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ABSTRACT 

So far C++ has made few inroads into the realm of scientific computing, which is still 
largely dominated by Fortran. Of the few attempts that have been made to apply C++ 
to numerically intensive codes, the results have often suffered from severe performance 
problems. A careful examination of these problems indicates that they are unlikely to be 
solved by incremental improvements in compiler optimization technology. The flow of 
this article will: motivate the discussion by describing a common efficiency problem that 
arises when numerical codes are programmed inC++; discuss some potential solution 
strategies that we believe are viable in the near term, but not over the long term; 
introduce a mechanism by which a compiler can load domain-specific and class-spe­
cific optimizations on an as needed basis. A simple interface that will enable this feature 
will be presented. Although our immediate motivation is that of numerically intensive 
codes, our approach is applicable to all application domains. © 1994 by John Wiley & 

Sons, Inc. 

1 INTRODUCTION 

There are programming commumtles in which 
C++ has had little or no impact. One such com­
munity consists of researchers and programmers 
who write numerical codes, typically in Fortran, 
for use in applications such as computational 
fluid dynamics (CFD). Many of these applications 
are built on a succinct mathematical structure 
that suggests that these applications would be 
good candidates for being programmed in C++. 

To achieve greater performance a few of these 
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applications are now being migrated to distributed 
memory parallel computers. The complexity and 
cost of this task have caused some researchers [ 1-
7] to investigate whether coding applications in 
C++ would make the management of parallelism 
(and the applications) easier. All have been favor­
ably impressed with the software engineering as­
pects of C++, and they unanimously believe it did 
help to manage the parallelism. Others [4, 8-10] 
have investigated the applicability of C++ to sci­
entific computing, also with encouraging results. 

Unfortunately, in many cases performance 
problems of varying difficulty have been encoun­
tered with the C++ implementations [1-4, 11]. 
Because the nature of these applications pushes 
the envelope of what can be computed, the ob­
served degradations in performance (which are 
modest by many standards) are often deemed to 
be unacceptable. 
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2 SCIENTIFIC APPLICATIONS 

The author's experience is derived from a CFD 
application that solved for the fluid flow around 
an aircraft [1, 11] and an image processing appli­
cation [ 5]. These problems can be characterized 
as having relatively few large objects. Large in this 
context means each object contains upward of 
tens of thousands of floating point values. 

For the purpose of this article we will use the 
humble vector class (stripped of all detail that we 
do not need and depicted in Fig. 1) as a familiar 
example. We ask the reader to remember that the 
vector is a greatly simplified representation of the 
structures that are used in real CFD codes. This 
example is meant to be instructive, and not repre­
sentative: it omits many of the complexities of real 
numerical applications. 

3 RELATIVE SPACE/TIME EFFICIENCY 

The observed performance degradations exhibit 
the following characteristics: 

1. They are nonlocal, i.e., using the usual per­
formance monitoring tools such as prof does 
not give much insight into what is happen­
ing. The benchmarking of individual com­
ponents of the code may not reveal the po­
tential for problems. 

2. The timing differences between C++ and C 
are strongly machine dependent. The C++ 

class Vector { 
public: 

}; 

Vector(); 
Vector& operator=( const Vector&); 
Vector& operator+=( const Vector&); 

friend Vector operator+(const Vector&,const Vector&); 

Vector A, B, C, D; 
I I ... 

A = B + C + D; I I Fragment 1 
I I ... 

A= B; A+= C; A+= D; II Fragment 2 
I I ... 

I I Fragment 3 
I I Functionally equivalent C version 
I I which violates C++ encapsulation! 

{ 
for ( int i = 0 ; i < N ; i++ ) { 

A[i] = B[i] + C[i] + D[i]; 
} 

I I N = Vector size 

FIGURE 1 C++ vector code fragments. 

to C ratio ranged from 1.5 at best, to 3 and 
worse[11]. 

3. The relative memory consumption of C++ 
code is often greater than a C code with the 
equivalent functionality. For the CFD code 
described [1], we estimate that the excess 
memory consumption was about a factor of 
50%. 

For many of the numerically intensive prob­
lems, inefficiency in memory usage can be as, or 
more, damaging than an execution time penalty. 

3.1 The Usual C + + Suspects? 

Before pointing fingers, consider the possible role 
of the usual suspects. 

