Speeding up N-body Calculations on Machines
without Hardware Square Root

ALAN H. KARP
IBM Scientific Center, Palo Alto, CA 94304

ABSTRACT

The most time consuming part of an N-body simulation is computing the components of
the accelerations of the particles. On most machines the slowest part of computing the
acceleration is in evaluating r~#2, which is especially true on machines that do the
square root in software. This note shows how to cut the time for this part of the calcula-
tion by a factor of 3 or more using standard Fortran. € 1993 John Wiley & Sons, Inc.

1 INTRODUCTION

Manv phenomena in astrophvsics and chemistury
are being simulated using N-body methods [1. 2.
The most time consuming part of such simula-
tons is computing the accelerations on each pari-
cle due to all the others. This is true for the simple
N2 methods. tree-based methods [31. or those us-
ing neighbor lists [4].

If the potential being used has an odd power of
the particle separation in it. computing the or-
thogonal components of the acceleration will in-
volve taking a square root. Although some ma-
chines do square root in hardware. many do not.
It is not unusual to find that half the run time of an
N-body calculation 1s spent in the square root
subroutine.

In our case. we want 1o evaluate the accelera-
tion on euch particle in a system of self-gravitating
bodies. For example. the r-component of the ac-

Received October 1992
Accepted November 1992

Alan Karp's present address: Hewlett-Packard Labs 30-7.
1501 Page Mill Road. Palo Alo. CA 94304. karp@hpl.hp.com
© 1993 by John Wiley & Sons. Inc.
Scientific Programming. Vol 1. pp. 133-140 {1992}
CCC 1058-9244/93/020133-08

celeration for particle j under the gravitational in-
{luence of particle k is

o ! ~ —
S = Cmyla; —)
ik 3

where i is the unit vector in the x direction. G is the
gravitational constant. my is the mass of particle k.
and r is the separation between the particles.

r= \/!‘li/' - ‘l‘/\’/\"-) + ‘/i.‘_./’ - ,“l\‘,\’2 + :/ - :k}z
For efficiency. we usually code r* as r2 V2,

The system square root routine. not knowing
how its result will be used. computes the square
root with a divide-free Newton iteration to com-
pute the inverse of the square root followed by a
muliiplication by the input value to get the final
result. ‘The compiler then multiplies by r? and di-
vides the result into the numerator. Because both
divisions and square roots are usually slow. this
operation takes a long time.

Table 1 shows the time needed for some com-
mon operations—an empty loop. a simple assign-
ment, division. square root. and 72, All times
are in machine cvceles per element measured on an
IBM RISC System/6000 Model 540. Because

RISC machines of this kind usually improve per-

133

134 KARP

Table 1. Time for Some Common Operations in
Machine Cycles Per Element Run on an IBM
RS/6000-540

m Rolled Unrolled*
Empty 2 2
assignment 4 <+
x ! 20 20
Vz 56 56
(V) 77 77

* Unrolled refers to loops unrolled eight wavs. Note that
I £ 3
loop unrolling has no effect.

formance by pipelining arithmetic operations. un-
rolling loops frequently speeds things up. Clearly.
the operations measured do not benefit.

It is possible to do considerably better than the
direct computation. This note shows how to use
standard Fortran to evaluate the acceleration in
about one third the time taken by the direct evalu-
ation.

2 ALGORITHM

The only way we can beat the efficiency of the
system routines is to use our extra knowledge of
the problem. In this case, we will not compute
r2. Instead. we will compute r=3 directly from r2.
The simplest approach is to approximate this
function with a polynomial. Chebychev polvnomi-
als are frequently used because they minimize the
maximum error of the approximation on some in-
terval [5]. One difficulty is that the approximation
is accurate only if the arguments are limited to a
relatively small range. With a range reduction the
procedure for an input argument r? becomes

1. Find a u such that @ = ur® < 8. where a and
B are numbers of order unity.
Approximate {ur?)™%2,

Get the correct result by muliplyving the
approximation by ¢ = 12,

2.
3.

Because I want to keep my algorithm entirely in
Fortran, I decided to use two tables for v and ¢.
The entries in u are simply the power of 2 such
that 1 = ur? < 2. The entries in ¢ are *’2. The only
problem is to figure out which table entries to use
for a given input value.

