
Speeding up N-body Calculations on Machines
without Hardware Square Root

ALAN H. KARP

/B/11 Scientific Center, Palo Alto, CA 94304

ABSTRACT

The most time consuming part of an N-body simulation is computing the components of
the accelerations of the particles. On most machines the slowest part of computing the
acceleration is in evaluating r- 312, which is especially true on machines that do the
square root in software. This note shows how to cut the time for this part of the calcula­
tion by a foetor of 3 or more using standard Fortran. ~£ 1993 John Wiley & Sons, Inc.

1 INTRODUCTION

.\Iany phenomena in astrophysics and chemistr•
are being simulated usin;r :'\ -l)()dy methods [1. 2:.
The most time cow;umin;r pm1 of such simula­
tions is computing the accelerations oil each parti­
cle due to all the others. This is trut:' for the f'imple
S 1 methods. tree- ba,.;ed methods [:i]. or those us­
in;r neighbor lists [-l].

If the potential lwin;r u,.;t'd has an odd power of
the particle separation in it. computing the or­
tho;ronal componellls of tlw acceleration will in­
HJlYe takin::r a "Y uare root. Although iiome ma­
chineii do >'quare root in hardware. many do not.
It is not unusual to find that half the run tinw of an
:'\-body calculation i,.; ,.;pt>lll in the ;;;quare root
sulmnttine.

In our case. we want to eYaluate the accPlt>ra­
tion on Pach particle in a systt:'lll of self-graYitating
bodies. For example. the .r-comp01wnt of the ac-

H•·•·ei\·ed Octolwr 1 <J!J:2
.\ct·•·ptt·d :'\oH"llllwr 1 '!'!1

.\lan 1-.:arp"s pn·,;<•JJ! addn·s,;: ll•·wlett-Packanl Lal" :n ·_ -:.
1 C,01 Paf.!<' \I ill Hoad. Palo .\Ito. C.\. 9·HO-t. karp@hpl.hp.<·ont

© l'J<J:l IJ\· John \\.ile\ & Soth. Inc.

St·i•·ntifi.- Prol!ranuninl!. \"ol. 1. pp. 1:3:3-1-tO 11 '!Y2:

U:C 10C,3-'J:2H/<J3/0:2013:l-03

celeration for particle j under the ;rraYitational in­
fluence of particle k is

Gmk (.r1 - xk)
,.:{

where i is the unit Yector in the x direction. G is the
!!rm·itational constant. mk is the mass of particle k.
and r is the separation between the particles.

,. = v ':r, - .l'i.l + r_, i - .l"i. :1 + '=., - =.~,)1 . . .

For efficiency. we usually code ,.:l aii ,.:1 W.
The system ~quare root routine. not knowing

how itii re~ult will be u;;;eJ. compute;;; the ,;quare
root with a diYidt>-free 1'\t>wton iteration to com­
pute the inverse of the square root followed by a
multiplication by the input \·alue to get the final
re>'ult. The compiler then multiplies by r 1 and di­
Yides the re~ult into the numerator. Becau,;e lJOth
diYisions and "quare roots are usually slow, this
operation takt>s a lon!! time.

Table 1 f-hows the time needed for some com­
mon operations-an empty loop. a iiimple aiisign­
mcnt. divi,;inn. "quare root. and .1.-:l/2. All times
are in machine cycles per element measured on an
IB.\1 RISC System/ 6000 .\I odd S-tO. BPcause
RISC machines of this kind usually improYe per-

133

134 KARP

Table 1. Time for Some Common Operations in
Machine Cycles Per Element Run on an 18\1
RS/6000-.540

m Rolled Cnrolled*

Empty 2 2
assignment 4 4
x-1 20 20
Vx 56 56
(xVxt1 ...,..., ...,...,

* Cnrolled refers to loops unrollt·d eight ways. :\ote that
loop unrolling has no effect.

formance by pipelining arithmetic operations. un­
rolling loops frequently speeds things up. Clearly.
the operations measured do not benefit.

