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ABSTRACT 

Class-specific optimizations are compiler optimizations specified by the class imple­
mentor to the compiler. They allow the compiler to take advantage of the semantics of 
the particular class so as to produce better code. Optimizations of interest include the 
strength reduction of class: :array address calculations, elimination of large temporar­
ies, and the placement of asynchronous send/recv calls so as to achieve computation/ 
communication overlap. We will outline our progress towards the implementation of a 
C++ compiler capable of incorporating class-specific optimizations. © 1994 by John 

Wiley & Sons, Inc. 

1 INTRODUCTION 

During the implementation of complex systems in 
C++, particularly numerical ones, the implemen­
tor typically encounters performance problems of 
varying difficulty. These difficulties usually relate 
to the lack of semantic understanding the C++ 
compiler has of the user-defined classes. This 
problem was recently studied [ 1] where the poten­
tial solution of class-based optimizations was put 
forth. 

A class-based optimization makes use of se­
mantic information normally not known to the 
compiler. These optimization rules are specified 
by the user as part of the class description and 
they are dynamically linked to the compiler's 
standard optimizer. Although the notion of a rule­
directed optimizer is not new [2] it is not wide­
spread. The authors believe this is the first time 
the optimization rules have been user specified for 
the C++ language. 
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After introducing two example optimizations, 
this article will focus on some of the issues relating 
to the construction of a system implementing 
class-based optimizations. The issues discussed 
relate mainly to optimization specification, detec­
tion of applicability, and application. 

2 SAMPLE OPTIMIZATIONS 

Throughout this article two optimizations will be 
used as examples. The first is the temporary vari­
able elimination optimization, and the second is 
strength reduction combined with induction vari­
able analysis in a general array iterator. The later 
construct is an extension the authors have made 
to the C + + language. 

2.1 Temporary Variable Elimination 

In numerical computations it is often advanta­
geous to optimize a program for the amount of 
memory used. One of the easiest ways to optimize 
a program for minimal memory usage is to elimi­
nate large temporary variables. We will use the 
example of matrix calculations to demonstrate the 
point. The two code fragments appearing in Fig-
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class Matrix { 
public: 

}; 

Matrix(); 
Matrix& operator=(const Matrix&); 
Matrix& operator+=(const Matrix&); 

friend Matrix& operator+(const Matrix&,const Matrix&); 

main(){ 
Matrix A, B, C, D; 

II· .. 
A = B + C + D; I I Fragment 1 

II· .. 
A= B; A+ = C; A+= D; I I Fragment 2 

I I ... 

FIGURE 1 :vlatrix code fragments. 

ure 1 show the value of this optimization. The first 
fragment requires a temporary matrix whereas the 
second avoids this by performing the calculation 
in place. Ideally the transform from the first to 
second fragment would be handled bv a matrix 
class-specific optimization. · 

The above optimization applies only if the '' + '' 
operator is at the root of the expressi~n tree. The 
same type of optimization will also apply for other 
overloaded operators such at *, I, and.-. This is 
not true in general, but if a user overloads EB then 
the operation is usually one that has similar char­
acteristics to the integ~r EB operator. 

We now consider what happens in the optimi­
zation of a general expression containing several 
operators. The optimization rule is continually 
applied to the expression tree starting at the root. 
If the operator at the root of this tree is TVE (the 
ability to express the expression without tempo­
~ary usage at this level) the single statement is split 
mto two statements (the = and the + =) as was 
done in fragment 2 of Figure 1. The optimization 
is then applied to each statement in turn. The 
statements continue to split into more statements 
as long as the root operator has the TVE property. 
If the root operator for a statement is not TVE 
then a temporary (of potentially large size) must 
be created. 

2.2 Optimizing Abstract Array lterators 

Consider a partitioned array container class as de­
scribed by Otto [3]. The partition types that are 
supported are block and block cyclic. 

