Efficient Parallel Programming with Linda*

ASHISH DESHPANDE AND MARTIN SCHULTZ

Deportment of Computer Science, Yale University, New Haven, CT (06320

ABSTRACT

Linda is a coordination language invented by David Gelernier at Yale University, which
when cambined with a computation lunguage {tike C} yvields o high-level parailel pro-
gramming language for MIMD machines. Linda is bosed on o virtual shared ossociative
memory conlaining obiects called tuples. Skeplics have long claimed thot Linda pro-
grams could not be efficient on distribuvied memory architectures, In this paper, we
cddress this claim by discussing C-Linda's performance in solving @ particular scientific
camputing problem, the shallow water equations, and make comparisons with alterno-
tives available on various shared ond disiributed memory parallel mochines. ¢ 1993 by

Jahn Wiley & Sons, g,

1 INTRODUCTION

Linda is a set of objeets called tuples and a cmaldl
number of powerful operations on those ohjects,
which can be combined with a host language slike
C or Forrranito vield a high-level dinlect for paral-
lel programming o MIMD machines and loeal
area networks (LANsL Linda has been discussed
extensively i the Herature and we shall axsume
some knowledge of Linda, We refer the reader 10
reports by Carriere and Gelernter (13 for far-
ther details. For the sake of completeness. we in-
chude a briel discussion of Linda in the Appendix,

I has long been the contention of many re-
searchers that the overhead swreclated with pun-
agement of the shared tuple space in Linda is 1o
high to permit an efticient implemenzation on dis-
tributed memory machines even {or relatvely

* Thizwork s supported b poet Ty ONR Grant N Nigs-
GE-E-15T0, NeF/CER oo Moo BUR 85145100 and San-
shia Natanad Labsorunrories
Hecvived Moy 11002
Areepned Decendwr 1992
£ 1903 by lebo Wiley & Sons, ne,
Sciemifie Programmdag, Vol 1. pp.
G TORB-0244/ 93 /02017707

P18 J 10U

compnite-intensive problems. To swady this con-
tention. we will present performance data for €-
Lixda on o viriety of machines, in ;m:‘li(-‘nhn'. ot
distbued memory nmnchines, We alro compare
the performance to that obtalned using vadisional
Tessu e passing avstems,

We have taken a npecific setentilie computing
problem the shallow warer equations, a model of
astmospherie Bowi whicl is relatively compute-
intensive but is stll representadve of the types of
problens it researchers in several disciplines
dre attempling o solve, I conmmunivation siruc-
ture 15 hased only on nearest neighbor communi-
eation. maeking itideally 2aited 1o message possing
on hypereubes, Our message passing implemens
wttons of this problem bave dis optimal com-
munication stmeiare {:*_'.\;.)lit".ilf}' eneoded in them
and are able 10 ke advamage of it In conmrast
the Linda program has no communication saue-
wre explicidy eneoded in it ke adhvaniage of
the regulurity of the problem. Nevertheless, as we
shull wee in snbsequent sections, Linda appears o
Lobd its own,

We will also investgare the performanes and
vigbility of @ clusier of workstations connected o-
gether by a LAN as an environment for eoneurrent
computing. Networks of workstatdons can bhe an

177

178 PESHPANDE AND SCHULTL

ceononioal, practicel. and powerlul resource lor
parallel computing, They are already available
a targe number of users. They offer considerable
petential for fault telerance. Iy single worksiation
goes down the remaining nodes can wsually con-
tinue 1o functon nomalle, This i olten potrue of
tighdy coupled mulidprocessors where a fallure in
a single processing element results in the entire
machine going down and the computation being
suspended. Workstations alse offer a wser-
hiendly environment with fnmiliar tools 1w oald in
program development.

