifting, computing min
and max values, along with a variety of simple
arithmetic operations such as the addition of two
FARRAYBOX's or multiplication by a scalar
value. We stopped short of implementing a gen
eral array language because it is difficult to imple
ment a general array language efficiently. Our
general philosophy in this area is that if efficiency
is importanL it should be written in Fortran. FAR
RAYBOX operations are used frequently so we
took care to optimize the operations to take ad
vantage of the target architecture. W~hen compil
ing for a vector processor we unroll loops and vec
torize over the longest index direction. When
compiling for a cache architecture, the loops re
spect the cache. Further, because all the FAR
RAYBOX memory is allocated by C++ and the
majority of the dynamic memory used by A.\1R is
contained in FARRA YBOX objects, we have taken
over memory management for this class. \Ve have
implemented a compacting memory manager that
eliminates fragmentation and have recently writ
ten a swapping memory manager that efficiently
uses the solid state disks available on the CRA Y
YMP series as secondary memory. \Vith this fea
ture, we are able to run problems that would ordi
narily require over 100 megawords of main stor
age in only 10-20 megawords of main memory.
The overhead realized in the SSD version is less
than 5% in the tests we have made to date.

4 AMR IMPLEMENTATION CLASSES

Each of the AMR-specific classes corresponds to a
major component of the AMR algorithm. The In
tegrator class corresponds to the finite difference

I
I
I
I

I FArra:Box I

' ' ' '

1 ~:ist 1

ADAPTIYE ~1ESH REFI~EME!\iT ALGORITHMS 151

' '

I BndryRegP

' ' ' I Un:pliu I

FIGURE 3 Derivation/ composition graph for the major A.\1R implementation classes.
Dashed lines show class derivation and solid lines indicate class composition. Arrows
point from larger, more composite class to smaller, more fundamental class.

method that advances a grid by the time-step. The
DataBox class contains the state variables for a
single rectangular region of the index space at a
specified time. Objects of the Grid class contain
two DataBox's, representing the state of a rectan
gular region in index space at two successive
times. All the Grid objects at a given level of re
finement are collected into objects of class
GridList. A GridList object contains all the infor
mation describing the problem solution on a given
level of refinement at two successive times. At the
highest level of abstraction are objects of class
AmrSS. An object of this class contains all the
data and member functions necessary to imple
ment A.\1R for a hyperbolic system of conservation
laws. Each AmrSS object contains one GridList
for each level of refinement it uses. The set of
GridList's represents all the state data contained
in the system of hierarchically refined grids. Fig
ure 3 shows the derivation and composition rela
tionships between the major AMR implementation
classes. Dashed lines show class derivation and
solid lines indicate class composition.

The Integrator class is a virtual base class [8,
9]. I\o objects of class Integrator should ever exist.
Vseful integrator classes are derived from the base
class Integrator. Class Integrator merely defines a
uniform interface to actual integrator classes. We
have many subclasses derived from class Integra
tor, corresponding to different finite difference
methods and different PDEs, e.g., split Godunov
integrator for in viscid gas dynamics [1 0-12], un
split Godunov integrators for inviscid gas dy-

namics [131, fourth-order accurate Lax-Wendroff
scheme for acoustics, etc. Objects derived from
class Integrator implement finite difference
schemes and often contain no data of their own.
Such data-less objects are employed for their abil
ities (to apply a finite difference method) not for
their data. In our AMR implementations, an ob
ject of base class Integrator is accessed through a
pointer and the class's two virtual functions.
When the upper levels of the AMR algorithm are
compiled, the AMR algorithm has no way to know
which class derived from class Integrator it will be
used with. In fact, our implementation makes the
choice of Integrator object a run-time decision.
Class Integrator defines two virtual functions. One
function applies a finite difference scheme to a
rectangular array of numbers. A second function
returns a set of integers that characterize the finite
difference method and the physical system. The
numbers include the number of variables required
to define the state of the physical system in each
grid celL the maximum allowable size of grid
patches, the stencil width or number of extra
zones of data required to apply the finite differ
ence method, the coordinate system, etc. The
higher levels of A:YIR access this function during
initialization and take appropriate actions during
the computation based on these numbers.

