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ABSTRACT 

The most time consuming part of an N-body simulation is computing the components of 
the accelerations of the particles. On most machines the slowest part of computing the 
acceleration is in evaluating r- 312, which is especially true on machines that do the 
square root in software. This note shows how to cut the time for this part of the calcula­
tion by a foetor of 3 or more using standard Fortran. ~£ 1993 John Wiley & Sons, Inc. 

1 INTRODUCTION 

.\Iany phenomena in astrophysics and chemistr• 
are being simulated usin;r :'\ -l)()dy methods [ 1. 2:. 
The most time cow;umin;r pm1 of such simula­
tions is computing the accelerations oil each parti­
cle due to all the others. This is trut:' for the f'imple 
S 1 methods. tree- ba,.;ed methods [ :i]. or those us­
in;r neighbor lists [ -l]. 

If the potential lwin;r u,.;t'd has an odd power of 
the particle separation in it. computing the or­
tho;ronal componellls of tlw acceleration will in­
HJlYe takin::r a "Y uare root. Although iiome ma­
chineii do >'quare root in hardware. many do not. 
It is not unusual to find that half the run tinw of an 
:'\-body calculation i,.; ,.;pt>lll in the ;;;quare root 
sulmnttine. 

In our case. we want to eYaluate the accPlt>ra­
tion on Pach particle in a systt:'lll of self-graYitating 
bodies. For example. the .r-comp01wnt of the ac-
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celeration for particle j under the ;rraYitational in­
fluence of particle k is 

Gmk (.r1 - xk) 
,.:{ 

where i is the unit Yector in the x direction. G is the 
!!rm·itational constant. mk is the mass of particle k. 
and r is the separation between the particles. 

,. = v ':r, - .l'i.l + r_, i - .l"i. :1 + '=., - =.~, )1 . . . 

For efficiency. we usually code ,.:l aii ,.:1 W. 
The system ~quare root routine. not knowing 

how itii re~ult will be u;;;eJ. compute;;; the ,;quare 
root with a diYidt>-free 1'\t>wton iteration to com­
pute the inverse of the square root followed by a 
multiplication by the input \·alue to get the final 
re>'ult. The compiler then multiplies by r 1 and di­
Yides the re~ult into the numerator. Becau,;e lJOth 
diYisions and "quare roots are usually slow, this 
operation takt>s a lon!! time. 

Table 1 f-hows the time needed for some com­
mon operations-an empty loop. a iiimple aiisign­
mcnt. divi,;inn. "quare root. and .1.-:l/2. All times 
are in machine cycles per element measured on an 
IB.\1 RISC System/ 6000 .\I odd S-tO. BPcause 
RISC machines of this kind usually improYe per-
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Table 1. Time for Some Common Operations in 
Machine Cycles Per Element Run on an 18\1 
RS/6000-.540 

m Rolled Cnrolled* 

Empty 2 2 
assignment 4 4 
x-1 20 20 
Vx 56 56 
(xVxt1 ...,..., ...,..., 

* Cnrolled refers to loops unrollt·d eight ways. :\ote that 
loop unrolling has no effect. 

formance by pipelining arithmetic operations. un­
rolling loops frequently speeds things up. Clearly. 
the operations measured do not benefit. 

It is possible to do considerably better than the 
direct computation. This note shows how to use 
standard Fortran to evaluate the acceleration in 
about one third the time taken bv the direct e,·alu­
ation. 

2 ALGORITHM 

The onh· way we can beat the efficiency of the 
system routines is to use our extra knowledge of 
the problem. In this case, we will not compute 
W. Instead. we will compute r-:i directly from r 2 . 

The simplest approach is to approximate this 
function with a polynomial. Chebychev polynomi­
als are frequently used because they minimize the 
maximum error of the approximation on some in­
ten·al [ 5]. One difficulty is that the approximation 
is accurate only if the argument,; are limited to a 
relatively small range. \\"ith a range reduction the 
procedure for an input argument r 2 becomes 

1. Find a u such that a s ur2 < {3. where a and 
f3 are numbers of order unitY. 

2. Approximate (ur2 t:m_ . 
3. Get the correct result bv multiplying the 

approximation by t = u:v2. 

Because I want to keep my algorithm entirely in 
Fortran, I decided to use two tables for u and t. 
The entries in u are simply the power of 2 such 
that 1 s ur2 < 2. The entries in tare u:l/2. The onlY 
problem is to figure out which table entries to use 
for a given input value. 