It is possible to do considerably better than the
direct computation. This note shows how to use
standard Fortran to evaluate the acceleration in
about one third the time taken bv the direct e,·alu­
ation.

2 ALGORITHM

The onh· way we can beat the efficiency of the
system routines is to use our extra knowledge of
the problem. In this case, we will not compute
W. Instead. we will compute r-:i directly from r 2 .

The simplest approach is to approximate this
function with a polynomial. Chebychev polynomi­
als are frequently used because they minimize the
maximum error of the approximation on some in­
ten·al [5]. One difficulty is that the approximation
is accurate only if the argument,; are limited to a
relatively small range. \\"ith a range reduction the
procedure for an input argument r 2 becomes

1. Find a u such that a s ur2 < {3. where a and
f3 are numbers of order unitY.

2. Approximate (ur2 t:m_ .
3. Get the correct result bv multiplying the

approximation by t = u:v2.

Because I want to keep my algorithm entirely in
Fortran, I decided to use two tables for u and t.
The entries in u are simply the power of 2 such
that 1 s ur2 < 2. The entries in tare u:l/2. The onlY
problem is to figure out which table entries to use
for a given input value.

The range reduction I use is based on the IEEE
double precision number format [6]. Each num­
ber consists of 64 bits-1 sign bit. 11 exponent

bits, and 52 fraction bib. In addition. tlwre i,.; an
implicit 1 bit for normalized number,.;.

If I know the ar;!unwnt is po,;itiw. as it mtl:-it lw
for the function I am interested in. I can extract
the exponent by shiftin_g the hi~Jh order :32 bit,:; of
the floating-point number 20 bits to the ri~Jht. In
Fortran, this procedure requires that I EQCI\"A­
LEJ\"CE the double preci,o;ion number to an inte~JPr
or pass a double preci,;;ion ar~Jument to a :;ulJrou­
tine that uses it a,;; an integer. Shifting the inu·ger
gives the index in the tables. Because therP are
only 11 bits to represent the exponent. I know my
tables need onh- 2.0-t8 entrie~.

I could have coded mY table,; a,.; DATA state­
ments in the prowam. but I decidt>tl to ask the
user to make a single call to set them up a,.; i,.;
frequently done with Fourier tran,;form routine,.;.
The code to build the tables i,; contained in tlw
program in the Appendix.

l\"ow that I have scaled the input to a mode,;t
range, I can do the approximation. The coeffi­
cients of the fit are ea;;y to compute [S:. If I wriw
the approximation of (ur2)-:lt2 a,.;

where x = 21:ur2) - 3. the coefficiPnts ck can be
calculated from

where the :tj are the zero,; of T\(.r;. x1 = cosf rr.j- ·
1/2)IS]. The change of variable from ~ur2 ; to .r i,;;
needed because the Chebyche,· polynomial,; are
orthogonal on the in ten al [-1. 1:. If we choo,;p
S P m. the approximation will be wry close to the
minimax polynomial.

It is important to use knowledgP of the hard­
ware in writing the code. I made my runs on an
IB~I RISC Svstem 6000 ~lode! 5-tO. RISC ma­
chines nominally do all operations in one machine
cycle, but in practice complicated operations are
pipelined. On this machine, all floating-point ad­
ditions and multiplications are treated as com­
pound multiply/add operation,.; [?]. An i,;;olated
operation takes two cycle,:;. but a ;;equence of op­
erations produces one re,;;ult per cycle after a delay
of two cycles. Thus, our goal is to produce com­

pound operations that can be pipelined.
Figure 1 shows part of a function that the user

invokes to do the Chebychev fit. The input value is

equivalence (r2,ir2)
it= ishft(ir2,-20)
X = r2 * u(it)
X = 4.d0*x - 6.d0
tOO = l.dO
s = c (1)
tOl O.SdO*x
s = s + c (2)*t01
t02 x*tOl - tOO
s = s + c (3)*t02
t03 x*t02 - tOl
s = s + c(4)*t03
result= s*t(it)

FIGCHE 1 CodP to naluate a four-term Clwbydle\·
fit. The input i~ r2. The tables u. t. and c were
calculatPd in the ~etup routine.

r2. The statement EQUYALEXCE (r2, ir2) is
needed because the shift function will only work
on an integer argument.* Only four terms are
,.;hown. but the exten:;ion to more is ob,·ious.