1. Virtual functions: The CFD code [ 1: made 
very little use of C++ inheritance-it just 
did not need it. Optimizing virtual dispatch, 
and methods such as customization [12] 
will not help. 

2. Memory allocation: The objects we found 
useful contained very large amounts of 
data. The overhead of allocating the mem­
ory was negligible compared to the work 
done in a typical method. 

These issues must not be ignored; however, they 
are not the only sources of trouble and were not 
relevant to our applications. 

3.2 Source of the Numerical 
Efficiency Problem 

The inefficient use of memory occurs because the 
mathematical abstractions force the use of some 
temporary variables that are very big [ 11 J. The 
inefficiencies in time occur because of the memorv 
usage, and because the abstraction boundaries 
force a particular access pattern on the data. This 
pattern happens to be quite different from that of 
a C or Fortran code of similar functionality [2, 
11]. 

Effectively, the pattern of traversal precludes 
effective use of either the cache (the objects are 
too big to fit into it) or the registers. Hence, the 
code runs at memory access speed. Depending on 
the hardware used; this may or may not be a 
problem. It could be a disaster. 

The types of optimizations that the C++ com­
piler has precluded (compared with C and For­
tran) are those that act by grouping terms from 



different statements or parts of an individual ex­
pression. In Fortran and C codes the program is 
(often) written so as to enable the compiler to ex­
ploit the registers and cache effectively. The result 
of these optimizations being implemented directly 
by the programmer is that the program often be­
comes harder to understand. One of the reasons 
for using C++ in the first place is to separate con­
cems of the problem the program solves from de­
tails of implementation (and optimization). 

4 SOLUTIONS? 

The reason for the poor efficiency of C++ relative 
to the competing languages is that the abstrac­
tions, which were so useful in aiding the writing of 
an application, hamper the optimizer. The pro­
cess of optimizing code proceeds by the compiler 
recognizing enough of the semantics of the code to 
be able to apply transformations (the optimiza­
tions) that are known to produce a resultant code 
that is mathematically equivalent to the original. 

For the case of C++ the optimization process is 
thwarted by the presence of user-defined data 
types for which the compiler has no semantic un­
derstanding. The compiler's only option is to use 
function inlining in an attempt to reduce the code 
to a set of (lower level) abstractions that it might 
understand. 

4.1 Must We go Beyond lnlining 
Functions? 

It is valid to ask if our efficiency problems were 
just a consequence of function inlining (and the 
related process of interprocedural analysis) mech­
anisms being rather primitive. Although we would 
be happy to see greatly improved capabilities in 
this area we are skeptical that it is a long-term 
solution. 

In Figure 1 we depict a tiny portion of a vector 
class. The two operators shown are presumed to 
be implemented with semantics analogous to inte­
ger operations. The two code fragments represent 
different performance characteristics. The first 
uses more memory (because of temporaries) than 
the second, but suffers less loop overhead. 

For maximum efficiencv we would like to trans­
form the first code fragm~nt into the form of the 
second fragment, unfold the operations, and fuse 
the loops to deliver the equivalent of the third 
fragment. Note that the third fragment violates en-
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capsulation and so cannot be effected by a C++ 
programmer. 

Although this approach may be theoretically 
possible, it is beyond the current state of the art 
(as witnessed by the absence of any C++ compil­
ers that could effect the transformations above -
today). Hence, other possibilities will be consid­
ered. 

4.2 Short-Term Solutions 

To retain the expressive syntax, there are two 
strategies that can be fruitfully applied in the short 
term: 

1. Design libraries that employ lazy evaluation 
and method combination [13]. Effectively, 
the vector operations of Figure 1 are not ac­
tually executed as they appear; instead the 
library behaves as though it is a specialized 
compiler. The library builds a parse tree 
that it will attempt to evaluate. This ap­
proach appears promising for some special­
ized codes. If it works, it can be imple­
mented now. 

2. Hard code the knowledge of certain critical 
classes into the compiler. The critical ques­
tion is: Which classes do I build in to the 
compiler? Even if agreement could be 
reached, this solution is only viable for com­
piler vendors, those who have a lot of lever­
age with their compiler vendor, or those who 
have both the access and the expertise to 
modify a compiler themselves. 

If we can achieve the desired efficiencies v1a 
clever implementations of libraries then the library 
approach is preferable. Deferred evaluation is an 
appealing strategy; hence, we will devote some 
time to pointing out its strengths and weaknesses 
vis a vis a compiler. 