The range reduction I use is based on the IEEE 
double precision number format [ 6]. Each num­
ber consists of 64 bits-1 sign bit. 11 exponent 

bits, and 52 fraction bib. In addition. tlwre i,.; an 
implicit 1 bit for normalized number,.;. 

If I know the ar;!unwnt is po,;itiw. as it mtl:-it lw 
for the function I am interested in. I can extract 
the exponent by shiftin_g the hi~Jh order :32 bit,:; of 
the floating-point number 20 bits to the ri~Jht. In 
Fortran, this procedure requires that I EQCI\"A­
LEJ\"CE the double preci,o;ion number to an inte~JPr 
or pass a double preci,;;ion ar~Jument to a :;ulJrou­
tine that uses it a,;; an integer. Shifting the inu·ger 
gives the index in the tables. Because therP are 
only 11 bits to represent the exponent. I know my 
tables need onh- 2.0-t8 entrie~. 

I could have coded mY table,; a,.; DATA state­
ments in the prowam. but I decidt>tl to ask the 
user to make a single call to set them up a,.; i,.; 
frequently done with Fourier tran,;form routine,.;. 
The code to build the tables i,; contained in tlw 
program in the Appendix. 

l\"ow that I have scaled the input to a mode,;t 
range, I can do the approximation. The coeffi­
cients of the fit are ea;;y to compute [S:. If I wriw 
the approximation of (ur2 )-:lt2 a,.; 

where x = 21:ur2 ) - 3. the coefficiPnts ck can be 
calculated from 

where the :tj are the zero,; of T\(.r;. x1 = cosf rr.j- · 
1/2 )IS]. The change of variable from ~ur2 ; to .r i,;; 
needed because the Chebyche,· polynomial,; are 
orthogonal on the in ten al [ -1. 1:. If we choo,;p 
S P m. the approximation will be wry close to the 
minimax polynomial. 

It is important to use knowledgP of the hard­
ware in writing the code. I made my runs on an 
IB~I RISC Svstem 6000 ~lode! 5-tO. RISC ma­
chines nominally do all operations in one machine 
cycle, but in practice complicated operations are 
pipelined. On this machine, all floating-point ad­
ditions and multiplications are treated as com­
pound multiply/add operation,.; [?]. An i,;;olated 
operation takes two cycle,:;. but a ;;equence of op­
erations produces one re,;;ult per cycle after a delay 
of two cycles. Thus, our goal is to produce com­

pound operations that can be pipelined. 
Figure 1 shows part of a function that the user 

invokes to do the Chebychev fit. The input value is 



equivalence (r2,ir2) 
it= ishft(ir2,-20) 
X = r2 * u(it) 
X = 4.d0*x - 6.d0 
tOO = l.dO 
s = c (1) 
tOl O.SdO*x 
s = s + c ( 2)*t01 
t02 x*tOl - tOO 
s = s + c ( 3)*t02 
t03 x*t02 - tOl 
s = s + c( 4)*t03 
result= s*t(it) 

FIGCHE 1 CodP to naluate a four-term Clwbydle\· 
fit. The input i~ r2. The tables u. t. and c were 
calculatPd in the ~etup routine. 

r2. The statement EQUYALEXCE (r2, ir2) is 
needed because the shift function will only work 
on an integer argument.* Only four terms are 
,.;hown. but the exten:;ion to more is ob,·ious. 

After ;;;ome ;;et-up code to do the ranf!e reduc­
tion and ;;;hift the arguments into the range of the 
Clwhyche\· polynomial;;. ull opemtions but the 
last are multiply/adds. Cnfortunately. the;;e oper­
ation;; are dt>pendent on each other .. so we are not 
making optimal use of the arithmetic pipeline. For 
example. the multiply/add that updates s cannot 
be started until the preYious tis ready. Al,.;o. com­
putaiion of the next t cannot be started until the 
pre,·inu;; one is done. HoweYer. we can 0\·erlap 
these two calculations so we expect euch order of 
approximation to take an additional 3 cycles. 

