
Applications Demand Class-Specific
Optimizations: The C + + Compiler
Can Do More

IAN G. ANGUS

Boeing Computer Services, Seattle, WA 98124-0346

ABSTRACT

So far C++ has made few inroads into the realm of scientific computing, which is still
largely dominated by Fortran. Of the few attempts that have been made to apply C++
to numerically intensive codes, the results have often suffered from severe performance
problems. A careful examination of these problems indicates that they are unlikely to be
solved by incremental improvements in compiler optimization technology. The flow of
this article will: motivate the discussion by describing a common efficiency problem that
arises when numerical codes are programmed inC++; discuss some potential solution
strategies that we believe are viable in the near term, but not over the long term;
introduce a mechanism by which a compiler can load domain-specific and class-spe­
cific optimizations on an as needed basis. A simple interface that will enable this feature
will be presented. Although our immediate motivation is that of numerically intensive
codes, our approach is applicable to all application domains. © 1994 by John Wiley &

Sons, Inc.

1 INTRODUCTION

There are programming commumtles in which
C++ has had little or no impact. One such com­
munity consists of researchers and programmers
who write numerical codes, typically in Fortran,
for use in applications such as computational
fluid dynamics (CFD). Many of these applications
are built on a succinct mathematical structure
that suggests that these applications would be
good candidates for being programmed in C++.

To achieve greater performance a few of these

Received April 1993
Revised June 199:3

© 1994 by John Wiley & Sons, Inc.
Scientific Programming, Vol. 2, pp. 123-131 (1993)
CCC 1058-9244/94/040123-09

applications are now being migrated to distributed
memory parallel computers. The complexity and
cost of this task have caused some researchers [1-
7] to investigate whether coding applications in
C++ would make the management of parallelism
(and the applications) easier. All have been favor­
ably impressed with the software engineering as­
pects of C++, and they unanimously believe it did
help to manage the parallelism. Others [4, 8-10]
have investigated the applicability of C++ to sci­
entific computing, also with encouraging results.

Unfortunately, in many cases performance
problems of varying difficulty have been encoun­
tered with the C++ implementations [1-4, 11].
Because the nature of these applications pushes
the envelope of what can be computed, the ob­
served degradations in performance (which are
modest by many standards) are often deemed to
be unacceptable.

123

124 ANGUS

2 SCIENTIFIC APPLICATIONS

The author's experience is derived from a CFD
application that solved for the fluid flow around
an aircraft [1, 11] and an image processing appli­
cation [5]. These problems can be characterized
as having relatively few large objects. Large in this
context means each object contains upward of
tens of thousands of floating point values.

For the purpose of this article we will use the
humble vector class (stripped of all detail that we
do not need and depicted in Fig. 1) as a familiar
example. We ask the reader to remember that the
vector is a greatly simplified representation of the
structures that are used in real CFD codes. This
example is meant to be instructive, and not repre­
sentative: it omits many of the complexities of real
numerical applications.

3 RELATIVE SPACE/TIME EFFICIENCY

The observed performance degradations exhibit
the following characteristics:

1. They are nonlocal, i.e., using the usual per­
formance monitoring tools such as prof does
not give much insight into what is happen­
ing. The benchmarking of individual com­
ponents of the code may not reveal the po­
tential for problems.

2. The timing differences between C++ and C
are strongly machine dependent. The C++

class Vector {
public:

};

Vector();
Vector& operator=(const Vector&);
Vector& operator+=(const Vector&);

friend Vector operator+(const Vector&,const Vector&);

Vector A, B, C, D;
I I ...

A = B + C + D; I I Fragment 1
I I ...

A= B; A+= C; A+= D; II Fragment 2
I I ...

I I Fragment 3
I I Functionally equivalent C version
I I which violates C++ encapsulation!

{
for (int i = 0 ; i < N ; i++) {

A[i] = B[i] + C[i] + D[i];
}

I I N = Vector size

FIGURE 1 C++ vector code fragments.

to C ratio ranged from 1.5 at best, to 3 and
worse[11].