We have implemented amd evaluaed dw per-
formance of the Linda program on a varviewy of
machines, We will present pesults for shared
memaery machines {Sequent Svimmerry and the
Encore Madimaxi, disteibuted memory machines
(PR and iPSC/BH0 hypercubesi. and for a
network of Sparestadions connected by an
ethernet. The same Linda program was executed
on all these machines and is pedformance was
evahuued and compared 10 that of mplemenia-
Hons using aliernative methods avallabde on all
machines,

In our expetience, the Linda program has gea-
erally beer easier and more convenient 1o write
than the pative versions for each machine. Al
though this is a subjective issue. it is certainly frue
that the pormbiliv of the Limda version {as exi-
denced by our ability vo run it efficlently on witdely
differing machines without having 1o change the
code in any wavi makes it sasier ancd more con-
verserit than writing g separate ende for vach ma-
chine wnder consideration. Obvicushy. there 1= a
price to pay for this ease of use but we shall see
that the loss in efficiency @ relatively small on all
the machines that we have considered,

2 THE SHALLOW WATER MODEL

The shallow water equations are a simplification
of the primitive equations of atmospheric motion,
They represent a simple and compuratonally effi-
cient approximation to more acourae but more
eomplicated madels representing mal aimo-
spheric flow. However, they sill invelve most of
the parallel algorithmic and programming ssues
exhibited by the more complex models. More geu-
eraliv. the pﬁnaiiei mwapes we consider are z‘a;.:hcd~
ble 1o most explicit time marching schemes for
time dependent (systems oft partal dilferential
equations.

In Cartesian coordinates,

the equations are of

the form

& e g dd)

P N L e e L {}
E7E T fr=1
é‘s‘ ar dr b

o JRois PR S SR B w §)
Tu PR S gy fue =€

B0, dbur ddes o
ST T IO

where w. o are the veloelty componenss in the x-
aned v-directinns, 6 = gl s the free surlace geapo-
teniinl. g is the nepeleratinn due o graviee, fis the
Coriolis parameter. and A is the eiglc ol the foid

The numerical solidion of these equations s
usuadly required in arectagnslar region @ <0 < L
wd << Dfors >4 The iummfan conditions
age j.:e_-m.sr_ém in the x-direction

wir, v = wie Loy o
whese w = [, T iw the =olmion,

rigid wall i the velirectdon

v, = viv fLop o

s

anct the inttiad comdivion i
wir. 3 = P vl

We yse the hinire differenee appraximasgions des

serihed by Robert Sadonmey 41 which have

s
been used in PFEViOUS studies of the same prob-
e, We sobve diese equations aumerncally using

siaple. Holte difference approximations:

A Lk Avi fe -

A RV

whivh ean Be devived fom the Tavlor seres ex-
pansion fora fancton, This s a second-order fp
proximeton that eesults o an explicit e march-
ing algorithm for solving the equations. Thus
given the values of v o and & ar £ and £+ AL we
can calculate their valies at 0+ 238 a8l @id
points simubtaneously. Washingion and Pzr&m»
sort (D] provide a detaited desort iption of the alg-
rithms.

3 LINDA IMPLEMENTATION

The Linds implementation of our probleny relies
on the production and consumption of wples for
flow control. As always, we would like to minimize

the amount of tme spent by each process in com-
munication. It the case of Linda programs. this
means minimizing the number of accesses 1o tuple
space and at the same time limiting the amount of
data exchanged between the processes by mini-
mizing the size of the wples exchanged.

Tuples reside in the shared main memory on
shared memory machines and are disuibuted
across the local memeories of the individual pro-
cessors in a distributed memory machine.* There
is a communication cost associated with perform-
ing u Linda operation on a wple. This cost de-
pends on the lateney associated with the underly-
ing communication medium as well as the size of
the tuple.

If the latency is lurge. we would like wo minimize
the total number of accesses o tuple space even at
the cost of communicating more byvies of daia.
This wranslates into dividing the grid into swips
and allocating one strip 10 each processor. Each
processor then needs 1o communicate two edges
1o its neighboring processars in every time step.

However, i the lutenev is samall. we would like
1o minimize the totad number of bytes communi-
cated even though this may require more Linda
operations. This translates into dividing the grid
into tles and allocating one dle 10 each processor.
Each processor would then need 1o communicate
data along the edges of the tile 10 eight neighbor-
HIE DIOCEssOrs,

Thus. in our implementaton. each processoris
given a portion of the domain {cither a strip or a
tile depending on the characteristics of the under-
lving communication medium:. It is responsible
for caleulating velocity and pressure values for
grid points in its domain. In each time step. the
processor obtains the necessary boundary dua
from tuple space where it has been stored by
neighboring processors in the previous time step.
Alter doing the necessary computations. itoulputs
the boundary data 10 tuple space for neighboring
processors to use in the next time step. The com-
munication tmes for the various versions range
from under 5% {{or the shared memory versions}
to about 30% (32 node Spare network) of the 1otal
execution tume.