An object of class DataBox contains the infor
mation required to describe the state of the system
on a rectangular region of index space at a single
point in time. In the simplest cases, the state can
be described with a rectangular array with a fixed

152 CRUTCHFIELD AND WELCO~E

number of variables per each cell in the array, but
more complex configurations are possible. For the
case of inviscid gas dynamics, DataBox is derived
from the library class F ARRAYBOX. Ylember
functions, defined for class DataBox, correspond
to reasonable actions that can be applied to the
system state at a single point in time. For example,
the state can be integrated forward in time, or in
terpolated onto another DataBox of finer resolu
tion, or copied into another DataBox, etc. Of all
the AMR classes, only classes DataBox and Inte
grator are dependent on the underlying PDE. The
PDE dependence is encapsulated within these two
classes, allowing the rest of AMR to be indepen
dent of the PDE. In addition to being dependent
upon the PDE, the DataBox class is also depen
dent upon the problem being solved. For exam
ple, the DataBox class has a function that initial
izes a DataBox. Such an initialization function will
frequently be changed as different problems are
studied. The DataBox class calls user-defined
routines written in Fortran that perform such
problem-dependent functions. Fortran was cho
sen for this purpose to make the AYIR algorithm
more accessible to users.

Objects of class Grid contain two DataBox's,
representing the state of a logically rectangular re
gion at two successive times. Some Grid's also
contain Flux Registers, specialized DataBox's that
are used to store fluxes at the edges of the Grid for
later use in refluxing. In addition to performing
operations upon its constituent DataBox's, the
Grid class is able to perform operations that re
quire two DataBox's. For example a Grid is able to
fill a DataBox with interpolated data at any time
level intermediate between the times of its constit
uent DataBox's. A Grid is also able to make an
error estimation upon the solution in its domain
and determine where further refinement is re
quired. A Grid also has responsibility for manag
ing its memory consumption in order to reduce the
memory consumption of the entire application.
DataBox's that are no longer needed are released
as soon as possible. Flux registers are only allo
cated by the Grid object if the Grid will utilize
them later. An object of class Grid can perform
numerous operations required by the AYIR algo
rithm upon the solution in a rectangular spatial
region, for example, initialization, time-step ad
vance, tagging cells requiring further refinement,
various 110 functions, correcting the solution on a
coarse grid to agree with an overlaying fine grid,
etc.

All the Grids at a given level of refinement are
collected together in an object of class GridList.

This collection class is implemented as a doubly
linked list and provides iteration functions used to
step over the members of the list. Class GridList
also implements AYIR actions that are imple
mented on an entire level of refinement, for exam
ple, time-step advance or synchronization be
tween levels.

The AYIR implementation classes also contain
two classes that are used to represent boundary
conditions. The BndryReg class is a general repre
sentation of a boundary condition. ~We implement
a boundary condition as a function that provides
values outside of the physical problem domain. A
BndryReg object contains a BOX describing where
the boundary condition may be applied and a rule
for generating data in this region. The BndryReg
rule may generate the data independent of the so
lution in the interior (e.g., supersonic inflow
boundary condition) or may be dependent upon
the solution in some fashion (e.g., reflection
boundary conditions). The "rule" function is pro
vided to an object of class BndryReg when it is
instantiated. We have also derived classes from
BndryReg that handle specific types of boundary
conditions, for example, periodic (BndryRegP)
and reflecting (BndryRegR). Reflecting boundary
conditions are used to represent walls and sym
metry planes in the problem. These two derived
classes do not require coding a rule function, and
are consequently easier to use.

Objects of class BndryReg are collected to
gether in an object of class RegDecomp. The re
gions associated with each BndryReg object must
be disjoint and their union must cover all cell loca
tions within one stencil width of the physical re
gion. These conditions are checked by the RegDe
comp object. A RegDecomp object can be asked
to provide data from outside the physical domain.
The RegDecomp object then requests each of its
BndryReg objects that intersect the desired region
to provide data in the intersection. The RegDe
comp object orders the BndryReg objects inter
nally so that the external data required by some
RegDecomp objects is available before the object
is invoked. The use of boundary condition objects
has made it considerably easier to setup boundary
conditions for applications than was our experi
ence with the Fortran implementation.

