A C++ Class for Rule-Base Objects

WILLIAM J. GRENNEY

Professor, Civid and Environmental Engineering, Utah State Untversity, Logan, UT 84322-8200

ABSTRACT

A C++ class, called Tripod, was created as a tool 1o assist with the development of rule-
base decision support systems. The Tripod class contains data structures for the rule-
base and member funciions for operating on the data. The rule-base is defined by three
ASCli files. These files are translated by a preprocessor info a single file that is located
when a rule-base object is instantiated. The Tripod class was tested as part of a proto-
type decision support system (DSS) for winter highway maintenance in the Intermountain
West, The DSS is composed of two principal medules: the main program, called the
wrapper, and a Tripod rule-base object. The wrapper is a procedural module that
interfaces with remote sensors and an external meterological dotabase. The rule-base
contains the logic for advising an inexperienced user and for assisting with the decision

making process. © 1993 by John Wiley & Sons, inc.

1 INTRODUCTION

States in the Intermountain West support expen-
sive programs for highway snow and ice removal.
For example. the state of Utah expects 1 spend
over 57.000.000 per vear on state highways for
winter maintenance. The timing of the dispaich
and release of road crews is important to safety
and costs. If the crews are dispaiched oo late or
released too early. driving hazards could develop.
If the crews are dispatched 0 early or released
too late. excessive costs could be incurred. Deci-
sions regarding the deplovment of personnel and
heavy equipment are made by maintenance fore-
men and supervisors. Data available o them in-
clude local and natonal weather forecasts and
real time data from remote sensors. as well as per-
sonal ohservations.

Received May 1992

Aceepred November 1992

© 1993 by John Wiley & Sons. Ine,

Scientifie Programming, Vol 1. pp. 103-175 (1992;
CCC 1058-9244/93/020163-13

The purpose of this study was o develop a rule~
base decision support svstem (DSS) 10 assist
maintenance foremen perform their duties during
winter storms. A secondary objective was o pro-
vide a training device for inexperienced personnel.
The study involved two concurrent endeavors:

1. Selection or development of a tool for imple-
menting a rule-base DSS

Development of a prototype application for
winter highway maintenance utilizing the
ool

18

Most of the study effort went into the development
of the rule-base DSS 100l that is described in this
paper.

2 IMPLEMENTATION STRATEGY

The tirst activity undertaken o design the DSS
was the establishment of a panel of experts. Four
foremen from highway maintenance departments
in Colorado and Utah were invited o form the
panel. Thev ranged in education from high school

163

164 GRENNEY

to + vears of college engineering. All four had
lengthy experience making decisions regarding
SNOW pl(m and deicing operations. During the f{ht
meeting the experts hsted the decisions that they
make durmg a variety of winter storm events. and
identified the data that would be nice to have
available in order to decide on a particular course
of action. Theyv considered the following fearures
essential for a useful DSS:

1. Lead a novice user through a step-by-step
process to reach a reasonable conclusion

2. Display tables and graphics quickly and
concisely for experienced users

3. Provide optional supplemental information
to assist with the interpretation of displaved
data

4. Interface with third party software o access
remote sensors and data bases

5. Operate on a computer platform readily
available to maintenance foremen

This last feature dictated the use of IBM 386
class microcomputers because theyv are affordable
or already available at highwav maintenance sites.
Also. the software interface provided by the man-
ufacturer of the remote sensors operates under
DOS. However. we also considered porability to
be an important feature. MS windows. 052, and
UNIX are encroaching on DOS. and we would like
to adapt to these operating svstems as they be-
come more prevalent.

The second activity undertaken to design the
DSS involved the selection of a modelmﬂ tech-
nique (language or shell} for the ol flle rule-
hase structure was selected as the basis for the
DSS for several reasons. It is a natural way 1o rep-
resent the decision making process. it is a beter
way than most to capture the thought processes of
experts. and it can be expanded and updated with
a minimum of reprogramming effort [1-3:. We
decided 10 evaluate three echniques: (1) a com-
mercial shell. (2} Prolog. and (3} C++. Two grad-
uate students went to work on two separate proto-
type projects. One used the INSIGHT 2+
commercial shell {4] and the other used Turbo
Prolog [5]. I developed a prototype using Turbo
C++ [6]. We compared progress weekly during
the evaluation period.