It turns out that latencey hecomes the dominant
factor only on a newwork of workstations con-

*In practice. the storage of tples is optimized using a
wehnique called disiributed hashing. The svstem tries 1o store
all wiples matching a particular wemplate on the same node.
which is determined by the hashing function and called the
rendezvous node. Bjornson 6. provides more details.

PARALLEL PROGRAMMING WITIH LINDA 179

nected togeiher on an ethernet. Henee, all resulis
presented are for tiles except for the network of
workstations.

4 RESULTS

The results of our experiments are presented in
terms of the actual execution times of the purallel
versions on various machines. In order o facilitate
comparizons. we also present the speedup ob-
tined for the distributed memory versions. We
caleulate speedup based on a requential time. oh-
tained from the execution tme of an efficient €
ot C-Linda® program for the same problem on
the different machines and not from the execution
time of the parallel C-Linda program on one pro-
cessor. Memory restrictions do not permit us to
solve large enough grids on a single processor,
Hence. the sequential times used for speedup cal-
culations are extrapolated from those for smaller
grids. ('The extrapolation was done by measuring
the execution tme for the sequential program for
a number ol grid sizes Hrom 25 X 25 w0 256 X
256. and extrupolating from all the daa.

Our emphasis will be on distributed memory
machines and LANs although we will present per-
formance data for shared memory environments
as well.

4.1 Shared Memory Machines

In Table T we show the execution times for the
program using Linda Version 2.4} on a 20-node
Sequent Svimmetry with 80386 processors and 80
MB of memory and an 18-node Encore Multimax
with NS32332 processors and 64 MB of memory.
The Linda program performs extremely well with

Table 1. Shared Memory Execution Time in
Seconds—312 x 5312, 200 Time Steps

Sequent Encore

Processors svinmerry Multimax
1 14417.9 15338.0
2 T028.0 T566.1
+ 35066.2 3807.2
6 2412.8 2584.5
8 1799 4 1934.9
10 1471.9 15779
12 1227 4 1320.5
14 10099 1137.9
16 944.5 999.1
18 8724 917.8

180 DESHPANDE AND SCHULTZ

Table 2. Hypercube Execution Time in
Seconds—312 x 512, 200 Time Steps

iPsC/2 iPS(C/860

Processors Linda NX/2 Linda NX/860
12 6841.4 68414 1060.6 1060.6

+ — — 280.1 276.2

8 864.6 8571 14+.2 141.1

16 437.2 432.0 69.1 66.9

32 227 .4 2229 37.2 35.0

o4 116.7 112.8 19.8 17.7
128 — — 11.8 9.8

s Extrapolated.

efficiencies generally in excess of 90%. This per-
formance is to be expected because Linda is es-
sentially a shared memory model and wuple space
and its associated operations can be implemented
very efficiently on shared memory machines.
However. the same Linda program can be recom-
piled and executed on distributed memory ma-
chines as we shall see in the following sections.

4.2 Distributed Memory Machines

The shallow water algorithm maps naturally to
message passing between nearest neighbor pro-
cessors. Hence. in essence. our implementation
uses Linda as a high-level message passing system
among worker processes. However. the Linda
programmer does not have to worry about figuring
out explicit destination processors for the mes-
sages: Linda’s tuple matching process takes care
of that for us. In addition. the Linda program can
be developed and debugged in a more user-
friendly environment such as a Sparcstation with
better utilides for software development. As a
result the Linda program is easier to code. As we
have indicated earlier. there is a price to pay ‘in
terms of performance degradation’ for this ease of
use.

In Table 2. we show the execution times for the
Linda (Version 2.4) program on the iPSC/2 and
the iPSC/860. We also show the times for the
same problem using the native message passing
primitives on both machines. Clearly. the Linda
program demonstrates excellent efficiency when
compared to the native message passing version.
The difference in execution time hetween the two
is about 10% for the 64-processor case. The dif-
ference is due to the overhead associated with
Linda’s management of tuple space in the distrib-
uted memory environment.