The range reduction I use is based on the IEEE
double precision number format [6]. Each num-
ber consists of 64 bits—1 sign bit, 11 exponent

bits, and 52 fraction bits. In addition. there is an
implicit 1 bit for normalized numbers.

If I know the argument is positive. as it must be
for the function I am interested in. I can extract
the exponent by shifting the high order 32 bits of
the floating-point number 20 bits to the right. In
Fortran, this procedure requires that [EQUIVA-
LENCE the double precision number to an integer
or pass a double precision argument to a subrou-
tine that uses it as an integer. Shifting the integer
gives the index in the tables. Because there are
only 11 bits to represent the exponent. I know my
tables need only 2.048 entries.

I could have coded my tables as DATA state-
ments in the program. but I decided to ask the
user to make a single call to set them up as is
frequently done with Fourier transform routines.
The code to build the tables is contained in the
program in the Appendix.

Now that | have scaled the input to a modest
range, | can do the approximaton. The coefli-
cients of the fit are easv to compute [5. I [write

the approximation of (ur?)™? as

n

flo)=xsco+ 2, exTil),
k=1

M| =

where x = 2(ur?) — 3. the coeflicients ¢4 can be
calculated from

\
cr =+ 2 S Trlay.
N5

<o

where the 2; are the zeros of Tv{x). x; = cos[m j -
1/23/N]. The change of variable from ur?) 1o @ is
needed because the Chebychev polynomials are
orthogonal on the interval [—1. 1! If we choose
N ® m, the approximation will be very close to the
minimax polvnomial.

[t is important to use knowledge of the hard-
ware in writing the code. [made my runs on an
IBM RISC System 6000 Model 540. RISC ma-
chines nominally do all operations in one machine
cycle, but in practice complicated operations are
pipelined. On this machine, all floating-point ad-
ditions and multiplications are treated as com-
pound multiply/add operations [7]. An isolated
operation takes two cvcles. but a sequence of op-
erations produces one result per cycle after a delay
of two cycles. Thus, our goal is to produce com-
pound operations that can be pipelined.

Figure 1 shows part of a function that the user
invokes to do the Chebychev fit. The input value is

equivalence (r2,ir2)
it = ishft(ir2,-20)
X = r2 * u{it)

X = 4.40*x - 6.d0

t00 = 1.d0

s = ¢(l)

t01 = 0.5d0*x

s =5 + c{ 2)*t01
t02 = x*t01 - t00
s =8 + ¢c{ 3)*t02
t03 = x*t02 - t01

s =5 + c{ 4)*t03
result = s*t (it)

FIGURE 1 Code 1o evaluate a four-term Chebyehev
fit. The input is r2. The tables u. t. and ¢ were
calculated in the setup routine,

2. The statement EQUIVALENCE (r2, ir2) is
needed because the shift function will only work
on an integer argument.* Only four terms are
shown. but the extension 1o more is obvious.

Aflter some set-up code 10 do the range reduc-
tion and shift the arguments into the range of the
Chebychev polynomials, all operations but the
last are muliply/adds. Unfortunately. these oper-
ations are dependent on each other, s0 we are not
making optimal use of the arithmetic pipeline. For
example. the multiply/add that updates s cannot
be started until the previous tis readv. Also. com-
putation of the next t cannot be started until the
previous one is done. However. we can overlap
these two calculations so we expect each order of
approximation 10 take an additional 3 cveles.

Table 2 summarizes the timing and accuracy
results. The relative errors are measured using the
direct calculation as the correct value. These er-
rors are identcal to the bounds computed by
summing the absolute values of the dropped coef-
ficients [5].

The times are given in machine cycles per ele-
ment. In each case I measured the elapsed time
with a clock accurate to a few nanoseconds. The
times reported are the smallest of 20 runs of
10,000 random inputs. Although there are some
anomalies. most of the time it takes 3 cvcles 1o add
one more order 1o the approximation. The anom-
alies are caused by running out of registers and
the performance of the memory when loading the
coelficients.

One way to improve the overlap is to do more

* Swrong tvping is pice. but it shouldnt be invincible.”
N. L. Karp. private communication. 1985.