Work with the shell was pursued for about 2
months and then abandoned. The shell worked
very well for quickly establishing rules and it pro-
vided an impressive user interface. However. we
had difficulty interfacing the software for the re-

mote sensors. This software was an undocu-
mented stand-alone package composed of some
complex DOS batch files that executed Pascal
programs. The software changed environmental
variables. dominated memory. and frequenty
switched the screen between text and graphics
modes. The software was proprietary and we did
not have access o the source code. In the final
analysis. we just did not have the expertise neces-
sary to interface the remote sensors with the shell.
The shell did give us, however. a good initial set of
rules for the other two projects.

The second student had no previous experi-
ence with Prolog. Alter climbing the learning
curve, he came to prefer Prolog over €0 and For-
tran. He utilized Borland™s Turbo Prolog Toolbox
(51 o develop effective pull-down menus. He
coded a module that responds to a menu item and
automatically accesses a natonal weather data
base [7]. He developed routines 10 select daw
from the data base dm! display it in graphical for-
mats. He made an initial attempt o mtexhn e the
sensor manufacturer’s software package and was
not successful. After the difficulties encountered
during our first experence. we elected not o
spend additional time trving to interface the sen-
sors. but instead o cnmplew his project as a pro-
totype interface to the national weather data base
8.

During my evaluation project. I found it difli-
cult to adjust from wadidonal structured program-
ming to the object oriented programming (00P)
approach advocated by C++ developers. How-
ever. it was worth the effort. OOP is inwitively
consistent with the event-driven paradigm that is
becoming increasingly popular. and which [found
to be an effective way 1o design the D85, Although
we still had wouble interfacing with the remote
sensors. many alternatives for work-arounds were
available. We decided to select C++ over a com-
mercial shell and Prolog. The main reasons fol-
low:

1. The commercial shell was ellective for
quickly constructing a prototvpe. However.
learning to use it for a practical application
involving remote sensors appeared o be al-
most as difficult as learning a lower level
language, and the shell lacked procedural
programming capabilities. A commercial
shell would not be as portable to other plat-
forms as C/C++. Also. commercial shells
often have a rovalty fee associated with each
run-time license.

2. Turbo Prolog was found 1o be a very power-
ful language for this application. especiallv
when used in conjunction with Borland's

Toolbox. Alithough popular in other parts of

the world. Prolog appears (o be declining
and losing support in the United Siates. For
example. Borland discontinued support for
Turbo Prolog. We did not think that Prolog
would be as portable to other platforms as
C/C++.

3. Momentum is growing in support and ex-
tensions for C++. Borland’s C++ provides
a framework for developing object oriented
programs. OOP is intuitively consistent with
the event-driven paradigm that is becoming
increasingly popular.

It should be emphasized that this evaluation of
three products was far from scientific or compre-
hensive. It focused on one application. and in par-
ticular on portability and the interfacing of proce-
dural modules. At the very least it was biased by
my background as a C programmer. However. in
summary it is safe to say that neither the commer-
cial shell nor Prolog offers sufficient advantages 1o
switch from the C/C++ family for this applica-
tion.

Another consideration plaved an important
part in the decision. The experts had trouble for-
mulating their ideas direcily into wpical anteced-
ent-consequence tvpe rules in conventdonal for-
mats. However, they were quite effective in
developing rules by means of a three-step proce-
dure. The first step was to make a list of the im-
portant actions {consequences: that thev would
perform during a winter storm event. The second
step was to make a list of variables ‘types of data:
that were useful in deciding which action 10 1ake.
The third step involved the development of a deci-
sion matrix for associating actions with variables
and their values. The decision martrix defines the
rules for the application. An example of the rule
format is presented later in this paper.

The three data sets assembled by the above
procedure completely define the rule-base. We
wanted to develop a preprocessor that would au-
tomatically convert the three data sets into a single
rule-base that could be efficiently input 1o a DSS
of our design. It seemed like a good idea to trans-
late directly from formats that the experts were
able to construct and comprehend. to a rule-base
file that the DSS could efficienty read. By doing
so. the experts could quickly see the results of a
change 10 one of their files without an intermedi-

C++ CLASS FOR RULE-BASE OBJECTS 165

ate interpretation by a knowledge engineer. All of
the knowledge engineering goes into the formation
of the three data sets which. for this case. were
casilv understood by the experts. We found that
C/C++ was an elfective language for developing
both the preprocessor and the DSS.