After ;;;ome ;;et-up code to do the ranf!e reduc­
tion and ;;;hift the arguments into the range of the
Clwhyche\· polynomial;;. ull opemtions but the
last are multiply/adds. Cnfortunately. the;;e oper­
ation;; are dt>pendent on each other .. so we are not
making optimal use of the arithmetic pipeline. For
example. the multiply/add that updates s cannot
be started until the preYious tis ready. Al,.;o. com­
putaiion of the next t cannot be started until the
pre,·inu;; one is done. HoweYer. we can 0\·erlap
these two calculations so we expect euch order of
approximation to take an additional 3 cycles.

Table :2 summarize,; the timing and accuracy
re,..ults. The rt>latiYP errors are mea,.,ured u,.;ing the
direct calculation as the ('OJTect ,-alue. These er­
rors are identical to the bounds computed by
,.;umming the ab;;olute \·alues of the dropped coef­
ficients r;) 1-

The times are gi,·en in machine cycles per ele­
ment. In each case I measured the elapsed time
with a clock accurate to a few nanoseconds. The
times reponed are the smallest of :20 runs of
10.000 random inputs .. -\!though there are some
anomalies. most of the time it takes 3 cvcles to add
one more order to the approximation. The anom­
alies are caused by running out of registers and
the performance of the memory when loading the
coefficit>nts.

One way to improye the overlap is to do more

* "Strun~ tYpin~ is nice. but it ,;hnuldn't be im·inciblt•,''
:\. L. Karp. priYate communication. 1985.

SPEEDI~G LP ~-BODY CALCLLATIO~S 135

than one evaluation on each pass through the
loop, that is, unroll the loop. I experimentally de­
termined that unrolling the loop eight ways gave
me as much speed-up as I was going to get. The
last column in Table 2 shows that adding one
more term to the approximation costs less when
the loop is unrolled. ahout 2 cycles per term.

Is it worth using this approximation? It depends
on the accuracy needed. The time stepping
scheme will have some tmncation error. Clearly,
there is no point making the function evaluation
more than an order of magnitude more accurate
than this mlue.

Table 2 ,.;]wws that single prectswn (about 8
digit) accuracy ~·it h around 10 terms can be ob­

tained at a cost of 28 cycles. a third the cost of the
direct computation. If more accuracy is needed.
almost 16-digit accuracy can be obtained if 20
terms are used, but the speed-up over the direct
calculation is ;;mall.

:\.nother approach is to use :\ewton';; method.
It is based on finding the roots of some function, in
this case

f(y)
1

·J y-

The iteration is then

where n is the iteration index.
l\ewton' s method is quadratically com·ergent

when applied to a conYex function such as the one
in which we are interested [8]. This means that
each iteration doubles the number of correct bits

Table 2. Summary of .\leasurements of Accuracy
and Time for the Chebyche\' Approximation

m Enor Rolled Cnrollerl*

0 7.:2 X 10-1 8 6
2 3.1 X 10-2 15 13
4 1.1 X 10-:l 21 17
6 .'3.8 X 1()-1 28 21
8 1.3 X 1()-IJ 33 25

10 4.2 X 1()-H 37 28
12 1.3 X 10-4 -t:.! 33
14 4.2 X 10-11 59 38
16 1.3 X 10-12 60 43
18 4.1 X 10-H 50 48
20 3.2 X 10- 1:; 53 50

* Unrolled refers to loops unrolled eight ways. Times are in
machine cycles per element.

