
A Class-Specific Optimizing Compiler

MICHAEL D. SHARP AND STEVE W. OTTO

Oregon Graduate Institute of Science and Technology, Beaverton, OR 97006-1999

ABSTRACT

Class-specific optimizations are compiler optimizations specified by the class imple­
mentor to the compiler. They allow the compiler to take advantage of the semantics of
the particular class so as to produce better code. Optimizations of interest include the
strength reduction of class: :array address calculations, elimination of large temporar­
ies, and the placement of asynchronous send/recv calls so as to achieve computation/
communication overlap. We will outline our progress towards the implementation of a
C++ compiler capable of incorporating class-specific optimizations. © 1994 by John

Wiley & Sons, Inc.

1 INTRODUCTION

During the implementation of complex systems in
C++, particularly numerical ones, the implemen­
tor typically encounters performance problems of
varying difficulty. These difficulties usually relate
to the lack of semantic understanding the C++
compiler has of the user-defined classes. This
problem was recently studied [1] where the poten­
tial solution of class-based optimizations was put
forth.

A class-based optimization makes use of se­
mantic information normally not known to the
compiler. These optimization rules are specified
by the user as part of the class description and
they are dynamically linked to the compiler's
standard optimizer. Although the notion of a rule­
directed optimizer is not new [2] it is not wide­
spread. The authors believe this is the first time
the optimization rules have been user specified for
the C++ language.

Received April 1993
Revised June 1993

© 1994 by John Wiley & Sons, Inc.
Scientific Programming, Vol. 2, pp. 235-238 (1993)
CCC 1058-9244/94/040235-04

After introducing two example optimizations,
this article will focus on some of the issues relating
to the construction of a system implementing
class-based optimizations. The issues discussed
relate mainly to optimization specification, detec­
tion of applicability, and application.

2 SAMPLE OPTIMIZATIONS

Throughout this article two optimizations will be
used as examples. The first is the temporary vari­
able elimination optimization, and the second is
strength reduction combined with induction vari­
able analysis in a general array iterator. The later
construct is an extension the authors have made
to the C + + language.

2.1 Temporary Variable Elimination

In numerical computations it is often advanta­
geous to optimize a program for the amount of
memory used. One of the easiest ways to optimize
a program for minimal memory usage is to elimi­
nate large temporary variables. We will use the
example of matrix calculations to demonstrate the
point. The two code fragments appearing in Fig-

235

236 SHARP AND OTTO

class Matrix {
public:

};

Matrix();
Matrix& operator=(const Matrix&);
Matrix& operator+=(const Matrix&);

friend Matrix& operator+(const Matrix&,const Matrix&);

main(){
Matrix A, B, C, D;

II· ..
A = B + C + D; I I Fragment 1

II· ..
A= B; A+ = C; A+= D; I I Fragment 2

I I ...

FIGURE 1 :vlatrix code fragments.

ure 1 show the value of this optimization. The first
fragment requires a temporary matrix whereas the
second avoids this by performing the calculation
in place. Ideally the transform from the first to
second fragment would be handled bv a matrix
class-specific optimization. ·

The above optimization applies only if the '' + ''
operator is at the root of the expressi~n tree. The
same type of optimization will also apply for other
overloaded operators such at *, I, and.-. This is
not true in general, but if a user overloads EB then
the operation is usually one that has similar char­
acteristics to the integ~r EB operator.

We now consider what happens in the optimi­
zation of a general expression containing several
operators. The optimization rule is continually
applied to the expression tree starting at the root.
If the operator at the root of this tree is TVE (the
ability to express the expression without tempo­
~ary usage at this level) the single statement is split
mto two statements (the = and the + =) as was
done in fragment 2 of Figure 1. The optimization
is then applied to each statement in turn. The
statements continue to split into more statements
as long as the root operator has the TVE property.
If the root operator for a statement is not TVE
then a temporary (of potentially large size) must
be created.

2.2 Optimizing Abstract Array lterators

Consider a partitioned array container class as de­
scribed by Otto [3]. The partition types that are
supported are block and block cyclic.