3 PROGRAM DESIGN

Considering the list of essential features for the
DSS previously listed. some are more suitable to a
rule-base design and some 10 a procedural design.
The decision making and informative aspects of
the application lend themselves 10 the rule-base
approach. The sensor interfacing and data ma-
nipulation aspects are best suited 1o the proce-
dural approach. We wanted a hybrid tool that
provides the (lexibilitv of both approaches. We
distinguished between two fundamental ap-
proaches: (1) formulating the application in a de-
clarative architecture that utilizes and coordinates
procedural modules and (2} formulating the ap-
plication in a procedural architecture that uiilizes
and coordinates rule-base objects. The commer-
cial shell and to some extent Prolog are declarative
approaches that permit interfacing with proce-
dural modules. We found significant problems
with data transfer among modules. Because we
were much more confident in our procedural than
declarative programming skills. we decided to de-
sign a ool composed of a procedural “wrapper”
that has the capability 10 instantiate muliiple rule-
base objects. Because our rule-base object ob-
ains knowledge from three data sets. we named it
“Tripod.”” Information exchange (data and com-
niands) is accomplished by messages sent be-
tween the wrapper and the Tripod object.

3.1 Rule-Base

Figure 1 illustrates the D55 application process.
The terminology used in the following discussion
evolved during interviews with the panel of ex-
perts. Terms were selected that provided the best
communication with the experts. Three ASCII
files, shown at the left of Figure 1 are prepared by
the experts and the developer. These files are de-
scribed in greater detail later in this paper.

3.1.1 The Variables File

A variable is a quantifiable characteristic of the
system. The state of the system at any time is de-

166 GRENNEY

fined by the values of the variables. The variable
file (identified by the extension .IDV) contains a
list of unique identification symbols and associ-
ated information for each variable. such as the
type of the variable (i.e.. integer, float. logical.
menu, or string). Each variable also has a ques-
tion associated with it that. when needed. will be
displayed on the screen requesting a value from
the user.

3.1.2 The Actions File

An action is a consequence that is invoked when
an associated rule fires {(e.g.. evaluates true). The
actions file (identified by extension .IDA) contains

IF rulevalue_1) AND

(variable_1

The antecedent is made up of “tests.”” shown in
parentheses. For a test, if the value of the variable
(i.e.. variable_1) satisfies the comparison (i.e..
equals ruleValue_1}, then the testis true. If all of
the tests for a rule are true. then the rule is true
and the action is invoked. If anv one of the tests is
false, then the rule is false. The rule file (identified
by the extension .IDR} contains a list of unique
identification symbols and associated information
for each rule. Among other things. each rule has a
list of tests that can include variables. actions, and
other rules.

3.1.4 The Preprocessor

A preprocessor performs error checking on the
three files and produces a rule-base file that can
be efficiently read bv the Tripod object. Changes
to the rule-base file may be made only through the
variables. actions. and rules files.

(variable_2 <= rulevValue_2)

a list of unique identification symbols and associ-
ated information for each action. such as the tvpe
of action to be performed. An action mav displav
text, display graphies. or perform an operation. A
variety of operations mav be performed by an
action, for example. manipulating the values of
variables. sending a message to the wrapper. and
branching to a specified rule in the rule-base.

3.1.3 Rules and Tests

A rule is an IF-THEN statement specifving the
appropriate action for a particular state of the sys-
tem. as defined by the values of the variables. It
has the standard form:

AND THEN (action_1)

3.1.5 The Fact Data Base File

Figure 1 also shows a “"Fact Data Base™ file. This
file contains initial values for variables in the rule-
base. It is an ASCII file with a list of variable iden-
tification symbols. each followed by its inital
value. The Fact Data Base may be updated any
time prior to the instantiation of the Tripod object.
Variables not listed in the Fact Data Base are au-
tomatically initialized to an ““unknown™ state by
the object.