136 KARP

equivalence (r2,ir2)
it = ishft(ir2,-20)
x = r2 * u(it)
x3 = O.SdO*x*x*x
s dO
s s*(1.5d0-x3*s*s)
s s*(l.Sd0-x3*s*s)
s = s*(l.Sd0-x3*s*s)
s s*(l.Sd0-x3*s*s)
result= s*t(it)

FIGURE 2 Cmle for four _'\ewton iteration,;. The ar­
rays u and t were calculated in the setup routilw.

in the result. ,,.e only need to get a reasonably
accurate first guess. If we use the same range re­
duction as before, a reasonable first guess would
be the function e,·aluated near the midpoint of the
range. In fact. I chose to use a zero'th order
Chebychev fit for the first guess.

Figure 2 shows the key part of the function in­
voked by the user. ~-e see that this code will not
use the hardware a;; effecti\·eh· a;; tht> Chebwht>v
code. Each Kewton iteration l;as a multipliC'~tion.
a multiply/add. and a final multiplication for a
total of 6 cvdes.

Table 3 shows the comergence and time for
rolled and unrolled loop,.. If the loop iii not uu­
rolled. Kewton\;; method takes 6 cycles per itera­
tion as predicted: it takes only abow :3 if the loop
is unrolled. Single preci;;ion accuracy is achie~·ed
in about 29 cycles per element and double prt>ci­
sion in 3-i cycles per element.

Is it worth using i\ewton's mellwd~ Yes it j;;

unlesii you need the ln,o;r ft>w bit,; eom-•ct. \.fithout
doing arithmetic in a higher prt>cision the loss of a
few bits of aecuran i:'i ine,·itnble. Howen'r. the
simplicity of the cod;, und ib ::;pet>d art> in it,; favor.

Table 3. Summary of Measurements of Accuracy
and Time for the Newton Method

n Error Rolled l'nrolled*

1 5.2 X 10- 1 17 1-t
2 3.3 X 1 o- 1 23 16
3 1.-f X 10- 1 :30 20
-t ;).0 X 10-2 :36 2-t
v 1.3 X 1o-:l -t2 2()
6 2.':' X 10-" -18 2()

7 1.1 X to-tt .'H :32
8 -t.3 X to-t~> 60 :3-t

* Cnrolled refer~ to loopo; unrolled eight wa~·s. Tin"'' art' in
machine cvc!Ps per dement.

We can do considerably better by makinr: two
changes to the Kewton 's method code. First of alL
note the small improvement in the first fe\\· it era­
tions. A better first guess would reduct' the num­
ber of Kewton itf'rations dramatically. I chose a
six-term Chebychev fit that results in single preci­
sion accuracv with one i\ewton iteration and dou­
ble precision with two.

There is another trick that can be used if onh·
six terms are toLe used in the polynomial approx­
imation-computt> the coefficients of the power,;;
of x. This approach i,; not recomnwnded in fr1:'11-

eral because of the potential round-off error,;
when the coefficients are combined. Here there i,;
no need to worrY bt>cause tht> :\ewton iteration will
tolerate such errors. The monomial coeflieienb
are

do = kn - (':l + ('~

dt = Ct - :3c:> +

d2 = 2c:! - 3c~

d:! = ·k:l - 20c·,

d .. = 8c ..

d:; = 16c:;

If we use Horner',; rult> to evaluate the approxima~
tion.

s = do+ :r(d1 + :r(d:J. + .r(d, + .r(d4 + ::rd:;)i:)

the polynomial e\·aluation is all multiply/add;;.
The key part of the code j;; shown in FigurP :3.

Table 'i Sl!IIUntlrizes the performance re~ult~.
\\·e see that we gr·t ,;inglt' prf"l'ision accuracy in
only 19 cydes ami double preeiiiion in 2:3 cycle<".
Because thi;; algorithm outperform,; the dirPt't
entluation b,· a factor of xwarh- 'i. un :'\-l,o•h· eodP

' . .

equivalence (r2,ir2)
it= ishft(ir2,-20)
x = r2 * u(it)
XX = 2.d0*x - 3.dQ
x3 = O.SdO*x*x*x
s = dO+xx*(dl+xx*(d2+xx*d3)))
s = s*(l.Sd0-x3*s*s)
result = s*t{it)

FIGURE 3 Code for the hybrid nwthod. A third onl<'r
Cheby~hev fit and mw _'\ewton iteration ar" ,;llllW!\. Tlw
coefficient;; d and the arrays u and t were ealculawd i11
the setup routine.