At the highest level of abstraction are objects of
class AmrSS. An object of this class contains all
the data and member functions necessarv to im
plement AMR for a hyperbolic system of conserva
tions laws. Each AmrSS object contains one
GridList for each level of refinement it uses. An
AmrSS object contains a RegDecomp object to de-

scribe the boundary conditions. An AmrSS object
has member functions that implement actions af
fecting multiple levels of refinement. For example,
an AmrSS object can advance the solution by one
coarse grid time-step. This requires multiple time
steps at the finer levels and a synchronization be
tween levels when two levels of refinement are ad
vanced to the same point in time. The AmrSS
object is also responsible for computing the size of
the next time-step, based on the CFL numbers
reported by each of the Grid objects as they are
time-stepped. At specified intervals during the
time-step advance, new grid positions are calcu
lated. Fine grid levels are "regridded" more often
than coarse grid levels. Individual Grid objects on
each level are responsible for tagging cells requir
ing refinement within their domain, but the
AmrSS object assembles the tagged cells and finds
an efficient grid structure that covers the tagged
cells. During many phases of the A.\'IR algorithm
(e.g., time-step advancing a Grid) it is necessary to
fill a rectangular array with data values represent
ing the solution at a specified time. The AmrSS
class has a member function that is the publicly
accessible interface to that information. In the
general case, gathering this data may involve cop
ying from grids of one level, interpolating data
from a coarser level, and deriving data from a
boundary condition. Because this is a multigrid,
multilevel operation, it is appropriate that the
AmrSS class implement it.

Because the C++ objects we have implemented
always pass computationally intensive parts of the
calculation to Fortran subroutines. we expected
that the overhead of C++ would not have a mea
surable effect upon the A:YIR algorithm. To test
this assumption, we performed a standard 2D cal
culation of a shock wave hitting a cloud of denser
gas with both the original Fortran calculation and
the C++ implementation. The C++ implementa
tion was actuallv about 1% faster. 'Ve cannot con
clude that C++ is faster than Fortran from this
experiment because the algorithms had changed
slightly in the intervening year (due in some part to
our ability to write better algorithms inC++). But
we can eliminate the hypothesis that C++ is dras
tically slower than Fortran in this application.
This conclusion should be true in 3D as well.

5 REUSE OF AMR-SPECIFIC CLASSES

'Vith C++, we have the ability to define abstract
data types and manipulate them as if they were
part of the language. This has made it easier to

ADAPTIVE ~ESH REFINEME.'\IT ALGORITH~S 153

write and read complex adaptive algorithms.
There is another notable contribution to our de
velopment work that C++ has made. C++ en
ables us to derive new algorithms from old algo
rithms in analogy to the way classes are derived
from base classes.

In the previous section we described how we
employed the "data-hiding" property of C++ to
decouple the higher levels of A:yfR from the Data
Box and Integrator classes, which are dependent
on the underlying PDE. There are other logical
cleavage lines in the algorithm that allow different
portions of the algorithm to be treated indepen
dently. A simple example of this is our variable
ratio version of AMR for in viscid gas dynamics.

In the original AMR implementation for hyper
bolic systems, the ratio between time-steps at dif
ferent levels of refinement is fixed to be the same
as the ratio of spatial refinement. This is a reason
able strategy when the variation between velocities
in the problem domain is not too far from one.
However, if the problem domain has regions of
high velocity, the CFL time-step limit in these re
gions will dominate the determination of the time
step for the entire domain at all levels of resolu
tion. Considerable improvement is possible if the
high velocity region is for some reason not repre
sented on the finest level of refinement. Then the
size of the time-steps that the finest level can take
should be limited by the highest velocity in the
region covered by the finest level, not by the physi
cal domain as a whole. However, this requires
changing the ratio between time-steps at different
levels of refinement.

In the A:yfR C++ implementation, the determi
nation of time-steps is localized to the AmrSS
class. It is possible to replace the standard time
step determination logic with an alternative logic
that dynamically determines the optimum ratio of
time-steps for the solution at each time-step.
However, most of the AmrSS implementation is
unrelated to time-step determinations, for exam
ple, the regridding logic. We do not wish to simply
copy this logic into a new class because this cre
ates a second implementation of the regridding
logic that must be constantly updated with im
provements and corrections. Instead we use class
derivation.