3.2 The Wrapper

Figure 1 shows the wrapper interacting with a Tri-
pod object and an auxiliary process (such as a
remote sensor;. The wrapper is a procedural main
program that instantiates and coordinates Tripod
objects as well as performs auxiliary processes.
The wrapper is the master of the application: it

Variables
file (.IDV)

Actions
file (.IDA)

File
Preprocessor

Rules
file (.IDR)

Wrapper

Auxiliary
Process

Tripod
Rule Base
{.TRB)

Tripod
Rule Base
Object

Fact
Data Base
{.TFB)

FIGURE 1 : The Decision Support System application process.

comnunicates with Tripod objeets by means of
messages and gathers information o respond to
the messages by means of procedural functons
fauxiliary processes). The wrapper is tailored for
the rule-base. or set of rule-bhases. in a specific
application. The wrapper must know how to re-
spond to messages it receives. Messages are inte-
ger values. For example. action_message 2"
from the Tripod object requesis data from a re-
mote sensor buffer. The wrapper often responds
by sending a message containing the data back o
the Tripod object.

3.3 The Tripod Object

“When a Tripod objectis instantated by the wrap-
per. it fills in data structures from the Rule-Base
file. It then initalizes appropriate data member
values from the Faet Data Base file. and returns
vontrol to the wrapper. The object is dormant un-
ul it receives a message from the wrapper to begin
testing its rule-base at a specilied rule. Rule test-
ing is conducted by a member functon in the Tri-
pod object that is described later in this paper.
Rules are tested in sequence until one fires, When
u rule fires the associated acton is performed by
another Tripod member funcion. a “rule_fired”

message is sent. and program control is returned

to the wrapper.

3.4 Program Procedure
3.4.1 Overview

Figure 2 illuswrates the program procedure as a
series of comnunication events hetween the wrap-
per and the Tripod ohject. The circled numbers in
Figure 2 correspond 1o numbers in parentheses in
the following discussion.

Starting at the wop left of Figure 2. the user exe-
cutes the wrapper and the wrapper instantiates a
Tripod rule-buase object {11 The object’s con-
structor loads the Rule-Base {ile. initializes vari-
ables from the Fact Data Base file. and retums
control 1o the wrapper 2. The wrapper sends a
messige to the Tripod object to begin testing rades
in sequence. starting with o designated rufe 3
The rule 1esting algorithm in the object evaluates
the tests as=oeiated with the current rule, Most
tests will reqquest aresponse from the user as indi-
cated in Figare 2.

Anyiime the Tripod object requestis a response.
the tser has the npliim to =send a HEessage 10 the

wrapper via the objeet. When this happens the

C++ CLASS FOR RULE-BASE OBJECTS 167

input/ Wrapper: Tripod tnput/
output main program object output
re ™ e
{ uset
‘Kinmax}on } ™ run wrapper s
i iate abj. {1)
read Rule p—
N .TRB
(2)] BaseB) Lo | e
run the Rule e
Engine (E) .3/
evaluate | - user Y
arule (-———L response
—
eviauate Bt 5T *
D a rule (——K response)
L4 .
evaluate = vield !
= . message control
{ external -t —
| Process /1_,,’ (s)
S " resume resume
: a
c
i o
: ST
H conclusion ‘-—->; display/ 3
{ i | perform
§ 1 —8\‘ L action
: PuB ;
i - yieid
1 evaluate § controt
T | message
user 1
' response L !
s H i H
i continue of P i
boterminate i
i i

FIGURE 2 Program procedure.

object storexs its current status. sends the message.
and returns control to the wrapper 4. After the
wrapper responds to the message. which might be
the execution of an auxiliary process. for example.
it sends a message to the object 1o resume from
where it left off (5.

When a rule is trae e, all of its ests evaluate
true} the aszsociated action is invoked. and a
“rule_fired” message is sent and control is re-
wurned 1o the wrapper /0% The wrapper tvpically
requests the user 1o decide whether o cominue or
to terminate the run.

3.4.2 The Rule Engine

The Rule Engine is the member function of the
Tripod object that evaluates the rules. Itwakes as a
parameter the order number of a rale in the rule-
base. It starts by evaluating the first test in the list
of teats associated with that rude. Hothe firse test
evaluates true. it goes o the second. and so on. If
all of the tests are true. the Rule Engine calls the
function execAction (). This funetion takes us a
parameter the pointer o an acton. and perforns
the operation aiw(:iﬁml l)} the acton. For exam-
ple. v might replace the value of one variable with
the vadue from another. or it might just display ext
on the screen. Alier execAction () returns. the
Rule Engine stores the current status of the Tripod

168 GRENNEY

object, sends, a “‘rule_fired” message. and re-
turns control to the wrapper.