In Fortran, access at array el~ments inside of 
do loops is very efficient. Thi~ is possible because 
Fortran does not have the pointer aliasing prob­
lems of C and C++, and the semantics of the do 

$X.iterate i over [0: 100 : 1]$ { 
X.elem(i) =a* X.elem(i) + y.elem(i); 
} 

FIGURE 2 One-dimensional array iterator. 

loop are simpler than those of for. As a result 
Fortran compilers are able to perform induction 
variable analysis and strength reduction so that 
array address calculations are done efficiently. Al­
though there are C++ compilers, g+ + for e~am­
ple, capable of such optimizations, this is not the 
norm. One of our goals is to provide such a 
strength reduction optimization on a class by class 
basis. Using this approach it is possible to. avoid 
illegal applications and to guarantee the optimiza­
tion will be applied without relying on the underly-
ing compiler to implement it. · 

Consider the simple example of an iterator for a 
one-dimensional array in Figure 2. If X is a block 
partitioned array this iterator might be imple­
mented along the lines of Figure 3, and if X is 
block-cyclic partitioned, the iterator might be im­
plemented as in Figure 4. 

Clearly the situation becomes complex for mul­
tidimensional, block-cyclic partitioned arravs. 
With proper optimizations for array iterators the 
c_oding complexity of multidimensi~nal com~uta­
tlons can be reduced. General iterators also ex­
pose opportunities for additional optimization due 
to the less restrictive nature of the control struc­
ture. That is, because a precise ordering of the 
iteration space is not specified by the programmer 
the optimizer has more flexibility in loop restruc­
turing. 

3 OPTIMIZATION SPECIFICATION 

Two of the most difficult technical problems in the 
implementation of class-based optimizations are 
defining a language in which to describe general 
optimizations, and the implementation of the pat­
tern matching routine that detects when to applv 
optimizations. What is presented in this and in th~ 
next section are not complete answers to these dif­
ficult problems, rather the current direction of re­
search of the authors. 

FIGURE 3 
iterator. 

for (i = X.start(O); i < X.end(O); i + +) { 
•(X.base + i) = ... 
} 

One-dimensional block partitioned array 



for (I= 0; I< X.numBiocks(O); ++I) { 
for (i = X.start(O, I); i < X.end(O, I);++ i) { 

*(X.base[l] + i) = 
} 

FIGURE 4 One-dimensional block-cyclic partitioned 
array itcrator. 

In attempting to define a language to describe 
general optimizations there are a number of issues 
to be considered. It must be possible to not only 
describe the syntactic pattern to match, but to 
also specify the semantics, and dependencies of 
this code. Any optimization triggering heuristics 
must also be specifiable in this language. 

The syntactic patterns to be matched may not 
necessarily be contiguous. It is quite reasonable to 
expect user-defined optimizations to require the 
ability to skip past statements searching for some 
matching condition, or to require a certain set of 
conditions for an arbitrarily long list of com­
mands. For example, the iteration optimizations 
discussed earlier require the examination of the 
entire loop body. 

A language for the specification of optimiza­
tions called GOSPEL was presented by Whitfield 
and Sofa [ 4]. This language expresses optimiza-

AssignmentPtr=Find( Assignment); 
while ( AssignmentPtr) { 

I I check the type of this assignment 
if(Type(AssignmentPtr)==MatrixClass) { 
I I check for the pattern B+C on the right 
I I hand side of the assignment where B and C 
I I are any su bexpression. 
Expr Ptr=RightHandSide( AssignmentPtr); 
if( Operator(Expr Ptr )==0 P _Plus) { 
I I break A=B+C into A=B;A+=C 
I I since a match was found this statement should be 
I I re-processed in hopes of finding another. 
I I AssignmentPtr should not be changed before the 
I I next loop iteration. 
Tree construction code omitted for brevity. The 
newly constructed tree is pointed to by APiusCTree 
RightHandSide( AssignmentPtr )=LeftOperand(Expr Ptr); 
InsertStatementAfter(AssignmentPtr,APlusCTree) 
} 

else { 
I I didn't find a pattern match. 
I I move to the next assignment statement 
Assign men tPtr= FindN ext( Assignment, Assignment Ptr); 
} 

} 
else { 
I I didn't find a pattern match because 
I I the class type was wrong 
Assign men tPtr= Find Next (Assignment ,Assignment Ptr); 
} 

} 

FIGURE 5 Current specification form for temporary 
elimination. 
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tions in terms of both the general program struc­
ture to be matched as well as the data dependen­
cies necessary for the optimization to result in 
semantically correct code. Currently we are imple­
menting optimizations at a much l~wer mechani­
cal level (Fig. 5). Future research includes the defi­
nition of a language similar to GOSPEL, but more 
closely tied to C++. 