SPEEDING UP N-BODY CALCULATIONS 135

than one evaluation on each pass through the
loop, that is, unroll the loop. I experimentally de-
termined that unrolling the loop eight ways gave
me as much speed-up as 1 was going to get. The
last column in Table 2 shows that adding one
more term to the approximation costs less when
the loop is unrolled. about 2 cveles per term.

Is it worth using this approximation? It depends
on the accuracy needed. The time stepping
scheme will have some truncation error. Clearly,
there is no point making the function evaluation
more than an order of magnitude more accurate
than this value.

Table 2 shows that single precision {about 8
digit) accuracy with around 10 terms can be ob-
tained at a cost of 28 evcles. a third the cost of the
direct computation. If more accuracy is needed.
almost 16-digit accuracy can be obtained if 20
terms are used, but the speed-up over the direct
“alculation is small.

Anotker approach is to use Newton’s method.
It is based on finding the roots of some function, in
this case

1,
Sy =—3 =)

L"‘
The iteration is then

A — f{."’t} _
Tt T)
where n is the iteration index.

Newton's method is quadratically convergent
when applied 1o a convex function such as ihe one
in which we are interested [8]. This means that
each iteration doubles the number of correct bits

Table 2. Summary of Measurements of Accuracy
and Time for the Chebvchev Approximation

m Error Rolled Unrolled*
0 7.2 x 1071 8 6
2 3.1 x 1072 15 13
4 1.1 x 1073 21 17
6 3.8 x 1071 28 21
8 1.3 x 107° 33 25
10 4.2 x 1078 37 28
12 1.3 x 107¢ 42 33
14 4.2 x 10711 59 38
16 1.3 x 10712 60 43
18 4.1 x 1071 50 48
20 3.2 x 1075, 53 50

* Unrolled refers wo loops unrolled eight ways. Times are in
machine cycles per element.

136 KARP

equivalence (r2,ir2)
it = ishft(ir2,-20)
X = r2 * y({it)

x3 = 0.5d0*x*x*x

= do

8% (1.5d0~x3*s*3)
s*(1.5d0-x3*g*s)
s*{1.5d0-x3*s*s)
= g% (1.,5d0-x3*s*3)
result = s*t (it)

[}

o unnn
[}

FIGURE 2 Code for four Newton iterations. The ar-
rays U and t were caleulated in the setup routine.

in the resuli. We only need to get a reasonably
accurate first guess. If we use the same range re-
duction as before, a reasonable [irst guess would
be the function evaluated near the midpoint of the
range. In fact. I chose to use a zero'th order
Chebychev fit for the first guess.

Figure 2 shows the kev part of the function in-
voked by the user. We see that this code will not
use the hardware as effectively as the Chebyehev
code. Each Newton iteration has a multiplication.
a muliply/add. and a final multiplication for a
total of 6 cvcles.

Table 3 shows the convergence and time for
rolled and unrolled loops. If the loop is not un-
rolled. Newton's method takes 6 cveles per itera-
tion as predicted: it wakes only about 3 il the loop
is unrolled. Single precision accuracy is achieved
in about 29 cveles per element and double preci-
sion in 3+ cveles per element.

Is it worth using Newton's method? Yes it is
unless vou need the last few bits correct. Without
doing arithmetic in a higher precision the loss ol a
few bits of accuracy is inevitable. However. the
simplicity of the code and its speed are in its favor.

Table 3. Summary of Measurements of Accuracy
and Time for the Newton Method

n Error Rolled Unrolled®
1 5.2 x 1071 17 1+
2 3.3 x 107! 23 16
3 1.4 x 107! 30 20
4 3.0 x 1072 36 24
3 1.3 x 103 +2 26
6 2.7 x 1070 48 29
7 1.1 x 101 54 32
8 +.3 x 10710 60 34

* Unrolled refers to loops unrolled eight wavs. Times are in
machine cycles per element.

We can do considerably better by making two
changes to the Newton’s method code. First of all.
note the small improvement in the first few itera-
tions. A better first guess would reduce the num-
ber of Newton iterations dramatically. I chose a
six-term Chebychev fit that results in single preci-
sion accuracy with one Newton ireration and dou-
ble precision with twe.