4.3 LANs

Networks of workstations connected by an
ethernet are commonplace and have been widely
available as an inexpensive. potendal resource for
parallelism. However. until recently. this potential
computing power has not been exploited due to
lack of appropriate parallel programming tools.
Workstations are becoming increasingly powerful
and affordable while the speed and bandwidth of
LANs promise to grow in the near future. Finally.
a number of parallel programming environments
are becoming available for these machines.
Hence. in our opinion. groups of workstations
connected by high-speed LANs have emerged as a
powerful. practical. and affordable resource for
exploiting parallelism and Linda is emerging as a
powerful programming environment for writing ef-
ficient and portable parallel programs for such
LANs.

We investigated the performance of Network
Linda {Version 2.4.6; and PVM (Version 2.3.2%;
on a LAN of SUN Sparcstations. PVM {which
stands for Parallel Virtual Machine: was devel-
oped at Oak Ridge National Labs. the University
of Tennessee and at Emory University [7=9 . It is
a direct. message passing system for networks of
computers.

In our experiments. we used PVM and Linda
programs that used the same computation mod-
ule. in order to eliminate possible differences in
compilation. The two programs dilfered only in
the communication routines. The data presented
are the average of several runs in each case. We
also tried to ensure that the network was free of
contention from other unrelated processes.

In Figure 1 we show the speedup obtained us-
ing Linda and PVM on a network of up to 28 SUN
Sparestations. The actual execution dmes are
shown in the first two columns of Table 3. The
measurements were made using the CPU dne
spent executing the program as a measure of exe-
cution time. As the graph shows. both the Linda
and PVM programs demonstrated excellent and
practicallv identical performance on the network.

This was a surprising and unexpected resuli.
hecause our experience with both the Linda and
PVM versions suggested that both took somewhat

* We tried Version 2.4.1 but the timing data was very in-
consistent. and we were unable to get any meaningtul results.
In several cases. the execution time using Version 2.4.1 was
greater than that using Version 2.3.20 We have notitied the

authors and an investigation is currently in progress.

Network Speedup

30 —
o PVM CPU
+ Linda CPU
© Linda Wall
20 0 PYM Wall

Speedup

Processors

FIGURE 1 Speedup over a LA

time steps.

longer in practice than the CPU timings suggest,
Moreover. the CPU data implies that adding more
and more workstations will continue 1o vield im-
proved perlormance. However. the network is a
shared resource and adding workstations ithereby
inereasing the amount of communicaton® should
eventually result in a significant degradation in ef-
ficiency due 1o colliions of wansmissions from
various stations.™ This drop in network efficiency
should show up in our performance data in the
form of inereased communication time and re-
duced efficiency.

Unfortunately. measuring CPU time neglecis a
significant amount of the overhead associated
with communicaiing across the network. CPLU
time is the actual time spent by the svstem 1o exe-
cute the particular process being timed. This
method of timing. in the case of hoth Linda and
PVM. wotally ignores the time spent by the system
in managing trallic across the network. In the case
of PVML the CPU dme further neglecis the over-
head associated with the PVM system’s manage-
ment of message ransmits and receives. whic h is

* This is on aceount of the communicaton proteol nsed
on the ethernet that essentiadly permits stations 1w transmit
packets of data as =o0n as they are ready 10 do so unless the
chiannel is busy. Henee. as the load on the network inereases,

the performance degrades rapidly.

PARALLEL PROGRAMMING WITH LINDA 181

Table 3. Network Execution Time in
Seconds—512 x 512, 200 Time Steps

Linda PVM Linda PVM

Processors CpPU CPU Wall Wall
1# 33309 3330.9 3351.8 3351.8
+ 885.6 88+.1 966.2 976.0
8 +58.3 +54.8 531.6 627 4
12 318.5 313.1 393.2 436.5
16 245.1 240.2 336.4 426.2
20 204.9 109.7 314.4 +37.3
24 180.0 182.1 309.1 +37.5
28 161.2 160.2 318.6 +(33.7

* Extrapolated,

done by meuans of an additional process "L'alle(l
the PVM daemon; running on t*dt’h node. This
overhead is included in the CPU time for a Linda
program because Linda bundles the wple man-
agement code into the same process as the execut-
g Progra.