An ideal form of specification would be C++ 
extended with inspiration from programming 
logics. In such a language the general syntactic 
form of the optimization could be specified by 
fragments of C++, whereas the data dependence 
and any heuristics could appear in embedded as­
sertions. It would surely be the most useful repre­
sentation because optimizations would then be 
specified more by partial code examples and a few 
language extensions then by another language al­
together. Figure 6 shows a possible form of a loop 
interchange optimization. 

The current design of our optimizer is quite 
similar to what one would use to implement an 
optimization in a traditional compiler. It is very 
dependent on the internal representation of the 
code and the writer of such an optimization must 

$pattern 

for ($1,$2,$3) { 

${ 

for ($4,$5,$6) { 
$A; 
} 

/* check for dependence between invariants *I 
/*($!->Statement is the statement containing *I 
/*the fragment represented by $1) *I 
if Dependence($1->Statement,$4->Statement,any) fail; 

/*check for ( <,>) dependence between *I 
/* two statements in the loop body *I 
forAIIStmt($A,$7) { I* for all individual statements $7 in $A *I 

$} 

forAIIStmt($A,$8) { 
I* check dependence for legality of optimization *I 
if (Dependence($7,$8,"( <,> )")) fail; 
} 

$optimization 
for ($4,$5,$6) { 

where: 

for ($1,$2,$3) { 
$A; 
} 

$A is a meta variable representing zero or more statements 
$J-$n are meta variables representing components of a statement 

FIGURE 6 Loop interchange specification. 
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have knowledge of this representation. Although 
neither of the authors is satisfied with this as a 
final goal, it is felt to be a good intermediate step 
to prove the concept of class-based optimizations. 

4 OPTIMIZER IMPLEMENTATION 

The optimizer's implementation is greatly compli­
cated by the fact that before an optimization can 
be applied, the associated pattern of unoptimized 
code must be located in the internal representa­
tion of the program. In the past various code gen­
erated and peephole optimizers [5-7] have done 
this, but either always on small contiguous pat­
terns, or, if an attributed grammar is used, with 
restrictions on the use of attributes. In the case of 
this optimizer it must be possible to match non­
contiguous patterns, as they were discussed in the 
previous section, and to add additional attributes 
(derived from operations on the compiler supplied 
ones) based on the needs of the optimization. 

Another complicating factor for the implemen­
tation of the optimizer is the determination of the 
optimization ordering. Usually this is determined 
by the compiler architect, however because the 
actual optimizations are now being supplied by 
the class designers, it is quite conceivable that the 
ordering of optimizations will play a role in the 
efficiency of the optimized code. Ordering prob­
lems will hopefully be minimal because optimiza­
tions are triggered by class occurrences, but an 
ordering mechanism should still be explored. Cer­
tainly such a mechanism will depend heavily on 
the user's application and should be specified by 
the user if the default ordering is not acceptable. 

5 CURRENT STATUS 

At the time of writing, the authors have a working 
C++ to C++ optimizer that was custom built for 
this project. This is felt to be of great worth due to 
the avoided additional complexity of layering such 
an optimizer on top of a public domain compiler 
that was not designed with such capabilities in 
mind. 

The optimizer was implemented using a tool, 
developed by one of the authors, to describe com­
plex attribute relationships and structures. The 
tool allowed a relatively quick implementation of a 
very memory efficient internal representation of 
C++. Because all of the attributes of this repre­
sentation are managed and mapped by this tool, 
there is great flexibility in our optimizer when it 
comes to adding to the internal program represen­
tation. 

Work is currently under way to define the opti­
mization specification language, as well as imple­
ment the pattern matcher. As was stated earlier, 
the current approach is very mechanical and 
strongly dependent on the internal representation 
of the program being optimized. It is the authors' 
goal to evolve this into a much higher form in the 
hopes of hiding many of the details of the compiler 
implementation. 
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