Table :2 summarize,; the timing and accuracy 
re,..ults. The rt>latiYP errors are mea,.,ured u,.;ing the 
direct calculation as the ('OJTect ,-alue. These er­
rors are identical to the bounds computed by 
,.;umming the ab;;olute \·alues of the dropped coef­
ficients r;) 1-

The times are gi,·en in machine cycles per ele­
ment. In each case I measured the elapsed time 
with a clock accurate to a few nanoseconds. The 
times reponed are the smallest of :20 runs of 
10.000 random inputs .. -\!though there are some 
anomalies. most of the time it takes 3 cvcles to add 
one more order to the approximation. The anom­
alies are caused by running out of registers and 
the performance of the memory when loading the 
coefficit>nts. 

One way to improye the overlap is to do more 

* "Strun~ tYpin~ is nice. but it ,;hnuldn't be im·inciblt•,'' 
:\. L. Karp. priYate communication. 1985. 
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than one evaluation on each pass through the 
loop, that is, unroll the loop. I experimentally de­
termined that unrolling the loop eight ways gave 
me as much speed-up as I was going to get. The 
last column in Table 2 shows that adding one 
more term to the approximation costs less when 
the loop is unrolled. ahout 2 cycles per term. 

Is it worth using this approximation? It depends 
on the accuracy needed. The time stepping 
scheme will have some tmncation error. Clearly, 
there is no point making the function evaluation 
more than an order of magnitude more accurate 
than this mlue. 

Table 2 ,.;]wws that single prectswn (about 8 
digit) accuracy ~·it h around 10 terms can be ob­

tained at a cost of 28 cycles. a third the cost of the 
direct computation. If more accuracy is needed. 
almost 16-digit accuracy can be obtained if 20 
terms are used, but the speed-up over the direct 
calculation is ;;mall. 

:\.nother approach is to use :\ewton';; method. 
It is based on finding the roots of some function, in 
this case 

f(y) 
1 

·J y-

The iteration is then 

where n is the iteration index. 
l\ewton' s method is quadratically com·ergent 

when applied to a conYex function such as the one 
in which we are interested [8]. This means that 
each iteration doubles the number of correct bits 

Table 2. Summary of .\leasurements of Accuracy 
and Time for the Chebyche\' Approximation 

m Enor Rolled Cnrollerl* 

0 7.:2 X 10-1 8 6 
2 3.1 X 10-2 15 13 
4 1.1 X 10-:l 21 17 
6 .'3.8 X 1()-1 28 21 
8 1.3 X 1()-IJ 33 25 

10 4.2 X 1()-H 37 28 
12 1.3 X 10-4 -t:.! 33 
14 4.2 X 10-11 59 38 
16 1.3 X 10-12 60 43 
18 4.1 X 10-H 50 48 
20 3.2 X 10- 1:; 53 50 

* Unrolled refers to loops unrolled eight ways. Times are in 
machine cycles per element. 
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equivalence (r2,ir2) 
it = ishft(ir2,-20) 
x = r2 * u(it) 
x3 = O.SdO*x*x*x 
s dO 
s s*(1.5d0-x3*s*s) 
s s*(l.Sd0-x3*s*s) 
s = s*(l.Sd0-x3*s*s) 
s s*(l.Sd0-x3*s*s) 
result= s*t(it) 

FIGURE 2 Cmle for four _'\ewton iteration,;. The ar­
rays u and t were calculated in the setup routilw. 

in the result. ,,.e only need to get a reasonably 
accurate first guess. If we use the same range re­
duction as before, a reasonable first guess would 
be the function e,·aluated near the midpoint of the 
range. In fact. I chose to use a zero'th order 
Chebychev fit for the first guess. 

Figure 2 shows the key part of the function in­
voked by the user. ~-e see that this code will not 
use the hardware a;; effecti\·eh· a;; tht> Chebwht>v 
code. Each Kewton iteration l;as a multipliC'~tion. 
a multiply/add. and a final multiplication for a 
total of 6 cvdes. 

Table 3 shows the comergence and time for 
rolled and unrolled loop,.. If the loop iii not uu­
rolled. Kewton\;; method takes 6 cycles per itera­
tion as predicted: it takes only abow :3 if the loop 
is unrolled. Single preci;;ion accuracy is achie~·ed 
in about 29 cycles per element and double prt>ci­
sion in 3-i cycles per element. 