In Fortran, access at array el~ments inside of
do loops is very efficient. Thi~ is possible because
Fortran does not have the pointer aliasing prob­
lems of C and C++, and the semantics of the do

$X.iterate i over [0: 100 : 1]$ {
X.elem(i) =a* X.elem(i) + y.elem(i);
}

FIGURE 2 One-dimensional array iterator.

loop are simpler than those of for. As a result
Fortran compilers are able to perform induction
variable analysis and strength reduction so that
array address calculations are done efficiently. Al­
though there are C++ compilers, g+ + for e~am­
ple, capable of such optimizations, this is not the
norm. One of our goals is to provide such a
strength reduction optimization on a class by class
basis. Using this approach it is possible to. avoid
illegal applications and to guarantee the optimiza­
tion will be applied without relying on the underly-
ing compiler to implement it. ·

Consider the simple example of an iterator for a
one-dimensional array in Figure 2. If X is a block
partitioned array this iterator might be imple­
mented along the lines of Figure 3, and if X is
block-cyclic partitioned, the iterator might be im­
plemented as in Figure 4.

Clearly the situation becomes complex for mul­
tidimensional, block-cyclic partitioned arravs.
With proper optimizations for array iterators the
c_oding complexity of multidimensi~nal com~uta­
tlons can be reduced. General iterators also ex­
pose opportunities for additional optimization due
to the less restrictive nature of the control struc­
ture. That is, because a precise ordering of the
iteration space is not specified by the programmer
the optimizer has more flexibility in loop restruc­
turing.

3 OPTIMIZATION SPECIFICATION

Two of the most difficult technical problems in the
implementation of class-based optimizations are
defining a language in which to describe general
optimizations, and the implementation of the pat­
tern matching routine that detects when to applv
optimizations. What is presented in this and in th~
next section are not complete answers to these dif­
ficult problems, rather the current direction of re­
search of the authors.

FIGURE 3
iterator.

for (i = X.start(O); i < X.end(O); i + +) {
•(X.base + i) = ...
}

One-dimensional block partitioned array

for (I= 0; I< X.numBiocks(O); ++I) {
for (i = X.start(O, I); i < X.end(O, I);++ i) {

*(X.base[l] + i) =
}

FIGURE 4 One-dimensional block-cyclic partitioned
array itcrator.

In attempting to define a language to describe
general optimizations there are a number of issues
to be considered. It must be possible to not only
describe the syntactic pattern to match, but to
also specify the semantics, and dependencies of
this code. Any optimization triggering heuristics
must also be specifiable in this language.

The syntactic patterns to be matched may not
necessarily be contiguous. It is quite reasonable to
expect user-defined optimizations to require the
ability to skip past statements searching for some
matching condition, or to require a certain set of
conditions for an arbitrarily long list of com­
mands. For example, the iteration optimizations
discussed earlier require the examination of the
entire loop body.

A language for the specification of optimiza­
tions called GOSPEL was presented by Whitfield
and Sofa [4]. This language expresses optimiza-

AssignmentPtr=Find(Assignment);
while (AssignmentPtr) {

I I check the type of this assignment
if(Type(AssignmentPtr)==MatrixClass) {
I I check for the pattern B+C on the right
I I hand side of the assignment where B and C
I I are any su bexpression.
Expr Ptr=RightHandSide(AssignmentPtr);
if(Operator(Expr Ptr)==0 P _Plus) {
I I break A=B+C into A=B;A+=C
I I since a match was found this statement should be
I I re-processed in hopes of finding another.
I I AssignmentPtr should not be changed before the
I I next loop iteration.
Tree construction code omitted for brevity. The
newly constructed tree is pointed to by APiusCTree
RightHandSide(AssignmentPtr)=LeftOperand(Expr Ptr);
InsertStatementAfter(AssignmentPtr,APlusCTree)
}

else {
I I didn't find a pattern match.
I I move to the next assignment statement
Assign men tPtr= FindN ext(Assignment, Assignment Ptr);
}

}
else {
I I didn't find a pattern match because
I I the class type was wrong
Assign men tPtr= Find Next (Assignment ,Assignment Ptr);
}

}

FIGURE 5 Current specification form for temporary
elimination.

A CLASS-SPECIFIC OPTIYIIZII\G COMPILER 237

tions in terms of both the general program struc­
ture to be matched as well as the data dependen­
cies necessary for the optimization to result in
semantically correct code. Currently we are imple­
menting optimizations at a much l~wer mechani­
cal level (Fig. 5). Future research includes the defi­
nition of a language similar to GOSPEL, but more
closely tied to C++.

An ideal form of specification would be C++
extended with inspiration from programming
logics. In such a language the general syntactic
form of the optimization could be specified by
fragments of C++, whereas the data dependence
and any heuristics could appear in embedded as­
sertions. It would surely be the most useful repre­
sentation because optimizations would then be
specified more by partial code examples and a few
language extensions then by another language al­
together. Figure 6 shows a possible form of a loop
interchange optimization.