There is anather trick that can be used if only
six terms are to be used in the polynomial approx-
imation—compute the coeflicients of the powers
of x. This approach is not recommended in gen-
eral because of the potential round-off errors
when the coefficients are combined. Here there is
no need o worry because the Newton iteration will
tolerate such errors. The monomial coefficients
are

do= deo— 2t o
di = e, ~ 3cy+ 3¢
ds = 2¢0 ~ 8oy

dy = ey — 2005

dy = Bey

s = 165

If we use Horner's rule to evaluate the approxima-
tion.

s = dy + xldy + x{dy + xldy + xids + 2ds

the polynomial evaluaton is all muliply/adds.
The kev part of the code is shown in Figure 3.
Table 4 summarizes the perlormance resules.
We see that we get single precision aceuracy in
only 19 eveles and double precision in 23 eveles.
Because this algorithm outperforms the direct
evaluation by a factor of nearly 4. an N-body code

equivalence (r2,ir2)
it = ishft{ir2,-20)
X = r2 * ul{it)

xx = 2.,d0*x - 3.d40

x3 = 0.5d0*x*x*x

8 = di+xx* (dl+xx* (d2+xx*d3)))
8 = 8% (1.5d0~-x3*s*s)

result = s*t (it)

FIGURE 3 Code for the hybrid method. A thivd order
Chebychev fit and one Newton iteration are shown. The
coefficients d and the arravs U and t were caleulated in
the setup routine.

Table 4. Summary of Measurements of Accuracy
and Time for the Hybrid Method*

n Error Rolled Unrolled
0 7.2 x 107 9 7

1 1.6 x 1071 10 10

2 3.1 x 1072 12 11

3 6.0 x 1073 13 12

4 1.1 x 1073 16 13

3 2.1 x 107+ 17 14
Nt 6.6 X 1078 23 19
N2 6.6 x 10715 30 23

* The first six rows are the order of the Chebychev fit: the
last two are the Newton iterations. Unrolled refers to loops
unrolled eight wavs. Times are in machine eycles per element.

using this approach should run considerably
faster.

The referee pointed out one more trick that re-
duces the times in Table 4 by one cvele per ele-
ment. The Chebychev polynomials are evaluated
on the interval —1 = x < 1 while we have done a
range reduction to 1 < ur? < 2. The variable xx is
used 10 do the required change of variables. Ex-
amination of the code shows that xx can be sub-
stituted into the polynomial approximation for s.
the terms can be arranged, and the new coeffi-
cients precomputed. These new coefficients. call
them gy are related to the dj by

g{) = {1(3 - 3(,11 -+ {)(1'3 - 2?(13 + 81(2{; - 2"*3([',

gr= 2edy — 12do + S4ds — 216d, + 810d5
g = +4dy = 36dy + 216d, — 1080d;
g = 8ds — 96d, + T20d5
gy = 16d, — 240d5
g = 325

Table 5. Coelficients of the Minimax Fit*

k IS o . g

0 0.60800336 705452470
1 =0.30951280 - 14.85088557
2 0.06613347 14.70832310
3 ~-0.01321311 ~7.83703555

0.00254752 2.17094576
—-0.00048043 ~{.2459817+

0.54441741
—0.27227564
0.11188678
—{.04324377
0.02038017
—0.00768693

[

* Three forms are given: ¢ are the coefficients of the orthog-
onal polynomials: «f are the coefficients of the monomials on
f=1, 17 g are the coeffivients of the monomials on [1. 27,

SPEEDING UP N-BODY CALCULATIONS 137

We now evaluate the polynomial

s =go + (urt)(g
+ (ur?)(gy + (wur?)(gs + (ur?){gs + (ur)gs)))).

The complete subroutine, including the set-up
code, is shown in the Appendix; the coefficients
are shown in Table 5.

3 CONCLUSIONS

How can I beat the performance of a highly tuned
svstem routine with Fortran code? Simple—I
chear.

1 cheat in a number of wavs. First of all. T evalu-
ate the function directly rather than in pieces.
Second. I cheat by not getting the last few bits
right. Finally, I cheat by not doing any error
checking. {I could take the absolute value of the
input at the cost of one additional cycle.) How-
ever, the output value is accurate for any floating-
point input. Very large input values produce
denormalized results: very small input values pro-
duce floating point infinity as they should.