3. The relative memory consumption of C++
code is often greater than a C code with the
equivalent functionality. For the CFD code
described [1], we estimate that the excess
memory consumption was about a factor of
50%.

For many of the numerically intensive prob­
lems, inefficiency in memory usage can be as, or
more, damaging than an execution time penalty.

3.1 The Usual C + + Suspects?

Before pointing fingers, consider the possible role
of the usual suspects.

1. Virtual functions: The CFD code [1: made
very little use of C++ inheritance-it just
did not need it. Optimizing virtual dispatch,
and methods such as customization [12]
will not help.

2. Memory allocation: The objects we found
useful contained very large amounts of
data. The overhead of allocating the mem­
ory was negligible compared to the work
done in a typical method.

These issues must not be ignored; however, they
are not the only sources of trouble and were not
relevant to our applications.

3.2 Source of the Numerical
Efficiency Problem

The inefficient use of memory occurs because the
mathematical abstractions force the use of some
temporary variables that are very big [11 J. The
inefficiencies in time occur because of the memorv
usage, and because the abstraction boundaries
force a particular access pattern on the data. This
pattern happens to be quite different from that of
a C or Fortran code of similar functionality [2,
11].

Effectively, the pattern of traversal precludes
effective use of either the cache (the objects are
too big to fit into it) or the registers. Hence, the
code runs at memory access speed. Depending on
the hardware used; this may or may not be a
problem. It could be a disaster.

The types of optimizations that the C++ com­
piler has precluded (compared with C and For­
tran) are those that act by grouping terms from

different statements or parts of an individual ex­
pression. In Fortran and C codes the program is
(often) written so as to enable the compiler to ex­
ploit the registers and cache effectively. The result
of these optimizations being implemented directly
by the programmer is that the program often be­
comes harder to understand. One of the reasons
for using C++ in the first place is to separate con­
cems of the problem the program solves from de­
tails of implementation (and optimization).

4 SOLUTIONS?

The reason for the poor efficiency of C++ relative
to the competing languages is that the abstrac­
tions, which were so useful in aiding the writing of
an application, hamper the optimizer. The pro­
cess of optimizing code proceeds by the compiler
recognizing enough of the semantics of the code to
be able to apply transformations (the optimiza­
tions) that are known to produce a resultant code
that is mathematically equivalent to the original.

For the case of C++ the optimization process is
thwarted by the presence of user-defined data
types for which the compiler has no semantic un­
derstanding. The compiler's only option is to use
function inlining in an attempt to reduce the code
to a set of (lower level) abstractions that it might
understand.

4.1 Must We go Beyond lnlining
Functions?

It is valid to ask if our efficiency problems were
just a consequence of function inlining (and the
related process of interprocedural analysis) mech­
anisms being rather primitive. Although we would
be happy to see greatly improved capabilities in
this area we are skeptical that it is a long-term
solution.

In Figure 1 we depict a tiny portion of a vector
class. The two operators shown are presumed to
be implemented with semantics analogous to inte­
ger operations. The two code fragments represent
different performance characteristics. The first
uses more memory (because of temporaries) than
the second, but suffers less loop overhead.

For maximum efficiencv we would like to trans­
form the first code fragm~nt into the form of the
second fragment, unfold the operations, and fuse
the loops to deliver the equivalent of the third
fragment. Note that the third fragment violates en-

THE C++ COMPILER 125

capsulation and so cannot be effected by a C++
programmer.

Although this approach may be theoretically
possible, it is beyond the current state of the art
(as witnessed by the absence of any C++ compil­
ers that could effect the transformations above -
today). Hence, other possibilities will be consid­
ered.