The current design of our optimizer is quite
similar to what one would use to implement an
optimization in a traditional compiler. It is very
dependent on the internal representation of the
code and the writer of such an optimization must

$pattern

for ($1,$2,$3) {

${

for ($4,$5,$6) {
$A;
}

/* check for dependence between invariants *I
/*($!->Statement is the statement containing *I
/*the fragment represented by $1) *I
if Dependence($1->Statement,$4->Statement,any) fail;

/*check for (<,>) dependence between *I
/* two statements in the loop body *I
forAIIStmt($A,$7) { I* for all individual statements $7 in $A *I

$}

forAIIStmt($A,$8) {
I* check dependence for legality of optimization *I
if (Dependence($7,$8,"(<,>)")) fail;
}

$optimization
for ($4,$5,$6) {

where:

for ($1,$2,$3) {
$A;
}

$A is a meta variable representing zero or more statements
$J-$n are meta variables representing components of a statement

FIGURE 6 Loop interchange specification.

238 SHARP AND OTTO

have knowledge of this representation. Although
neither of the authors is satisfied with this as a
final goal, it is felt to be a good intermediate step
to prove the concept of class-based optimizations.

4 OPTIMIZER IMPLEMENTATION

The optimizer's implementation is greatly compli­
cated by the fact that before an optimization can
be applied, the associated pattern of unoptimized
code must be located in the internal representa­
tion of the program. In the past various code gen­
erated and peephole optimizers [5-7] have done
this, but either always on small contiguous pat­
terns, or, if an attributed grammar is used, with
restrictions on the use of attributes. In the case of
this optimizer it must be possible to match non­
contiguous patterns, as they were discussed in the
previous section, and to add additional attributes
(derived from operations on the compiler supplied
ones) based on the needs of the optimization.

Another complicating factor for the implemen­
tation of the optimizer is the determination of the
optimization ordering. Usually this is determined
by the compiler architect, however because the
actual optimizations are now being supplied by
the class designers, it is quite conceivable that the
ordering of optimizations will play a role in the
efficiency of the optimized code. Ordering prob­
lems will hopefully be minimal because optimiza­
tions are triggered by class occurrences, but an
ordering mechanism should still be explored. Cer­
tainly such a mechanism will depend heavily on
the user's application and should be specified by
the user if the default ordering is not acceptable.

5 CURRENT STATUS

At the time of writing, the authors have a working
C++ to C++ optimizer that was custom built for
this project. This is felt to be of great worth due to
the avoided additional complexity of layering such
an optimizer on top of a public domain compiler
that was not designed with such capabilities in
mind.

The optimizer was implemented using a tool,
developed by one of the authors, to describe com­
plex attribute relationships and structures. The
tool allowed a relatively quick implementation of a
very memory efficient internal representation of
C++. Because all of the attributes of this repre­
sentation are managed and mapped by this tool,
there is great flexibility in our optimizer when it
comes to adding to the internal program represen­
tation.

Work is currently under way to define the opti­
mization specification language, as well as imple­
ment the pattern matcher. As was stated earlier,
the current approach is very mechanical and
strongly dependent on the internal representation
of the program being optimized. It is the authors'
goal to evolve this into a much higher form in the
hopes of hiding many of the details of the compiler
implementation.

REFERENCES

[1] I. G. Angus, Applications Demand Class-Specific
Optimizations: The C++ Compiler Can Do More,
1993 Object-Oriented Numerics Conference. Cor­
vallis, OR: Rogue Wave Software, 1993, pp. 25-
27.

[2] J. W. Davidson and D. B. Whalley, "Quick compil­
ers using peephole optimization, Software Practice
Experience, vol. 19, pp. 79-97, 1989.

[3] S. W. Otto, 1993 Object-Oriented Numerics Con­
ference. Corvallis, OR: Rogue Wave Software,
1993.

[4] D. Whitfield and M. L. Soffa, Proceedings of the
1991 SIGPLAN Conference on Programming Lan­
guage Design and Implementation. 1\'ew York:
ACM Press, pp. 120-129.

[5] A. V. Aho, M. Ganapathi, and S. W. K. Tjiang,
"Code generation using tree matching and dy­
namic programming, A0\1 Transact Programming
Languages 5_ystems, vol: 11, pp. 491-516. 1989.

[6] M. Ganapathi and C. N. Fischer, "Affix grammar
driven code generation, ACA1 Transact. Program­
ming Languages Systems, vol. 7, pp. 560-599.
1985.

[7] R. S. Glanville and S. L. Graham, Proceeding~ of
the Fifth Annual ACM Symposium on Principles of
Programming Languages. ='Jew York: ACM Press,
pp. 231-240.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