If vour machine supports the IEEE double ex-
tended format [6], a format with at least 64 bits in
the fraction that is usually reserved for data kept
in the registers. you can get the last few bits right
using a simple trick. Compute the array t in ex-
tended precision. but store it as two double preei-
sion numbers, t (1, 1) and t (2, 1). Then the fi-
nal scaling becomes s* (t(1,i)+t(2,1)). 1
could not check the accuracy because the RISC
System/6000 does not support the double ex-
tended format. but the change added only 1 eycle
per result to the time of the unrolled loop.

Is it worth the effort and worry 1o use this new
approach? If vour calculaion is 1ypical and
spends 3/4 of its time evaluating the acceleration,
speeding up this one line of code by a factor of 3
will eut your total run time in half.

ACKNOWLEDGMENTS

I would like to thank Vivek Sarkar for helping me un-
derstand the RS/6000 instruction scheduling, Rad
Olson and Bill Swope for trving to convince me | could
not beat the system functons {1 love a challenge), and
the referee for several good ideas.

138 KARP

APPENDIX 1
Sample Code

This Appendix contains the complete version of
the code as measured. For the sake of space, I
changed the loop unrolling from eight-way to two-
way. Some points are worthy of note.

If working with single precision data, change
the shift to ishft (x,23) because IEEE single
precision only uses 8 bits for the characteristic.

Also, the center for the arrays t and ushould be at
127.

Some svstems do not allow continuation of exe-
cution following an overflow. Because r? will
underflow and overflow at the boundaries of the
floating-point arithmetic, adjust loop limiis on
these machines. However, make sure that the ra-
ble is filled properly. Underflow should produce a
true zero and overflow should produce floating
point infinity.

¢
c
¢ Initialize arrays by calling with n
c
subroutine r32i (a, r2, ir2, n)
implicit double precision (a-h, o0-z)
parameter (ncheb = 200)
save g01 gl: g2, g3) g4) g5) C, u
c
¢ Calling sequence
C
¢ a = output array
¢ r2 = input array
¢ ir2 = input array to be used as an integer
¢ n = length of input and output arrays
c
dimension a(n), r2(m), ir2(2,n)
c
¢ Local variables
c
¢ f = temporary array needed to compute ¢
¢ z = temporary array needed to compute ¢
¢ ¢ = coefficients of Chebychev approximation
¢ d = coefficients of monomial fit on -1 < x < 1
¢ g = coefficients of monomial fit on 1 < x < 2
¢ t = table of (2**k)**(-3/2) for -1024 < k < 1024
¢ u = table of 1/2**k for -1024 < k <« 1024
c
dimension t(0:2046),u(0:2046), c(0:ncheb-1), f(ncheb), z (ncheb)
c
¢ Function shifted from 1 to 2 to -1 to 1
c
func(r) = (1.5d40 + 0.5d0*r)**(-1.5)
C
¢ If not first call, then compute function
¢
if (n .gt. 0) then
¢

¢ Approximate results - loop unrolled 2 ways
¢ A greater degree of loop unrolling will probably perform better

Approximate r**(-3/2) using Newton with Chebychev first guess

0 on first call

e}

2}

e}

SPEEDING UP N-BODY CALCULATIONS

do i =1, n, 2
it = ishft(ir2(1,1i),~-20)
X =12 (i) * u(dt)
X3 = 0.5d0*x*x*x
s g0 + x*(gl + x* (g2 + x* (g3 + x*(g4 + x*g5) }))
s = g*(1.5d0-x3*%s*s)

s = s*(1.5d0-x3*s*s) ! Use for double precision

a(i) = s*t(it)

it = ishft(ir2(1, i+1),-20)

X = r2(i+1) * u{it)