1. Building and compiling a parse tree at run­
time will not be cheap in time and possibly 
memory. Hence, we would like to amortize 
this effort over multiple invocations of the 
same code. This requires library to tag 
where the tree was called from, i.e., some 
external context must be captured at run­
time. The method used to do this is unlikely 
to be portable. 

2. For short vectors, the library would need to 
use a more "traditional approach" to elimi­
nate the cost of the runtime compiling. The 
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compiler does not suffer from this problem, 
it will be able to generate optimal code (of 
the same structure) for all sizes of vector. 
(We could demand that the user use differ­
ent flavors of vector to denote this differ­
ence-we reject that approach). 

Note that these problems are all specific to the 
vector (and similar) example. 

There are disadvantages with putting these op­
timizations in the compiler as well; however, they 
will be discussed later once our proposal has been 
introduced. 

4.3 Pragma 

One approach to communicating optimizations to 
the compiler is with pragmas. Pragma suffers 
from one serious deficiencv: It amounts to a com­
piler and library implementation-dependent ex­
tension to the language. Our thesis is that if it is 
compiler or library implementation dependent, 
the programmer should not see it. In addition, for 
pragmas to be of general use they need to be 
standardized, otherwise chaos will eventually rule. 

4.4 Class Optimization Specifications 

Another approach would be to extend the C++ 
language to allow legal optimizations to be speci­
fied as a part of the class definition. Aside from 
our natural aversion to extending the language, we 
believe that this approach is flawed for two rea­
sons: 

1. No language general enough to specify all 
possible optimizations is known. Such a 
language may be impossible to design! 

2. The transformations with the biggest payoff 
(at least for vectors) violate the abstraction 
boundaries imposed by the C++ classes. 
These optimizations are dependent on im­
plementation knowledge which we do not 
want to embed in the class bodv. 

We take the point of view that optimization is a 
matter of implementation and not interface. 

5 A GENERAL SOLUTION 

The methods described in Section 4.2 represent 
extremes; leave the compiler alone, or, put every­
thing in the compiler by embedding specific li­
braries inside the compiler. We will propose a so-

lution that subsumes the second approach, is 
much more flexible, and does not foreclose upon 
the first. 

The critical problem is that the number of user­
defined data types is potentially unbounded, so 
we need to be able to handle a potentially un­
bounded number of useful transformations. 

The recommended solution is as follows: 

1. For each class type that demands special 
optimizations, encapsulate the allowed 
transformations (defined as transformations 
on the compiler's parse tree) inside an "op­
timization module." 

2. Define an interface so that the compiler can 
dynamically link the optimization modules 
when needed. During compilation when the 
compiler encounters the use (rather than 
just the definition) of a class object it 
searches a database for any optimization 
modules that correspond to that class. If 
found, they are dynamically linked into the 
compiler. 

3. The compiler then proceeds to apply the 
loaded transformations against the internal 
representation of the user's program. 

6 WHAT MUST WE ADD TO THE 
COMPILER? 

Figure 2 shows the basic phases of the compiler/ 
linker with the components we are proposing to 
add (shown as shaded). The link phase is in­
cluded for completeness. The basic "compo­
nents" of a library (include headers and binary 
code) are also shown along with two components 
that we will introduce. The phases of the com­
piler/linker that access the library are also de­
noted. 

There are a number of basic architectural fea­
tures that deserve mention: 

1. The "new compiler phase" is not activated 
until after the program has been read in and 
completely typechecked. 

2. The class-specific optimizations are then 
applied before standard C++ optimizations 
such as function inlining and return value 
optimization are applied. We postpone 
function inlining because we want to at­
tempt to apply the higher level (we hope) 
class-specific optimizations first. We expect 
to iterating with these steps altemating, and 
Figure 2 denotes this. 
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FIGURE 2 Compiler architecture. 

3. Our approach is reliant upon local analysis. 
This assumption is to allow for tractability. 
In addition, we want to retain the separate 
compilation model to the same degree that 
C++ admits this model. 

7 DESIGN AND IMPLEMENTATION 
APPROACH 

Our approach (the compiler itself being written in 
C++) follows the structure of Dewhurst [ 14]. To 
reduce the implementation effort a first imple­
mentation would transform the user's C++ code 
to a new C++ program that has had the optimiza­
tion module transformations applied to it. An im­
plementation at this level would be sufficient to 
test the concept. 