In order 1o account for the extra overhead, we
measured the performance in terms of the actual
elapsed time between the start and completon of
the process. This is the real performance that a
user would see when executing a program on the
network and is. hence, a better measure of perfor-
mance for the LAN.

These execution times are shown in the last two
columns of Table 3 for both Linda and PVM. The
speedup obuained using these wall clock times is
shown in Figure 1. Both svstems suffer consider-

able degradaion in performance in going {from

CPU o wall clock times. The data show the ex-
proeted rmlumiou in efficiency due 10 network col-
lisions as the number of workstations is increased.
The laree reduction in speedup for both Linda
and PVM is clearly due to taking all the overhead
into account when measuring tme. However,
Linda clearly outperforms PVM in this regard.
Apparently. having the various PVM processes
communicate via an intermediate PVM daemon
incurs significanty greater than that associated
with Linda’s management of twuple space. A
plunned enhancement o PYM will attempt 1o re-
duce these effects. i Hence. a user tryving 1o execute
an application in parallel on a network of worksta-
tions is likelv to see better performance with Linda
than with PVML

We note that the PVM system is primarily tar-
geted at large-grain applications widh several rela-
tively independent components. each of which
can run on an architecture best suited 1o its re-

182 DESHPANDE AND SCHULTZ

quirements and communicate using the machine
independent mechanisms provided by PVM.
However. the authors of PVM do claim good per-
formance for waditional parallel applicadons

(8. 9].

5 CONCLUSIONS

A number of computer scientists have contended
that Linda cannot possibly be implemented effi-
ciently on distributed memory machines because
there is simply too much overhead. Theyv believe
that Linda will not be able 10 compete with mes-
sage passing on such machines even for solving
compute-intensive problems.

We have used Linda to solve a real problem.
similar 1o those that researchers in several tields
are attempting to solve. The problem is relatively
compute-intensive but. on hypercubes. has a
communication structure based entrely on near-
est neighbor communication. thus making it ide-
ally suited to the message passing approach. This
communication structure is explicily encoded in
the message passing solution that is able to fully
exploit this regularity in the problem to produce a
near-optimal solution as evidenced by the excel-
lent speedup and efficiencies observed.

In contrast. the Linda solution has no explicit

Speedup Comparison

30
o Sequent Linda),_,»0
¥
+~ iPSC/2 Linda é_'.;"
o iPSC/860 Linda)J,«“”’
-
¢ Network Lindas i
L
20 o
04
2
=
~
[
o
a,
wi
[P
: {
20 30
Processors

FIGURE 2 Speedup comparison across machines us-
ing Linda.

way to exploit this regularity in the communica-
tion suucture of the algorithm. In fact the Linda
program was not even developed on a distributed
memory machine. In spite of this. Linda performs
fairly well and appears to hold its own.

Further. we ported the Linda program to a vari-
ety of architectures. It continues to demonstrate
excellent performance in all these environments.
In Figure 2 we detail the speedup obtained using
Linda on several diflerent machines. We see ex-
cellent performance on the tightly coupled shared
memory and distributed memory machines. Fur-
ther. Linda also performs creditably on a network
of workstations where we see good elliciencies up
to about 12—16 workstations. that is. until we sat-
urate the network. Current LANs have limited
communication bandwidih. But. as the band-
width and speed of networks continue 1o increase.
we helieve that the Linda syvstem will be able to
efficiently support increasingly larger networks.
We believe that Linda will continue to be a practi-
cal and powerful environment for exploiting this
vast potential resource for parallelism.

REFERENCES

[11 N, Carriero and D. Gelernter. *“How to write paral-
lel programs: A guide to the perplexed.” 4CY
Comput. Sure.. vol. 21, pp. 323-357. 1989,

[2]1 N. Carriero and D. Gelernter. ~"Linda in contekt.”™
Commun. ACM, vol. 32, pp. +44—438. 1989,

{3: D. Gelernter. ~Cenerative communication in
Linda.” ACM Trans. Programming Languages
and Svstems. vol. 1. pp. 80—112. 1985,

[+ R. Sadourney, “The dynamics of the finite-ditfer-

ence models of the shallow water equations.” J.
Atmospheric Sci.. vol. 32. pp. 680—-689. 1975,

15, Wo M. Washington and C. L. Parkinson. An latro-

duction to Three-Dimensional Climate Modeling.