4.2 Short-Term Solutions

To retain the expressive syntax, there are two
strategies that can be fruitfully applied in the short
term:

1. Design libraries that employ lazy evaluation
and method combination [13]. Effectively,
the vector operations of Figure 1 are not ac­
tually executed as they appear; instead the
library behaves as though it is a specialized
compiler. The library builds a parse tree
that it will attempt to evaluate. This ap­
proach appears promising for some special­
ized codes. If it works, it can be imple­
mented now.

2. Hard code the knowledge of certain critical
classes into the compiler. The critical ques­
tion is: Which classes do I build in to the
compiler? Even if agreement could be
reached, this solution is only viable for com­
piler vendors, those who have a lot of lever­
age with their compiler vendor, or those who
have both the access and the expertise to
modify a compiler themselves.

If we can achieve the desired efficiencies v1a
clever implementations of libraries then the library
approach is preferable. Deferred evaluation is an
appealing strategy; hence, we will devote some
time to pointing out its strengths and weaknesses
vis a vis a compiler.

1. Building and compiling a parse tree at run­
time will not be cheap in time and possibly
memory. Hence, we would like to amortize
this effort over multiple invocations of the
same code. This requires library to tag
where the tree was called from, i.e., some
external context must be captured at run­
time. The method used to do this is unlikely
to be portable.

2. For short vectors, the library would need to
use a more "traditional approach" to elimi­
nate the cost of the runtime compiling. The

126 A:"o/GUS

compiler does not suffer from this problem,
it will be able to generate optimal code (of
the same structure) for all sizes of vector.
(We could demand that the user use differ­
ent flavors of vector to denote this differ­
ence-we reject that approach).

Note that these problems are all specific to the
vector (and similar) example.

There are disadvantages with putting these op­
timizations in the compiler as well; however, they
will be discussed later once our proposal has been
introduced.

4.3 Pragma

One approach to communicating optimizations to
the compiler is with pragmas. Pragma suffers
from one serious deficiencv: It amounts to a com­
piler and library implementation-dependent ex­
tension to the language. Our thesis is that if it is
compiler or library implementation dependent,
the programmer should not see it. In addition, for
pragmas to be of general use they need to be
standardized, otherwise chaos will eventually rule.

4.4 Class Optimization Specifications

Another approach would be to extend the C++
language to allow legal optimizations to be speci­
fied as a part of the class definition. Aside from
our natural aversion to extending the language, we
believe that this approach is flawed for two rea­
sons:

1. No language general enough to specify all
possible optimizations is known. Such a
language may be impossible to design!

2. The transformations with the biggest payoff
(at least for vectors) violate the abstraction
boundaries imposed by the C++ classes.
These optimizations are dependent on im­
plementation knowledge which we do not
want to embed in the class bodv.

We take the point of view that optimization is a
matter of implementation and not interface.

5 A GENERAL SOLUTION

The methods described in Section 4.2 represent
extremes; leave the compiler alone, or, put every­
thing in the compiler by embedding specific li­
braries inside the compiler. We will propose a so-

lution that subsumes the second approach, is
much more flexible, and does not foreclose upon
the first.

The critical problem is that the number of user­
defined data types is potentially unbounded, so
we need to be able to handle a potentially un­
bounded number of useful transformations.

The recommended solution is as follows:

1. For each class type that demands special
optimizations, encapsulate the allowed
transformations (defined as transformations
on the compiler's parse tree) inside an "op­
timization module."

2. Define an interface so that the compiler can
dynamically link the optimization modules
when needed. During compilation when the
compiler encounters the use (rather than
just the definition) of a class object it
searches a database for any optimization
modules that correspond to that class. If
found, they are dynamically linked into the
compiler.

3. The compiler then proceeds to apply the
loaded transformations against the internal
representation of the user's program.

6 WHAT MUST WE ADD TO THE
COMPILER?

Figure 2 shows the basic phases of the compiler/
linker with the components we are proposing to
add (shown as shaded). The link phase is in­
cluded for completeness. The basic "compo­
nents" of a library (include headers and binary
code) are also shown along with two components
that we will introduce. The phases of the com­
piler/linker that access the library are also de­
noted.