Table 4. Summary of Measurements of Accuracy
and Time for the Hybrid Method*

fl Error Holled Cnrolled

0 7.2 X 10-l 9 7
1 1.6 X 10-l 10 10
2 3.1 X 10-2 12 11
3 6.0 X 10-:l 13 12
-i 1.1 X 10-3 16 1:3
5 2.1 X 1Q--t 17 H

:\1 6.6 X 10-R 23 19
:\2 6.6 X 10-l:i :30 2:3

--~---

* The fir~t six rows are the order of the CIH'byehe\' fit: the
la~t two arc the :'>ewton iterations. Cnrolled refert; to loops
unrollt•d <'igln ways. Times are in machine cycles per element.

using this approach should run considerably
faster.

The referee pointed out one more trick that re­
duces the times in Table -+ by one cycle per ele­
ment. The Chebychev polynomials are evaluated
on the interval -1 :s: x < 1 while we have done a
range reduction to 1 :5 ur2 < 2. The variable xx is
used to do the required change of ,·ariables. Ex­
amination of the code shows that XX can be sub­
stituted into the polynomial approximation for s.
the terms can be arranged, and the new coeffi­
cients precomputed. These new coefficients. call
them gt; are related to the dt; by

go= do- :3r/1 + 9d:1- 27d, + 81d4 - 2-t3d:;

gl = 2d1- 12d2 + 5-td,- 216d4 + 810d:;

gJ = -td2- :36d~ + 216d4- 1080J:;

g:~ = 8d, - 96d4 + 720d.;

g; = 32d:;

Table 5. Coeffidents of the :\linimax Fit*

k c d

0 0. 60800:.~:36 O.S-t·H17-+1 7. 0.'5-+:):2-i 70
1 - () .:309;) 1280 -0.272:27;)6-i H.85088557
2 (). 0661 :3:3-t 7 0.11188678 H. 708:.~2:31 0
:3 -0.01:3:21:311 -0.(H:32i:377 -7.8370::G)5
i 0.0023-+752 0.0:20:38017 2.1 '709-+376
5 -O.OO<H80-t:~ -0.00-:'6869:3 -0.2-+39817-i

* Three limn~ are l·!i,·en: care the coefficients of the orthog­
onal poly!H>Illialh: dare the codficit•nt' of the monomials on
[- L 1:: g are the codliriems of the monmnials on [1. :r.

SPEEDI:\G CP 1\:-BODY CALCCLATIONS 137

We now e\aluate the polynomial

s = go + (ur2)(g1

+ (ur2)(g2 + (ur2)(g:i + (ur2)(g'* + (ur2)gs)))).

The complete subroutine, including the set-up
code, is shown in the Appendix; the coefficients
are shown in Table 5.

3 CONCLUSIONS

How can I beat the performance of a highly tuned
system routine with Fortran code? Simple-!
cheat.

I <'heat in a number of \\'3\'S. First of alL I f'valu­
ate the function directly rather than in pieces.
Second, I cheat by not getting the last few bits
right. Finally, I cheat by not doing any error
checking. (I could take the absolute value of the
input at the cost of one additional cycle.) How­
ever, the output value is accurate for any floating­
point input. Yery large input values produce
denormalized results: \·ery small inpUt values pro­
duce floating point infinity as they should.

If your machine supports the IEEE double ex­
tended format [6], a format with at least 64: bits in
the fraction that is usually resen·ed for data kept
in the registers. you can get the last few hits right
using a simple trick. Compute the array t in ex­
tended precision. but store it as two double preci­
sion numbers. t (1, i) and t (2, i). Then the fi­
nal scaling becomes s * (t (1, i) + t (2, i)) . I
could not check the accurac\· because the RISC
System/6000 does not support the double ex­
tended format. but the change added only 1 cycle
per result to the time of the unrolled loop.