Mill Valley. CA: University Science Books. and New

York: Oxford University Press. 1986. 422 pp.

R. Bjornson. “Experience with Linda on the iPSC/

2.7 Technical Report DCS/RR-520. Yale Univer-

sity. March 1989.

[71 A Beguelin. J. J. Dongarra. A. Geist. B. Manchek.
and V. Sunderam. A user’s guide to PVM parallel
virtual machine.” Technical Report TM-1126.
ORNL. July 1991,

[8] G. A. Geist and V. S, Sunderam. ““Network based
concurrent computing on the PYM system.” Con-
currency: Practice and Experience lin press).

[9] V. S. Sunderam, “*PVM: A framework for parallel
distributed computing,” Concurrency: Pructice

and Experience, vol. 2, pp. 315-339. 1990.

APPENDIX 1

Linda is o high-level coordination language.
which mav be coupled with any computation lan-
guage like € or Fortran to provide a high-level
dialect for parallel programming on MIMD ma-
chines. The Linda model is based on a shared
associative memory known as wuple space. which
consists of a collection of tuples. A tuple is just a
colleciion of fields. each of which has a =pecific
tvpe. The types are drawn from those available in
the host language. There are two kinds of wples:
active process tuples and passive dawa waples. Pro-
cess tuples execute concurrently and communi-
cate with each other by reading. writing. and con-
suming data wuples from wuple space. When a
process finishes executing. it turns into an ordi-
nary data taples All communication is achicved by
using four simple operations on tuple space. Indi-
viduul processes are not aware of and do not care
about how other processes do what they do. This
uncoupled style makes it easier for programmers
to write parallel programs because they do not
have to worry about low-level details such as mes-
sage destunations and explicit svnchronization.
Tuples can only be modified alter extracting them
from tuple space. thus providing an implicit lock-
ing mechanism.

There are four basic tuple space operations.
out. eval. in. and rd. out (1) causes tuple t 1o be
added 1o tuple space: the executing process con-
tinues immediately. eval (1) is the sume as out {t)
except that tis evaluated alter rather than before
it enters tuple space: eval implicidy forks a new

PARALLEL PROGRAMMING WITH LINDA 183

process to perform the evaluation. in (s) causes
some wple € that marches the template s o be
withdrawn from tuple space: the values of the ac-
tual fields in tare assigned 1o the formals in s, and
the executing process continues. If no mawching t
is availuble. the process is suspended untl one
becomes available. [many t= are available. one is
chosen arbitrarilv. rd (s) is the same as in (8)
except that the matching tuple € remains in tple
Sl)ii('t‘.

Tuples have no addresses: they are selected by
in or rd on the basis of any combination of their
field values. Thus the five-element tuple A B. C.
D. E may be relerenced as the five-clement wu-
ple whose first elementis A0 or as “the five-ele-
ment tuple whose second clementis B and fiftly is
E or by any other combination of element values.
To read a tuple using dhe first descripton. we

would wrire
rd (A, ?w, 7x, ?y, ?z)

‘this makes A an actual parameter—it must be
matched against—and w through z formals. whose
values will be filled in from the matched tuple . To
read using the second description. we write

rd(?v, B, ?x, ?y, E)

and so on. Associative matching is in fact more
general than this: formal parameters for wild
cards™) may appear in tuples as well as mateh-
templates. and matching is sensitive to the types
as well as the values of wuple fields.

Advances in : ~ = Journal of

o . Industrial Engineerin
INultimedia e

Applied
Computational
Intelligence and Soft
- ; ey Lomputing—
H H nternational Journal of ! - "
The Scientific D gureter . ey B P —
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networks
and Communications Advances in

Artificial
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, =M Neural Systems

#

International Journal of
Computer Games
Technology

Intel ional J na
Reconfigurable
Computing

e . Computational i
t Ad S ~ Journal of
Journal of uman-Computer Intelligence and e, Electrical and Computer
Robotics Interaction Neuroscience Engineering