There are a number of basic architectural fea­
tures that deserve mention:

1. The "new compiler phase" is not activated
until after the program has been read in and
completely typechecked.

2. The class-specific optimizations are then
applied before standard C++ optimizations
such as function inlining and return value
optimization are applied. We postpone
function inlining because we want to at­
tempt to apply the higher level (we hope)
class-specific optimizations first. We expect
to iterating with these steps altemating, and
Figure 2 denotes this.

D Existing

[l] Proposed

Class
Header

Binary Code
Libraries

FIGURE 2 Compiler architecture.

3. Our approach is reliant upon local analysis.
This assumption is to allow for tractability.
In addition, we want to retain the separate
compilation model to the same degree that
C++ admits this model.

7 DESIGN AND IMPLEMENTATION
APPROACH

Our approach (the compiler itself being written in
C++) follows the structure of Dewhurst [14]. To
reduce the implementation effort a first imple­
mentation would transform the user's C++ code
to a new C++ program that has had the optimiza­
tion module transformations applied to it. An im­
plementation at this level would be sufficient to
test the concept.

The important features are:

1. The type lattice implemented within the
compiler has an interface that is exported to
the outside world. Part of this interface for

THE C++ COMPILER 127

the (C++ class) ·'ClassType" nodes is
shown in Figure 3; we will ignore the (few)
optimizations that can be applied to all
class types for this discussion.

2. The author of an optimization module in­
herits from this interface as is shown in Fig­
ure 3. The optimizer module defines a ver­
sion of the Optimize function. Through this
function, which is applied to an expression
(which could be a list of statements), the
class-specific transformations are applied
(see Fig. 4). We have assumed here that
whatever language is used to write the opti­
mization module, it can be "compiled" to
C++. Note that the transformations may
involve more than one class type even
though one particular class is used to label
the module.

3. This use of inheritance enables the compiler
to dynamically link [15] the optimization
module and known that it is type-safe with
respect to its internals.

4. The space of all transformations that could
be applied to an expression is determined
by the type of that expression, or the "near­
est" nonvoid type if such a type can be
found.

7.1 Form of the Optimization Modules

Typically C++ has been used to write both the
libraries and the user's application; however, this

class Expr { I I Expression node
I I ...

protected:
canst Type

};
•type_p;

class ClassType : public ... {
public:

virtual Expr •Optimize(Expr •e_p)
{ return e_p; } I I Do nothing

};

class Vector_Type : public ClassType {
I I ...

public:
virtual Expr •Optimize{Expr>);

};

Expr •Yector_Type::Optimize(Expr •e_p)
{
Expr •new_e_p;

I I Implement optimizations that are specific
// to vectors, build a new expression
I I tree rooted with new_e_p

return new_e_p;
}

FIGURE 3 Class type and vector_ type C++ interface.

128 ANGUS

Vector_Type specific
transformations

FIGURE 4 The expression tree.

is not appropriate for the part of a library that is
implemented as an optimization module .. Optimi­
zation modules can be thought of as libraries that
are loaded into the compiler; rather than being
loaded by the linker (as for traditional libraries).
The contents of an optimization module would be
a set of patterns that we hope to match and asso­
ciated transformations that would be applied
whenever a match is found. We expect that some
form of "tree transformation" language would be
used instead of C++, and that this code would be
compiled to C++ to permit dynamic linking to
work.

7.2 Choice of Transformations

In this scheme, envisage the class-specific optimi­
zations being applied to sequences of operations.
The operations are individual invocations of oper­
ators or functions and not statements. The base
class for these nodes is represented as Expr in
Figure 3. In real applications we should expect
operations, as written, to be presented in an order
~hat could confuse an optimizer using this group­
mg strategy. The simplest example would be that
of two unrelated statements being in the reverse
order. To solve this problem we propose that the
compiler do sufficient dependencv analysis to ef­
fectively group operators by data dependency.