Is it worth using i\ewton's mellwd~ Yes it j;; 

unlesii you need the ln,o;r ft>w bit,; eom-•ct. \.fithout 
doing arithmetic in a higher prt>cision the loss of a 
few bits of aecuran i:'i ine,·itnble. Howen'r. the 
simplicity of the cod;, und ib ::;pet>d art> in it,; favor. 

Table 3. Summary of Measurements of Accuracy 
and Time for the Newton Method 

n Error Rolled l'nrolled* 

1 5.2 X 10- 1 17 1-t 
2 3.3 X 1 o- 1 23 16 
3 1.-f X 10- 1 :30 20 
-t ;).0 X 10-2 :36 2-t 
v 1.3 X 1o-:l -t2 2() 
6 2.':' X 10-" -18 2() 

7 1.1 X to-tt .'H :32 
8 -t.3 X to-t~> 60 :3-t 

* Cnrolled refer~ to loopo; unrolled eight wa~·s. Tin"'' art' in 
machine cvc!Ps per dement. 

We can do considerably better by makinr: two 
changes to the Kewton 's method code. First of alL 
note the small improvement in the first fe\\· it era­
tions. A better first guess would reduct' the num­
ber of Kewton itf'rations dramatically. I chose a 
six-term Chebychev fit that results in single preci­
sion accuracv with one i\ewton iteration and dou­
ble precision with two. 

There is another trick that can be used if onh· 
six terms are toLe used in the polynomial approx­
imation-computt> the coefficients of the power,;; 
of x. This approach i,; not recomnwnded in fr1:'11-

eral because of the potential round-off error,; 
when the coefficients are combined. Here there i,; 
no need to worrY bt>cause tht> :\ewton iteration will 
tolerate such errors. The monomial coeflieienb 
are 

do = kn - (':l + ('~ 

dt = Ct - :3c:> + 

d2 = 2c:! - 3c~ 

d:! = ·k:l - 20c·, 

d .. = 8c .. 

d:; = 16c:; 

If we use Horner',; rult> to evaluate the approxima~ 
tion. 

s = do+ :r(d1 + :r(d:J. + .r(d, + .r(d4 + ::rd:;)i:) 

the polynomial e\·aluation is all multiply/add;;. 
The key part of the code j;; shown in FigurP :3. 

Table 'i Sl!IIUntlrizes the performance re~ult~. 
\\·e see that we gr·t ,;inglt' prf"l'ision accuracy in 
only 19 cydes ami double preeiiiion in 2:3 cycle<". 
Because thi;; algorithm outperform,; the dirPt't 
entluation b,· a factor of xwarh- 'i. un :'\-l,o•h· eodP 

' . . 

equivalence (r2,ir2) 
it= ishft(ir2,-20) 
x = r2 * u(it) 
XX = 2.d0*x - 3.dQ 
x3 = O.SdO*x*x*x 
s = dO+xx*(dl+xx*(d2+xx*d3))) 
s = s*(l.Sd0-x3*s*s) 
result = s*t{it) 

FIGURE 3 Code for the hybrid nwthod. A third onl<'r 
Cheby~hev fit and mw _'\ewton iteration ar" ,;llllW!\. Tlw 
coefficient;; d and the arrays u and t were ealculawd i11 
the setup routine. 



Table 4. Summary of Measurements of Accuracy 
and Time for the Hybrid Method* 

fl Error Holled Cnrolled 

0 7.2 X 10-l 9 7 
1 1.6 X 10-l 10 10 
2 3.1 X 10-2 12 11 
3 6.0 X 10-:l 13 12 
-i 1.1 X 10-3 16 1:3 
5 2.1 X 1Q--t 17 H 

:\1 6.6 X 10-R 23 19 
:\2 6.6 X 10-l:i :30 2:3 

--~---

* The fir~t six rows are the order of the CIH'byehe\' fit: the 
la~t two arc the :'>ewton iterations. Cnrolled refert; to loops 
unrollt•d <'igln ways. Times are in machine cycles per element. 

using this approach should run considerably 
faster. 