The important features are: 

1. The type lattice implemented within the 
compiler has an interface that is exported to 
the outside world. Part of this interface for 
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the (C++ class) ·'ClassType" nodes is 
shown in Figure 3; we will ignore the (few) 
optimizations that can be applied to all 
class types for this discussion. 

2. The author of an optimization module in­
herits from this interface as is shown in Fig­
ure 3. The optimizer module defines a ver­
sion of the Optimize function. Through this 
function, which is applied to an expression 
(which could be a list of statements), the 
class-specific transformations are applied 
(see Fig. 4). We have assumed here that 
whatever language is used to write the opti­
mization module, it can be "compiled" to 
C++. Note that the transformations may 
involve more than one class type even 
though one particular class is used to label 
the module. 

3. This use of inheritance enables the compiler 
to dynamically link [ 15] the optimization 
module and known that it is type-safe with 
respect to its internals. 

4. The space of all transformations that could 
be applied to an expression is determined 
by the type of that expression, or the "near­
est" nonvoid type if such a type can be 
found. 

7.1 Form of the Optimization Modules 

Typically C++ has been used to write both the 
libraries and the user's application; however, this 

class Expr { I I Expression node 
I I ... 

protected: 
canst Type 

}; 
•type_p; 

class ClassType : public ... { 
public: 

virtual Expr •Optimize(Expr •e_p) 
{ return e_p; } I I Do nothing 

}; 

class Vector_Type : public ClassType { 
I I ... 

public: 
virtual Expr •Optimize{Expr> ); 

}; 

Expr •Yector_Type::Optimize(Expr •e_p) 
{ 
Expr •new_e_p; 

I I Implement optimizations that are specific 
// to vectors, build a new expression 
I I tree rooted with new_e_p 

return new_e_p; 
} 

FIGURE 3 Class type and vector_ type C++ interface. 
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Vector_Type specific 
transformations 

FIGURE 4 The expression tree. 

is not appropriate for the part of a library that is 
implemented as an optimization module .. Optimi­
zation modules can be thought of as libraries that 
are loaded into the compiler; rather than being 
loaded by the linker (as for traditional libraries). 
The contents of an optimization module would be 
a set of patterns that we hope to match and asso­
ciated transformations that would be applied 
whenever a match is found. We expect that some 
form of "tree transformation" language would be 
used instead of C++, and that this code would be 
compiled to C++ to permit dynamic linking to 
work. 

7.2 Choice of Transformations 

In this scheme, envisage the class-specific optimi­
zations being applied to sequences of operations. 
The operations are individual invocations of oper­
ators or functions and not statements. The base 
class for these nodes is represented as Expr in 
Figure 3. In real applications we should expect 
operations, as written, to be presented in an order 
~hat could confuse an optimizer using this group­
mg strategy. The simplest example would be that 
of two unrelated statements being in the reverse 
order. To solve this problem we propose that the 
compiler do sufficient dependencv analysis to ef­
fectively group operators by data dependency. 

We will then apply the transformations follow­
ing the branches of the data dependency graph. 

7.2.1 Data Dependency Analysis 

The optimization approach proposed requires 
that expressions that can be profitably grouped 
have to be adjacent so that the optimization func­
tions will recognize the groupings. As a concrete 
example, the code of Figure 5 would occur if we 
simply inline expanded one level of abstraction of 
the numerical interpolation and divergence opera­
tors such as existed in Angus and Thompkins [ 1]. 
The important point of this example is that the 
resulting ordering of the operations is the least effi­
cient in memory consumption. If we could inter­
change the second and third statements we could 
reduce the memory consumption considerably. 
We know that we can interchange Expressions .2 
and 3, but does the compiler? In general the an­
swer is no. To enable the compiler to effect this 
interchange, it has to know that there are no data 
dependencies relating the two functions. The 
compiler will have to deduce this because there is 
no language feature for describing all potential 
side effects to the caller of a function. We require 
that the compiler does a better job of dependency 

avera.ge_flux_x = avera.ge_x(flux); 
a.vera.ge_flux_y = avera.ge_y(flux); 

II 1 
II 2 

delta_density = grid->div_x(average_flux_x);/ / 3 
delta_density += grid->div_y(average_flux_y);l I 4 

FIGURE 5 C++ code fragments. 



analysis than just assuming that functions can de­
pend on everything. We need a facility that will 
propagate this information (which is a summary of 
what might be obtained via interprocedural analy­
sis) to the caller and the compiler. This facility is 
called the implementation interface. 