Is it worth the effort and worry to use this new
approach? If your calculation is typical and
spends 3/-t of its time eyaJuating the acceleration,
speeding up this one line of code by a factor of :3
will cut your total run time in halL

ACKNOWLEDGMENTS

1 would like to thank Yin•k Sarkar for helping me un­
der::>tand the HS/6000 in,;truetion sdteduling, Rad
Olson and Bill Swope for trying to convince mel could
not heat the sy,..;tem functions (I love a challenge). and
the referee for seYeral good iJeas.

138 KARP

APPENDIX 1

Sample Code

This Appendix contains the complete version of
the code as measured. For the sake of space, I
changed the loop unrolling from eight -way to two­
way. Some points are worthy of note.

If working with single precision data, change
the shift to ishft (X, 23) because IEEE single
precision only uses 8 bits for the characteristic.

Also, the center for the arrays t and u should be at
127.

Some svstems do not allow continuation of exe­
cution foilowing an overflow. Becau;;e r-:li'J. will
underflow and overflow at the Loundarie:o; of the
floating-point arithmetic. adjust loop limit;; on
these machines. However. make sure that theta­
ble is filled properly. Cnderflow should produce a
true zero and overflow should produce l1oatinl!
point infinity.

c Approximate r**(-3/2) using Newton with Chebychev first guess
c
c Initialize arrays by calling with n
c

0 on first call

c

subroutine r32i (a, r2, ir2, n
implicit double precision (a-h, o-z)
parameter (ncheb ~ 200)
save gO, g1, g2, g3, g4, g5, c, t, u

c Calling sequence
c
c a
c r2
c ir2
c n
c

c

=
=
::::;:

:::::

output array
input array
input array to be used as an integer
length of input and output arrays

dimension a(n), r2(n), ir2(2,n)

c Local variables
c
c f
c z =
c c
c d
c g
c t
c u
c

c

temporary array needed to compute c
temporary array needed to compute c
coefficients of Chebychev approximation
coefficients of monomial fit on -1 < x < 1
coefficients of monomial fit on 1 < x < 2
table of (2**kl**(-3/2) for -1024 < k < 1024
table of 1/2**k for -1024 < k < 1024

dimension t(0:2046),u(0:2046),c(O:ncheb-l),f(ncheb) ,z(ncheb)

c Function shifted from 1 to 2 to -1 to 1
c

func(r) = (l.SdO + O.SdO*r)**(-1.5)
c
c If not first call, then compute function
c

if (n .gt. 0) then
c
c Approximate results loop unrolled 2 ways
c A greater degree of loop unrolling will probably perform better

c

c

c

c

do i = 1, n, 2
it= ishft(ir2(1, i),-20)
X= r2 (i) * U(it)
X3 = 0.5d0*X*X*X

SPEEDJ\G LP \-BODY C\LCLL\TIO\S 139

s gO+ x*(gl + x*(g2 + x*(g3 + x*(g4 + x*g5 J)))

s = s*(1.5dO-x3*s*s)
s = s*(1.5dO-x3*s*sl Use for double precision
a(i) = s*t(it)
it= ishft(ir2(1,i+1),-20)
x = r2(i+l) * u(itl
x3 = 0.5dO*x*x*x
s gO+ x*(g1 + x*(g2 + x*(g3 + x* (g4 + x*g5 J)))

s = s*(1.5d0-x3*s*sl
s = s*(1.5dO-x3*s*s) Use for double precision
a(i+1l = s*t(it)

enddo

c Finish up unrolled loop
c

c

c

do j = i, n
it= ishft(ir2(l,j),-20)
x = r2(j) * u(it)
x3 = O.SdO*x*x*x
s gO+ X*(g1 + x*(g2 + X*(g3 + X*(g4 + X*g5) I))