The referee pointed out one more trick that re­
duces the times in Table -+ by one cycle per ele­
ment. The Chebychev polynomials are evaluated 
on the interval -1 :s: x < 1 while we have done a 
range reduction to 1 :5 ur2 < 2. The variable xx is 
used to do the required change of ,·ariables. Ex­
amination of the code shows that XX can be sub­
stituted into the polynomial approximation for s. 
the terms can be arranged, and the new coeffi­
cients precomputed. These new coefficients. call 
them gt; are related to the dt; by 

go= do- :3r/1 + 9d:1- 27d, + 81d4 - 2-t3d:; 

gl = 2d1- 12d2 + 5-td,- 216d4 + 810d:; 

gJ = -td2- :36d~ + 216d4- 1080J:; 

g:~ = 8d, - 96d4 + 720d.; 

g; = 32d:; 

Table 5. Coeffidents of the :\linimax Fit* 

k c d 

0 0. 60800:.~:36 O.S-t·H17-+1 7. 0.'5-+:):2-i 70 
1 - () .:309;) 1280 -0.272:27;)6-i H.85088557 
2 (). 0661 :3:3-t 7 0.11188678 H. 708:.~2:31 0 
:3 -0.01:3:21:311 -0.(H:32i:377 -7.8370::G)5 
i 0.0023-+752 0.0:20:38017 2.1 '709-+376 
5 -O.OO<H80-t:~ -0.00-:'6869:3 -0.2-+39817-i 

* Three limn~ are l·!i,·en: care the coefficients of the orthog­
onal poly!H>Illialh: dare the codficit•nt' of the monomials on 
[- L 1:: g are the codliriems of the monmnials on [ 1. :r. 
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We now e\aluate the polynomial 

s = go + (ur2)(g1 

+ (ur2)(g2 + (ur2)(g:i + (ur2)(g'* + (ur2)gs)))). 

The complete subroutine, including the set-up 
code, is shown in the Appendix; the coefficients 
are shown in Table 5. 

3 CONCLUSIONS 

How can I beat the performance of a highly tuned 
system routine with Fortran code? Simple-! 
cheat. 

I <'heat in a number of \\'3\'S. First of alL I f'valu­
ate the function directly rather than in pieces. 
Second, I cheat by not getting the last few bits 
right. Finally, I cheat by not doing any error 
checking. (I could take the absolute value of the 
input at the cost of one additional cycle.) How­
ever, the output value is accurate for any floating­
point input. Yery large input values produce 
denormalized results: \·ery small inpUt values pro­
duce floating point infinity as they should. 

If your machine supports the IEEE double ex­
tended format [6], a format with at least 64: bits in 
the fraction that is usually resen·ed for data kept 
in the registers. you can get the last few hits right 
using a simple trick. Compute the array t in ex­
tended precision. but store it as two double preci­
sion numbers. t ( 1, i) and t (2, i). Then the fi­
nal scaling becomes s * ( t ( 1, i) + t ( 2, i) ) . I 
could not check the accurac\· because the RISC 
System/6000 does not support the double ex­
tended format. but the change added only 1 cycle 
per result to the time of the unrolled loop. 

Is it worth the effort and worry to use this new 
approach? If your calculation is typical and 
spends 3/-t of its time eyaJuating the acceleration, 
speeding up this one line of code by a factor of :3 
will cut your total run time in halL 
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APPENDIX 1 

Sample Code 

This Appendix contains the complete version of 
the code as measured. For the sake of space, I 
changed the loop unrolling from eight -way to two­
way. Some points are worthy of note. 

If working with single precision data, change 
the shift to ishft (X, 23) because IEEE single 
precision only uses 8 bits for the characteristic. 

Also, the center for the arrays t and u should be at 
127. 

Some svstems do not allow continuation of exe­
cution foilowing an overflow. Becau;;e r-:li'J. will 
underflow and overflow at the Loundarie:o; of the 
floating-point arithmetic. adjust loop limit;; on 
these machines. However. make sure that theta­
ble is filled properly. Cnderflow should produce a 
true zero and overflow should produce l1oatinl! 
point infinity. 

c Approximate r**(-3/2) using Newton with Chebychev first guess 
c 
c Initialize arrays by calling with n 
c 

0 on first call 

c 

subroutine r32i ( a, r2, ir2, n 
implicit double precision ( a-h, o-z) 
parameter ( ncheb ~ 200 ) 
save gO, g1, g2, g3, g4, g5, c, t, u 

c Calling sequence 
c 
c a 
c r2 
c ir2 
c n 
c 

c 

= 
= 
::::;: 