We will then apply the transformations follow­
ing the branches of the data dependency graph.

7.2.1 Data Dependency Analysis

The optimization approach proposed requires
that expressions that can be profitably grouped
have to be adjacent so that the optimization func­
tions will recognize the groupings. As a concrete
example, the code of Figure 5 would occur if we
simply inline expanded one level of abstraction of
the numerical interpolation and divergence opera­
tors such as existed in Angus and Thompkins [1].
The important point of this example is that the
resulting ordering of the operations is the least effi­
cient in memory consumption. If we could inter­
change the second and third statements we could
reduce the memory consumption considerably.
We know that we can interchange Expressions .2
and 3, but does the compiler? In general the an­
swer is no. To enable the compiler to effect this
interchange, it has to know that there are no data
dependencies relating the two functions. The
compiler will have to deduce this because there is
no language feature for describing all potential
side effects to the caller of a function. We require
that the compiler does a better job of dependency

avera.ge_flux_x = avera.ge_x(flux);
a.vera.ge_flux_y = avera.ge_y(flux);

II 1
II 2

delta_density = grid->div_x(average_flux_x);/ / 3
delta_density += grid->div_y(average_flux_y);l I 4

FIGURE 5 C++ code fragments.

analysis than just assuming that functions can de­
pend on everything. We need a facility that will
propagate this information (which is a summary of
what might be obtained via interprocedural analy­
sis) to the caller and the compiler. This facility is
called the implementation interface.

7.2.2 The Implementation Interlace

The implementation interface is a summary of the
implementation details of the function. It is a ver­
sion of interprocedural analysis. The summary in­
formation for a function is generated either by the
compiler when the function is compiled, or by the
hand of the author of the function. The summarv
information is passed surreptitiously by the envi­
ronment to the compiler for use when this function
is called.

This interface allows the compiler to import a
description of all side effects the function could
cause. A first implementation of this would in­
clude (at least) a list of all external variables that
the function accesses, and whether those accesses
are reads, writes, or both. For the purpose of this
discussion all we need is more refined information
that enables us to eliminate (most) false depen­
dency constraints.

With this information the compiler is able to
determine whether or not statement 3 (in Fig. 5)
has any dependencies upon statement 2.

There are a number of problems with this ap­
proach*:

1. If the function has not yet been compiled,
then the worst has to be assumed. We do
not believe this to be bad because we view
these functions as being existing library
functions.

2. A program that rearranged code is vulnera­
ble if the assumptions under which the cli­
ent code are violated, for example, a new
version of the library implements a new ver­
sion with a wider set of side effects.

There is no guaranteed approach to preventing
this kind of error. The only defense is checking of
version information of the hidden interface, and
care on the part of the library programmer that he
or she has not expanded the effect of the function.
A tool to do this at this level could easily be built.

This is one area in which the library's only ap-

* 1\Jote that checking the correctness of template usage in­
vokes a similar set of concerns, and perhaps solutions.

THE C++ COMPILER 129

proach has an advantage. Provided that no as­
sumptions about how to write efficient code are
propagated to the user, the library writer is solely
responsible.

7.2.3 Application of the Optimizations

Once the best data dependency graph has been
created, the type-based optimizations are applied
by grouping statements along the edges of the
graph. This process starts from the node of the
graph that represents the function entry point.
The stopping condition for applying some optimi­
zations will be class specific.

7.2.4 Ambiguous Cases

A simple case that the approach up to now would
be confused by would be two or more statements
that were completely independent. A simple ex­
ample is shown in Figure 6. In this case, there are
multiple branches emanating from the root node.
In this case we would propose that the depen­
dency graph be augmented with a graph that
tends to group items of the same type together.
This allows for our optimizations being selected
based on types.

The detection criterion here is that given a
starting node, there are two (or more) branches
from the graph that have the same types used
along both arms until those paths merge (which
they must when the function returns. The com­
piler would group together, as a single branch, the
branches that have the same (or related by inheri­
tance) types.