X3 = 0.5d0*x*x*x

s = g0 + x*(gl + x*(g2 + x*(g3 + x* (g4 + x¥g5))))
s = s*(1.5d0-x3*s%*s)

s = s*(1.5d0-x3*s*s) ! Use for double precision
a(i+1l) = s*xt(it)
enddo

Finish up unrolled loop

do j =1, n
it = ishft(ir2(1,3),-20)
X = 12(]) * u(it)
X3 = 0.5d0*x*x*x
s = g0 + x*(g1 + x*(g2 + x*(g3 + x*(g4 + x*g3)} 1))
s = s*(1.5d0-x3*s*s)

s = g*(1.5d0-Xx3*s*5) ! Use for double precision

a(j) = s*t(it)
enddo
else

1f the first call, build table of results for powers of 2

xi = 1.d0
£{1023) = 1.d0
u(1023) = 1.do
do i =1, 1023
xi = 0.5d0*x1

t(1023+1) = xi*sqrt(xi)
t(1023-1) = 1.d0/t(1023+1)
u(1023+i) = xi
u{1023-i) = 1.d0/xi

enddo

Precompute zeros of Chebychev polynomials and function

pi = 4.d0 * atan (1.d0)
do k = 1, ncheb

z (k) pi * (k - 0.5d0) / ncheb
zero = cos{z(k))
f (k) = func(zero)

enddo

139

140

KARP

¢ Get coefficients of Chebychev fit
c
factor = 2.d0/ncheb
do j = 0, ncheb-1
sum = 0.dO
do k = 1, ncheb
arg = z(k) * j
sum = sum + T (k) *cos(arg)
enddo
c{j) = factor*sum
enddo
c
¢ Get coefficients of powers of x on -1 < x <1
c
do = 0.5d0*c(0) - c(2) + c (4
di = c(1l) - 3.d0o*c(3) + 5.d0*c(5)
d2 = 2.0d0*c(2) - 8.d0*c(4)
d3 = 4,0d0*c(3) - 20.30*%c(5)
d4 = 8.0d0*c (4)
ds = 16.0d0*c ({5)
c
¢ Get coefficients of powers of xon 1 < x < 2
c
g0=d0~3. 0d0*d1+ 9.0d0*d2-27.0d0*d3+ 81.0d0*d4- 243.0d40*d5
gl= 2.0d0o*d1-12. 0d0*d2+54.0d0*d3-216. 0d0o*d4+ 810.0d0o*d5
g2= 4.0d0*d2-36. 0d0*d3+216. 0d0*d4-1080. 0d0*d5
g3 8.0d0*d3- 96.0d0*d4+ 720.0d0*d5
g4= 16.0d0*d4- 240.0d0*d5
g5= 32.0d0*d5
endif
c
end
REFERENCES [5] W, H. Press. B. P. Flannery. 5. A, Teukolsky. and
W. T. Veuwerling. Numerical Recipes. New York:
[1] R. W. Hockney and I. W. Eastwood. Computer Cambridge University Press. 1986, pp. 147-151.

Simulation Using Particles. New York: MeGraw-
Hill. 1981.

I. AL Sellwod. Annual Reviews of Astronoms- and
Astraphysics, vol. 25, Palo Alo. CA: Annual Re-
views, Inc.. 1987, pp. 151-186.

; J. Barnes and P. Hut. = A hierarchical (!Nlog\}

force-calculation algorithm.™ Nature. vol. 32+4. pp.
446—449. 1986.

M. P. Allen and D.]. Tildeslev. Computer Simulc-
tion of Liquids. Oxford. UK: Oxford University
Press. 1987.

] B. Olsson. R. Montove. P.

American National Standards Insttute. Ine. IEEE
Standard for Binary Floating-Point Arithmetic.
Technical Report ANSI/IEEE Std 754-1985.
[LEE. 3435 East 47th Street. New York. NY 10017,
1985,

Markstein. and M.
Ngvuen Phu, RISC System/ 6000 Floating-point
Unit. IBM. NY: RISC System/6000 Technology.
1990, pp. 34—42.

1. M. Ortega, Numerical Analysis. New York: Aca-
demic Press, 1972, pp. 155-158.

Advances in : ~ = Journal of

o . Industrial Engineerin
INultimedia e

Applied
Computational
Intelligence and Soft
- ; ey Lomputing—
H H nternational Journal of ! - "
The Scientific D gureter . ey B P —
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networks
and Communications Advances in

Artificial
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, =M Neural Systems

#

International Journal of
Computer Games
Technology

Intel ional J na
Reconfigurable
Computing

e . Computational i
t Ad S ~ Journal of
Journal of uman-Computer Intelligence and e, Electrical and Computer
Robotics Interaction Neuroscience Engineering