7.2.2 The Implementation Interlace 

The implementation interface is a summary of the 
implementation details of the function. It is a ver­
sion of interprocedural analysis. The summary in­
formation for a function is generated either by the 
compiler when the function is compiled, or by the 
hand of the author of the function. The summarv 
information is passed surreptitiously by the envi­
ronment to the compiler for use when this function 
is called. 

This interface allows the compiler to import a 
description of all side effects the function could 
cause. A first implementation of this would in­
clude (at least) a list of all external variables that 
the function accesses, and whether those accesses 
are reads, writes, or both. For the purpose of this 
discussion all we need is more refined information 
that enables us to eliminate (most) false depen­
dency constraints. 

With this information the compiler is able to 
determine whether or not statement 3 (in Fig. 5) 
has any dependencies upon statement 2. 

There are a number of problems with this ap­
proach*: 

1. If the function has not yet been compiled, 
then the worst has to be assumed. We do 
not believe this to be bad because we view 
these functions as being existing library 
functions. 

2. A program that rearranged code is vulnera­
ble if the assumptions under which the cli­
ent code are violated, for example, a new 
version of the library implements a new ver­
sion with a wider set of side effects. 

There is no guaranteed approach to preventing 
this kind of error. The only defense is checking of 
version information of the hidden interface, and 
care on the part of the library programmer that he 
or she has not expanded the effect of the function. 
A tool to do this at this level could easily be built. 

This is one area in which the library's only ap-

* 1\Jote that checking the correctness of template usage in­
vokes a similar set of concerns, and perhaps solutions. 
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proach has an advantage. Provided that no as­
sumptions about how to write efficient code are 
propagated to the user, the library writer is solely 
responsible. 

7.2.3 Application of the Optimizations 

Once the best data dependency graph has been 
created, the type-based optimizations are applied 
by grouping statements along the edges of the 
graph. This process starts from the node of the 
graph that represents the function entry point. 
The stopping condition for applying some optimi­
zations will be class specific. 

7.2.4 Ambiguous Cases 

A simple case that the approach up to now would 
be confused by would be two or more statements 
that were completely independent. A simple ex­
ample is shown in Figure 6. In this case, there are 
multiple branches emanating from the root node. 
In this case we would propose that the depen­
dency graph be augmented with a graph that 
tends to group items of the same type together. 
This allows for our optimizations being selected 
based on types. 

The detection criterion here is that given a 
starting node, there are two (or more) branches 
from the graph that have the same types used 
along both arms until those paths merge (which 
they must when the function returns. The com­
piler would group together, as a single branch, the 
branches that have the same (or related by inheri­
tance) types. 

7.2.5 Gravity 

One interesting case would be to define message­
passing function calls as a pair consisting of a "re­
quest" and a "request completed" message. It 
might be advantageous to push the request as 
early as possible, and the corresponding check on 
completion as late as possible. We have not de-

Vector A, B, C, D, E, F; 
int i; 

A = B + C; 
i = 10; 
D = E + F; 

FIGURE 6 Independent statements. 
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vised a mechanism to implement this, but we ex­
pect it to be possible. In essence, we envisage a 
gravity-like mechanism, which causes functions to 
want to be executed as early, or as late, as possi­
ble. 

7.3 Advantages 

This scheme has several notable advantages: 

1. The C++ language is not modified in any 
way. In particular, on one platform a class 
library could be implemented in the usual 
manner, while on another platform, the op­
timizer modules would be used exclusively. 

2. The compiler is provided easy access to the 
high level transformations such as were de­
scribed in Section 4. 1. 

3. That the use of these transformations might 
depend on the target machine will not be 
reflected in the programmer's application 
code. 

4. The possibility of configuring the optimiza­
tion process is greatly enhanced. A configu­
ration system can now be envisaged, analo­
gous to the X-resource database, that would 
be equivalent to setting compiler switches at 
the granularity of individual classes, or 
groups of classes. This would give fine grain 
control over the speed-memory demands of 
particular classes depending on the context 
in which they were used. 