7.2.5 Gravity

One interesting case would be to define message­
passing function calls as a pair consisting of a "re­
quest" and a "request completed" message. It
might be advantageous to push the request as
early as possible, and the corresponding check on
completion as late as possible. We have not de-

Vector A, B, C, D, E, F;
int i;

A = B + C;
i = 10;
D = E + F;

FIGURE 6 Independent statements.

130 A~GCS

vised a mechanism to implement this, but we ex­
pect it to be possible. In essence, we envisage a
gravity-like mechanism, which causes functions to
want to be executed as early, or as late, as possi­
ble.

7.3 Advantages

This scheme has several notable advantages:

1. The C++ language is not modified in any
way. In particular, on one platform a class
library could be implemented in the usual
manner, while on another platform, the op­
timizer modules would be used exclusively.

2. The compiler is provided easy access to the
high level transformations such as were de­
scribed in Section 4. 1.

3. That the use of these transformations might
depend on the target machine will not be
reflected in the programmer's application
code.

4. The possibility of configuring the optimiza­
tion process is greatly enhanced. A configu­
ration system can now be envisaged, analo­
gous to the X-resource database, that would
be equivalent to setting compiler switches at
the granularity of individual classes, or
groups of classes. This would give fine grain
control over the speed-memory demands of
particular classes depending on the context
in which they were used.

5. Library designers will now have access to
the compiler in ways that they do not have
today. In particular, the designers of li­
braries would know that performance-criti­
cal application domain-specific transfor­
mations could be supported independent of
how cooperative their compiler vendor is.
They will always provide a set of libraries so
as to cover the case of compilers that do not
support optimization modules.

7.4 Potential Disadvantages

At this stage one can only speculate about all of
the things that might undermine the utility of this
approach. Possible problems include:

1. If the compiler has loaded multiple optimi­
zation modules the likelihood of conflicts
between the applicable transformations is

high. Some mechanism will be needed to
deal with this.

2. The applications considered did not make
much use of inheritance and polymor­
phism. The applicability of the optimization
scheme presented to code that uses these
features heavily is unknown.

3. There may be some transformations that
cannot be effected within the confines of the
interface introduced here.

4. This approach allows for executable code to
be loaded into the address space of the
compiler. Assignment of blame for compiler
crashes and/ or the generation of incorrect
code willlikelv be difficult.

5. The time is takes the compiler to search for
good (rather than the absolute best) trans­
formations may be prohibitive.

7.5 Is this a Language Extension?

The mechanism described could be used to ex­
tend the C++ language in ways that are unpre­
dictable. Even worse, it could be used to silently
change the meaning of a program. If used well,
this should not be a problem. In particular, the
intent of this tool is to do nothing more than what
optimizers do already-apply mathematically
correct transformations that do not alter the
meaning of the program. Unfortunately, we do not
believe that we could enforce correct use.

7.6 Who Would use this Capability?

Our approach presumes that applications pro­
grammers will never attempt to use this facility;
rather, it will only be used by library designers. We
are making some severe assumptions about the
capability of the programmers who would actually
use this compiler "back door."

7.7 Environmental Requirements

Our approach does not rely upon environment
support above or beyond that which C++ re­
quires. At the most basic level, it does not need to
be any more sophisticated than the search paths
that are currently used by the C preprocessor.

It has been assumed that the build procedures
for this environment are slightly better than would
typically be implemented with make. This is to
ensure that the hidden interfaces that might be
generated by the compiler would be up to date

with respect to all clients. Sadly, this restnctwn
forbids the use of this scheme with anv form of
recursion. Recursion has not been a factor in sci­
entific contexts that we are familiar with; however,
somewhere it will cause somebody some trouble.

As a final point, nothing in this proposal re­
quires source code to be shipped rather than bi­
nary code representations of libraries.