We have derived a class AmrVR from the exist
ing AmrSS class. The only code in the AmrVR
class is an overloading of the AmrSS member
functions that advance the solution by one time
step. It differs from the AmrSS member function
by choosing the time-step on each level of refine
ment to be as large as the CFL restriction allows,

154 CRUTCHFIELD AND WELCOME

subject to the restriction that ratios between time
steps must be integral. The class AmrYR other
wise inherits the existing AmrSS functions for re
gridding, user interface, etc. The AmrYR
implementation involves approximately 200 lines
of new code compared to the 2,000 lines of code
in the AmrSS implementation. Because class
AmrVR is derived from AmrSS, it can be used as a
direct replacement in any program using AmrSS.
We have used the AmrVR class in very large scale
3D gas dynamic simulations with considerable
time savings.

A larger scale example of ·'algorithm deriva
tion" is our development of an AYIR l"avier
Stokes simulator for compressible gas flows. A
~avier-Stokes simulator requires the addition of
parabolic terms that model the diffusive transport
of momentum and heat. \Ve use a higher order
Godunov scheme for the advective portion of the
equations. The viscous terms are integrated with a
second -order accurate Crank -l"icolson scheme.
The advective and viscous terms are coupled to
gether in a predictor-corrector cycle. The implicit
Crank-Nicolson step requires the solution of a lin
ear system on the grids of a given level of refine
ment.

A number of new operations are required in the
compressible ~avier-Stokes algorithm. Viscous
terms must be calculated, linear systems must be
solved, and viscous fluxes must be accumulated
and refluxed to conserve energy and momentum.
The cycle of time-steps must be modified to in
clude the linear solve. The basic explicit time-step
integrator for the advective terms is modified.
However, much remains of the original hyperbolic
AMR algorithm. The grid structure is the same;
the advective time-step integrator is almost identi
cal: the regriding algorithm is the same: the syn
chronization operation between levels of refine
ment is the same, with the caveat that the fluxes
contain viscous fluxes as well as advective fluxes.

Cnlike the case of variable-ratio AYIR. the
compressible ~avier-Stokes AYIR cannot be im
plemented with a single changed C++ class. The
required changes extend from the highest levels of
AMR down to the base advective time-step inte
gration. We have derived five new classes from
the standard hyperbolic A.\1R implementation
classes. For the most part they differ from the
standard hyperbolic A""IR classes by the addition
of new capabilities related to the viscous terms.
For example, the class DataBoxCl"S has the ca
pability of computing the viscous fluxes from its
state in its rectangular region. In a few places, the
compressible l"avier-Stokes classes overload

FIGURE 4 Derivation/ composition graph showing re
lationship between compressible "Javier-Stokes A:VlR
classes and the hyperbolic AMR classes. Dashed lines
show class derivation and solid lines indicate class
composition. Arrows point from larger, more composite
class to smaller, more fundamental class.

member functions of the hyperbolic classes,
mainly in the time-step cycle which is modified to
include the solution of the Crank-r-;icolson linear
problem for the viscous terms. Figure 4 shows the
inheritance and composition relationships.

~With this derivation scheme we have been able
to easily implement an AYIR algorithm for com
pressible Navier-Stokes. We had to write approxi
mately 1, 900 lines of additional code, mainly in
Fortran to implement the calculation of viscous
terms. The program retains all the improvements
and corrections we have implemented over the
years in the hyperbolic AYIR program because it is
derived from it. It will continue to incorporate new
improvements that we introduce into hyperbolic
AMR except for improvements we make in the few
member functions that are overloaded bv new
functions in the AYIR compressible 1\"avier-Stokes
class structure. For example, all the code we have
introduced into the hyperbolic AYIR code to write
graphics files in several different formats is
present and working in the compressible :-\avier
Stokes AMR program. In our opinion. the ability
to transparently track improvements in the hyper
bolic AYIR implementation is at least as important
as the ability to write an important new applica
tion with only 1,900 lines of new code. We have
applied the compressible Navier-Stokes algorithm
in 2D to important unsolved problems in viscous
shock dvnamics [14].