5. Library designers will now have access to 
the compiler in ways that they do not have 
today. In particular, the designers of li­
braries would know that performance-criti­
cal application domain-specific transfor­
mations could be supported independent of 
how cooperative their compiler vendor is. 
They will always provide a set of libraries so 
as to cover the case of compilers that do not 
support optimization modules. 

7.4 Potential Disadvantages 

At this stage one can only speculate about all of 
the things that might undermine the utility of this 
approach. Possible problems include: 

1. If the compiler has loaded multiple optimi­
zation modules the likelihood of conflicts 
between the applicable transformations is 

high. Some mechanism will be needed to 
deal with this. 

2. The applications considered did not make 
much use of inheritance and polymor­
phism. The applicability of the optimization 
scheme presented to code that uses these 
features heavily is unknown. 

3. There may be some transformations that 
cannot be effected within the confines of the 
interface introduced here. 

4. This approach allows for executable code to 
be loaded into the address space of the 
compiler. Assignment of blame for compiler 
crashes and/ or the generation of incorrect 
code willlikelv be difficult. 

5. The time is takes the compiler to search for 
good (rather than the absolute best) trans­
formations may be prohibitive. 

7.5 Is this a Language Extension? 

The mechanism described could be used to ex­
tend the C++ language in ways that are unpre­
dictable. Even worse, it could be used to silently 
change the meaning of a program. If used well, 
this should not be a problem. In particular, the 
intent of this tool is to do nothing more than what 
optimizers do already-apply mathematically 
correct transformations that do not alter the 
meaning of the program. Unfortunately, we do not 
believe that we could enforce correct use. 

7.6 Who Would use this Capability? 

Our approach presumes that applications pro­
grammers will never attempt to use this facility; 
rather, it will only be used by library designers. We 
are making some severe assumptions about the 
capability of the programmers who would actually 
use this compiler "back door." 

7.7 Environmental Requirements 

Our approach does not rely upon environment 
support above or beyond that which C++ re­
quires. At the most basic level, it does not need to 
be any more sophisticated than the search paths 
that are currently used by the C preprocessor. 

It has been assumed that the build procedures 
for this environment are slightly better than would 
typically be implemented with make. This is to 
ensure that the hidden interfaces that might be 
generated by the compiler would be up to date 



with respect to all clients. Sadly, this restnctwn 
forbids the use of this scheme with anv form of 
recursion. Recursion has not been a factor in sci­
entific contexts that we are familiar with; however, 
somewhere it will cause somebody some trouble. 

As a final point, nothing in this proposal re­
quires source code to be shipped rather than bi­
nary code representations of libraries. 

8 COMPARISON WITH OTHER WORK 

None of the individual ideas expressed here are 
particularly new; however, we believe that the 
composition of them within a C++ compiler is. 

We note that many compilers today recognize 
certain names (which are otherwise just undistin­
guished identifiers) and then generate special 
code for them. Gee uses modules (compiled into 
gee) to specify peephole optimizations. Our ap­
proach is largely made possible by the ability of 
C++ to link in derived classes (the optimization 
modules) in a type safe fashion [ 15], while the 
compiler is executing. 

Work on program transformation system [16] is 
also relevant to the discussion here-in particular 
to the way in which the optimization modules may 
be programmed. In addition interesting tech­
niques have been developed for optimizing object­
oriented languages other than C++ [ 1 T. 

9 FUTURE DIRECTIONS 

The final goal of this work will be to define an 
interface between the compiler proper and the op­
timization modules. Should this prove successful, 
the next step would likely be the development of 
"little languages" that facilitate the succinct spec­
ification of allowed transformations that would 
then be compiled into optimization modules. 

10 CONCLUSION 

There are applications for which the efficiency of 
the executable derived from C++ code can be un­
acceptable. 

We have described a method by which groups 
of potential optimizations may be designed, im­
plemented, and archived external to the compiler. 
When required, the compiler dynamically loads 
the needed optimizations through a type-safe in-
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terface so as to make the transformations avail­
able. 

The gains will be twofold; it will be possible now 
for C++ compilers to invoke transformations 
powerful enough to make it competitive with For­
tran and C, and domain-specific optimizations 
could now be developed in tandem with the li­
braries and independent of the compiler, and the 
C++ language itself. 
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