8 COMPARISON WITH OTHER WORK

None of the individual ideas expressed here are
particularly new; however, we believe that the
composition of them within a C++ compiler is.

We note that many compilers today recognize
certain names (which are otherwise just undistin­
guished identifiers) and then generate special
code for them. Gee uses modules (compiled into
gee) to specify peephole optimizations. Our ap­
proach is largely made possible by the ability of
C++ to link in derived classes (the optimization
modules) in a type safe fashion [15], while the
compiler is executing.

Work on program transformation system [16] is
also relevant to the discussion here-in particular
to the way in which the optimization modules may
be programmed. In addition interesting tech­
niques have been developed for optimizing object­
oriented languages other than C++ [1 T.

9 FUTURE DIRECTIONS

The final goal of this work will be to define an
interface between the compiler proper and the op­
timization modules. Should this prove successful,
the next step would likely be the development of
"little languages" that facilitate the succinct spec­
ification of allowed transformations that would
then be compiled into optimization modules.

10 CONCLUSION

There are applications for which the efficiency of
the executable derived from C++ code can be un­
acceptable.

We have described a method by which groups
of potential optimizations may be designed, im­
plemented, and archived external to the compiler.
When required, the compiler dynamically loads
the needed optimizations through a type-safe in-

THE C++ COMPILER 131

terface so as to make the transformations avail­
able.

The gains will be twofold; it will be possible now
for C++ compilers to invoke transformations
powerful enough to make it competitive with For­
tran and C, and domain-specific optimizations
could now be developed in tandem with the li­
braries and independent of the compiler, and the
C++ language itself.

REFERENCES

[1] I. G. Angus and W. T. Thompkins, Fourth Con­
ference on Hypercubes. Concurrent Computers,
and Applications . .'VIonterey, CA, 1989.

[2] D. W. Forslund, et aL USE:ViX C++ Conference.
San Francisco: lJSEI\IX, 1990.

~3] A. C. Robinson, K. G. Budge. and J. S. Peery.
USENiX C++ Conference. Portland: USEl'IX.
1992.

[4~ T. Wicks, D. Curtis, and K. Pennick, An Assess­
ment of the Suitability of C++ for Finite Element
Class Design. Technical Report. Boeing Com­
puter Services, 1991.

[5] I. G. Angus, Scalable High Performance Comput­
ing Conference. Williamsburg, VA, 1992.

[6] S. Bhatt et aL Scalable High Performance Com­
puting Conference. Williamsburg, VA, 1992.

[7: D. Quinlan, D. Balsara, and M. Lemke, A,\1R++.
A C++ Object Oriented Class Library for Parallel
Adaptive Mesh Refinement Applications. 1992.

[8] T. J. Ross. eta!., Computing in Civil Engineering.
Dallas. 1992.

[9] T. Keffer, ''Object oriented numerics, Part 1:
Vectors, matrices, and all that stuff, C++] .. vol.
1. 1991.

[10] T. Keffer, "Object oriented numerics, Part 2: vir­
tual algorithms," C++]., vol. 2, 1992.

[11; I. G. Angus and Janice L. Stolzy, C++ at Work
Conference. San Jose, 1991.

f12] D. Lea, CSENIX C++ Conference. San Fran­
cisco: CSENIX, 1990.

[13] R. B. Davies, The iVewmat Class Library (avail­
able by ftp). 1992.

[14] S. C. Dewhurst. CSENiX C++ Workshop.
CSEI\IX, 1987.

[151 J. E. Shopiro. S . .\1. Dorward, and R. Sethi,
USES/X C++ Conference. San Francisco:
USEI'•.'IX, 1990.

~16] D. R. Smith, '·KIDS- a semi automatic program
development system," iEEE Transac. Software
Eng. Special issue Formal Methods Software
Eng., 1990.

[17] D. Lngar et a!., "Object. message and perfor­
mance: How they coexist in self,'' IEEE Comput.,
1992.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