We have also applied our methods for algo
rithm derivation to an even more ambitious goal.
We have developed AYIR algorithms for modeling
geometrically complex boundaries in inviscid gas
dynamics. We refer to these algorithms as using a
Cartesian Grid representation of the boundary
[15]. We differ from Berger and Leveque [15] by
employing a tracked front [5, 16] representation
of the interface. The Cartesian Grid AMR algo
rithm has proved to be very successful in simulat
ing inviscid gas dynamics in a geometrically com
plex region [1 7]. This has required rather more
extensive changes to the class hierarchy than did
compressible 1\'avier-Stokes because many func
tions must now be provided with extra arguments
describing geometry. Seven new Cartesian Grid
classes are derived from their counterparts in the
hyperbolic AMR hierarchy: AmrCart, DataBox
Cart, GridCart, GridListCart, ContourCarL Ras
terCart, and Cartlnteg. In addition three new
classes, RDData, SparseData, and SparsePencil
were introduced to store the geometric description
in sparse data structures. Approximately 16,000
new lines of code were required for a combined 2D
and 3D implementation, or about half of the total
number of lines of code.

6 CONCLUSIONS

Since we first began implementing our codes in
C++ in early 1991, we have accumulated many
man-years of experience with implementing com
plex adaptive algorithms in an object-oriented
style. ln this section, we would like to recapitulate
where we think C++ has reallv been a success for
us, and where it has held us back.

In terms of the greatest benefit for the smallest
amount of work, our greatest object-oriented suc
cess is our ability to write dimension-independent
code in C++. Our geometrically based algorithms
have the same expression in 1D, 2D. and 3D
when we use a geometric language of intersections
and unions of BOX's. Using the libraries and
macros described in Section 3, we can do that in
C++. ln Fortran, we were forced to maintain a
different implementation of A~1R for each dimen
sion. We find that if we test and debug a geometri
cally complex algorithm in 2D, it will very often
work immediately in 3D. ~When errors do occur,
they are usually in the Fortran portion of our code.
Given that debugging our algorithms in 3D is ex
pensive, this is important to us.

More generally, we certainly believe that we

ADAPTIVE YlESH REFII\'EYIEJ\T ALGORITHMS 155

have benefited from C++'s abilitv to define ab
stract data types. This makes our algorithms
much easier to express and to understand. The
ease of writing complex algorithms in C++ has
had the important effect of lowering the threshold
for algorithm changes. For example, we have
known for years that it was possible to reduce a
"memory bulge" in the algorithm by getting rid of
old time-level DataBox's on the finest level as
soon as a Grid can guarantee that no other Grid
needs its old time-level data. However, the diffi
culty of keeping track of the data dependencies in
Fortran was so daunting that it was never imple
mented. Csing C++ the threshold of effort for im
plementing the modification was low enough that
we did implement the changes. The changes took
a few hours.

Another object-oriented benefit we can confirm
is that data hiding is beneficial for increasing the
modularity of our implementations. By localizing
the physics dependence in DataBox and Integra
tor, we made it much easier to introduce totally
new physics packages without breaking the pro
gram.

Reuse of code through the use of object-ori
ented libraries and inheritance has been another
success. The preceding section described some of
our work with algorithm derivation. \Ve have also
greatly benefited from the generic object libraries,
not only in the predominantly hyperbolic AYIR al
gorithms described in this article, but also in our
parallel development of AYIR methods for incom
pressible fluid flow. We have not as yet been able
to fit these AYIR algorithms into the class structure
of hyperbolic AYIR in the same fashion that we did
with compressible 1\"avier-Stokes. But our generic
libraries have been useful and are an important
part of that effort.

Our dual language Fortran/C+ + implementa
tion has been a success in terms of efficiencv and
portability. lf we could not be assured of writing
implementations at least as efficient as the original
Fortran implementations, we could not have be
gun this project. Of course, our ability to write an
efficient Fortran/c++ implementation is depen
dent upon our primary work objects, i.e .. Data
Box's, being large objects that can easily hide the
overhead of a call to a Fortran routine. Other algo
rithms mav not have that luxurv. . .

Despite its success, the necessity of writing part
of our algorithm in Fortran is a major complaint
for us. Although not intrinsically difficult, Fortran
imposes an unwanted level of bureaucracy in our
implementation with the necessity of making an
extra call, rearranging the arguments into some-

156 CRL'TCHFIELD AND WELCOME

thing Fortran can understand, and writing macros
to translate from the Fortran naming convention
into C++'s naming convention. If C++ and C
had good, reliable, robust, and highly vectorizing
compilers, this effort would not be needed. Of
course, this support would have to be universal
across the machine architectures that we target
before we could take advantage of it. In addition,
we would need to have decent debugger support
for C++.