s = s*(1.5d0-x3*s*s)
s = s*(1.5dO-x3*s*s) Use for double precision
a (j) s*t (it)

enddo
else

c If the first call, build table of results for powers of 2
c

c

xi = 1. dO
t(1023) = l.dO
U(l023) =l.dO
do i = 1, 1023

xi= 0.5dO*xi
t (1023+i l xi *sqrt (xi)
t(1023-i) 1.d0/t(1023+i)
u(1023+il =xi
U(l023-i) l.dO/xi

end do

c Precompute zeros of Chebychev polynomials and function
c

c

pi= 4.d0
do k = 1,

z (k)

* atan
ncheb
pi * (k
COS(Z(k))

1. dO)

O.SdO l I ncheb
zero
f (k)

enddo
= func(zero)

140 KARP

c Get coefficients of Chebychev fit
c

c

factor 2.dO/ncheb
do j = 0, ncheb-1

sum= o.do
do k = 1, ncheb

arg z(k) * j
sum= sum+ f(k)*cos(arg)

enddo
c(j) = factor*sum

end do

c Get coefficients of powers of x on -1 < x < 1
c

do =
dl =
d2
d3
d4 =
d5

0.5dO*c{0) c(2) + c(4)
c (1)

2.0dO*c(2)
4.0dO*c{3)
8.0dO*c(4)

3.dO*c(3) + 5.dO*c(5)
8.dO*c(4)

20.30*c(5)

= 16.0d0*C(5)
c
c Get coefficients of powers of x on 1 < x < 2
c

gO=d0-3.0dO*dl+ 9.0dO*d2-27.0dO*d3+ 81.0dO*d4- 243.0dO*d5
g1= 2.0dO*d1-12.0dO*d2+54.0dO*d3-216.0dO*d4+ 810.0dO*d5
g2= 4.0dO*d2-36.0dO*d3+216.0dO*d4-1080.0dO*d5
g3::c 8. OdO*d3- 96. OdO*d4+ 720. OdO*d5
g4= 16.0dO*d4- 240.0dO*d5
g5= 32.0dO*d5

end if
c

end

REFERENCES

[1] R. \C Hocknev and J. \'C E.a,:;twood. Computer
Simulation [·si~[!: Particles. :\ew York: :\lcGraw­
Hi!L 1981.

[2: J. A. Sellwod. Annual Ren'eu·s of Astronum.\· and
Astrophysics. \'Ol. 2.5. Palo Alto. CA: Annual Re­
views, Inc., 1987, pp. 151-186.

p; J. Barnes and P. flur. '·A hierarchieal O::\lo!!:\.1

force-calculation algorithm ... Suture. vol. :32-t. pp.
H6-+t9. 1986.

[-t] :\1. P. Allen and D. J. Tilde;;ley. Computer Simula­
tion of Liquids. Oxford. l'K: Oxford Lniwrsitv
Pre,;s. 198?.

[5] \'\'.H. Press. B. P. Flamwry. S. :\. Teukolsh. and
W. T. Yetterlin:r . .\'wnericul Recipes. :\t'w York:
Cambridf!<> l'niwrsity Pre,;~. 1()86. pp. 1-+7-1.')1.

[6] American :\ational Standards ln~titutt•. lne. IEEE
Standard for Binary Floating-Poim .-\rithmeti<'.
Technical Report A:\SI/IEEE Std "?.)-t-19~;).

IEEE. :3-t5East-t7tiJ Sm.·et. :\t'wYork. :\Y 1001:.
1985.

[7] B. Olsson. R. :\lontoyt>. P. \larkswin. and :\1.
:\~:-~·uen Phu, R/SC S,1·stcml 6000 Floating-point
Cnil. lB.\ I. :\Y: RISC Systt·m/6000 Teehnolo~:-~·-
1990, pp. :H--+2.

[8] J. .\1. Ortega, .\'wnerical A.twz\·sis. :\ew York: .-\ca­
demic Pres;;. 1972. pp. 1.'5;')-1 ;)8.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