::::: 

output array 
input array 
input array to be used as an integer 
length of input and output arrays 

dimension a(n), r2(n), ir2(2,n) 

c Local variables 
c 
c f 
c z = 
c c 
c d 
c g 
c t 
c u 
c 

c 

temporary array needed to compute c 
temporary array needed to compute c 
coefficients of Chebychev approximation 
coefficients of monomial fit on -1 < x < 1 
coefficients of monomial fit on 1 < x < 2 
table of (2**kl**(-3/2) for -1024 < k < 1024 
table of 1/2**k for -1024 < k < 1024 

dimension t(0:2046),u(0:2046),c(O:ncheb-l),f(ncheb) ,z(ncheb) 

c Function shifted from 1 to 2 to -1 to 1 
c 

func(r) = (l.SdO + O.SdO*r)**(-1.5) 
c 
c If not first call, then compute function 
c 

if (n .gt. 0) then 
c 
c Approximate results loop unrolled 2 ways 
c A greater degree of loop unrolling will probably perform better 



c 

c 

c 

c 

do i = 1, n, 2 
it= ishft(ir2(1, i ),-20) 
X= r2 (i) * U(it) 
X3 = 0.5d0*X*X*X 
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s gO+ x*(gl + x*(g2 + x*(g3 + x*(g4 + x*g5 J ))) 

s = s*(1.5dO-x3*s*s) 
s = s*(1.5dO-x3*s*sl Use for double precision 
a(i) = s*t(it) 
it= ishft(ir2(1,i+1),-20) 
x = r2(i+l) * u(itl 
x3 = 0.5dO*x*x*x 
s gO+ x*(g1 + x*(g2 + x*(g3 + x* (g4 + x*g5 J ))) 

s = s*(1.5d0-x3*s*sl 
s = s*(1.5dO-x3*s*s) Use for double precision 
a(i+1l = s*t(it) 

enddo 

c Finish up unrolled loop 
c 

c 

c 

do j = i, n 
it= ishft(ir2(l,j),-20) 
x = r2(j) * u(it) 
x3 = O.SdO*x*x*x 
s gO+ X*(g1 + x*(g2 + X*(g3 + X*(g4 + X*g5) I)) 

s = s*(1.5d0-x3*s*s) 
s = s*(1.5dO-x3*s*s) Use for double precision 
a (j) s*t (it) 

enddo 
else 

c If the first call, build table of results for powers of 2 
c 

c 

xi = 1. dO 
t(1023) = l.dO 
U(l023) =l.dO 
do i = 1, 1023 

xi= 0.5dO*xi 
t (1023+i l xi *sqrt (xi) 
t(1023-i) 1.d0/t(1023+i) 
u(1023+il =xi 
U(l023-i) l.dO/xi 

end do 

c Precompute zeros of Chebychev polynomials and function 
c 

c 

pi= 4.d0 
do k = 1, 

z (k) 

* atan 
ncheb 
pi * ( k 
COS(Z(k)) 

1. dO ) 

O.SdO l I ncheb 
zero 
f (k) 

enddo 
= func(zero) 
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c Get coefficients of Chebychev fit 
c 

c 

factor 2.dO/ncheb 
do j = 0, ncheb-1 

sum= o.do 
do k = 1, ncheb 

arg z(k) * j 
sum= sum+ f(k)*cos(arg) 

enddo 
c(j) = factor*sum 

end do 

c Get coefficients of powers of x on -1 < x < 1 
c 

do = 
dl = 
d2 
d3 
d4 = 
d5 

0.5dO*c{0) c(2) + c(4) 
c (1) 

2.0dO*c(2) 
4.0dO*c{3) 
8.0dO*c(4) 

3.dO*c(3) + 5.dO*c(5) 
8.dO*c(4) 

20.30*c(5) 

= 16.0d0*C(5) 
c 
c Get coefficients of powers of x on 1 < x < 2 
c 

gO=d0-3.0dO*dl+ 9.0dO*d2-27.0dO*d3+ 81.0dO*d4- 243.0dO*d5 
g1= 2.0dO*d1-12.0dO*d2+54.0dO*d3-216.0dO*d4+ 810.0dO*d5 
g2= 4.0dO*d2-36.0dO*d3+216.0dO*d4-1080.0dO*d5 
g3::c 8. OdO*d3- 96. OdO*d4+ 720. OdO*d5 
g4= 16.0dO*d4- 240.0dO*d5 
g5= 32.0dO*d5 

end if 
c 

end 
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