A C++ language problem we have encountered
is the difficulty with using derivation on tightly
coupled data structures. Consider the relationship
between DataBox, DataBoxCJ\"S, Grid. and Grid
Cl\"S shown in Figure 4. A Grid contains pointers
to objects of type DataBox. GridCJ\"S is derived
from Grid. We would like GridCNS to contain
pointers to objects of type DataBoxCNS. but C++
rules of derivation force GridCNS to have pointers
to type DataBox. We have overcome this problem
with explicit casting in those portions of the
GridCNS implementation that need to use mem
ber functions of class DataBoxCJ\"S. This is inele
gant and requires special care to document the
relationships that cannot be expressed in the
C++ language.

Our use of C++ for AMR algorithms has
proven so successful that we no longer perform
any development in pure Fortran. Our mainstay
AMR implementations have been converted to
C++ /Fortran hybrid implementation. 1\"umerous
new development projects in the LLNL's Applied
Math Group are taking place using C++ and ob
ject-oriented libraries.

REFERENCES

[1] M. J. Berger and J. Oliger, ·'Adaptive mesh refine
ment for hyperbolic partial differential equa
tions,"]. Comp. Phys .. vol. 53, pp. 484-512.
1984.

[2] .\1. J. Berger and P. Colella "Local adaptive me~h
refinement for shock hydrodynamics,·']. Camp.
Phys., vol. 82. pp. 64-84. 1989.

[3] J. B. Bell, M. Berger, J. Saltzman, and M. Wel
come, "Three dimensional adaptive mesh refine
ment for hyperbolic conservation laws," SIAA1].
Sci. Stat. Comput. 1994.

[4] J. B. Bell, P. Colella, J. A. Trangenstein, and ~1.
Welcome, Proceedings of AIAA 9th Computa
tional Fluid Dynamics Conference. Buffalo, 1'\ew
York: AIAk 1989.

[5] J. B. Bell, P. Colella, and M. Welcome, Proceed
ings of AIAA 1Oth Computational Fluid Dynamics
Conference. Honolulu, Hawaii: AIAA, 1991.

[6] M. J. Berger and I. Rigoutsos, "An algorithm for
point clustering and grid generation," IEEE
Trans. Systems, Man Cybernet. vol. 21, pp.
1278-1286, 1991.

[7] P. -"1. Hilfinger and P. Colella, Symbolic Compu
tation: Applications to Scientific Computing.
Moffet Field, CA: SIAM Frontiers in Applied
Mathematics, Vol. 5, 1989.

[8] S. B. Lippman, C++ Primer. Reading: Mk Addi
son-Wesley, 1989.

[9] B. Stroustrup, The C++ Programming Lan
guage. Reading: MA, Addison-Wesley, 1986.

[10] P. Colella and P.R. Woodward. "The piecewise
parabolic method (PPM) for gas-dynamical simu
lations,"]. Comp. Phys., vol. 54, pp. 174-201.
1984.

[11] P. Colella, "A direct eulerian MUSCL scheme for
gas dynamics," SIAM]. Sci. Stat. Comput., vol.
6, p. 104, 1985.

[12] P. Colella and H. M. Glaz, "Efficient solution al
gorithms for the Riemann problem for real gas
~es,",]. Comp. Phys., vol. 5<J, pp. 264-289.
1985.

[131 P. Colella, "Multidimensional upwind methods
for hyperbolic conservation laws,"]. Camp.
Phys., vol. 87, pp. 171-200, 1990.

[14] J. B. BelL P. Colella. W. Y. Crutchfield. and ~1.
Welcome, "An adaptive mesh refinement scheme
for the compressible ~avier-Stokes equations·•
(in preparation).

[15] M. J. Berger and R. Leveque, AIAA 9th Computa
tional Fluid Dynamics Conference. Buffalo, 1'\Y:
AIAA, 1989.

[16] I. Chern and P. Colella. '·A conservative front
tracking method for hyperbolic conservation
laws,'']. Camp. Phys. (in pres~).

[17] R. J. Pember, J. B. Bell. P. Colella. W. Y. Crutch
field, and M. J. Welcome. "A three dimensional
adaptive Cartesian grid algorithm for inv:i~cid

compressible flow" submitted to]. Camp. Phys.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