If a test evaluates false. the Rule Engine discon-
tinues evaluating tests for the rule. marks the rule
as false. and goes on to the next rule in the rule-
base. This process continues uniil a rule is en-
countered in which all tests evaluate true.

Three tyvpes of tests are permitted: variable.
rule, and action. The variable type test provides
the symbol for the variable and a value (or range
of values). The Rule Engine first checks to see if
the variable has been previously evaluated and if
not calls a member function query () . This func-
tion displays the question associated with the vari-
able. and compares the user’s response with the
test \alue\s It returns a true or false flag to the
Rule Engine depending on the results of the? com-
parison.

A rule type test provides a pointer to another
rule. The Rule Engine calls itsell to evaluate this
rule. If the rule is true then the test is true. other-
wise the test is false. The Rule Engine operates
recursively on nested rules to any reasonable
depth.

An action tvpe test provides a pointer to an
action. The Rule Engine checks to see if the action
has previously been m\()ked {i.e.. associated with
a rule that has already fired ;. and if not begins
testing all of the rules associated with the action. It
one of these rules fires. then the action is invoked
and the test is true. If none of these rules fire. then
the test is false.

Branching is handled by a special operation in
an action. When an action is invoked by execAc-
tion () it mav perform several tvpes of opera-
tions. One tvpe is to branch to a specitied rule.
This is accomplished by returning a message to
the Rule Engine dnf’C[an it to leave off what it has
been domn and begin exaluauuw the specified
rule. For example. if a nested rule fires and its
action specifies a branch to another section of the
rule-base. the Rule Engine does not finish evalu-
ating the higher rules in the nest.

4 TRIPOD DATA STRUCTURES

4.1 The Tripod Class

Continuity is maintained by continually updating
the Tripod data structures. The Tripod object re-
tains the results of all previous operations. For
example, it records which rules have fired, which
actions have been invoked. which variables have

T
RBVar e,
choAnchor B BBChoice \
nbrChoice choSym
i varSym choDesc
varType '
varKey
varQuest
varNL
! varUCF{3]
Teiged ~ ‘ | varkvai
Eei warBsit
]
varAnchor
nbrVar
actAnchor] R \
nbrAct RBAct T
rue:nchor 7 vOpAnchor BBOpAry
Qg;:‘,l:e nbrVarOps opern[2]
bTrace actSym oprmVarf2] !
rueEngidxi2] fackey Loent
nestDth | el
nbrRueTsted actUCF(3}
curCode
spsOtpt
curVarKey
curcey | Qvestony
curRueXey I N
> RBfyle \ .
' rueTstAnchor i —E—MR Buel i
nbrTests ,’ tstType !
rueSym i tstVarRueActidx
rueActSym i tstRueAnchor !
rueAct!Dx [nbrTstRueMu |
rueKey | ; not :
i rueUCF{3] | L erit i
| rueTsted ! —

FIGURE 3

Tripod data structures,

been evaluated. and what values have been as-
signed. This is facilitared by encapsulating the
data for the actions. variables. and rules sepa-
rately.

Figure 3 shows the most important data mem-
bers in the class swructure. The Tripod elass con-
tains varAnchor. actAnchor. and rueAnchor.
which are pointers 1o lists of variables. actions.
and rules. respectivelv. The data members
nbrvar. nbrAct. and nbrRue are the number of
entries in the respective lists. The data members
kbFile and kbTrace are tile handles for the
rule-base input file and an output file to record a
trace of the steps performed by the user. The other
data members are lor control purposes:

1. rueEnglIdx [2] records the indices of the
principal rule {the highest in the hierarchy
of nested rules) and the current nested rule
being evaluated.

2. nestDth is the depth of the current rule
being evaluated within a set of nested rules.

3. nbrRueTsted is the number of rules that
has been tested during the current run.

4. curCode is the latest message sent to the
wrapper from the Rule Engine.

5. curRueKey is the key (integer code) associ-
ated with the current rule being evaluated in
by the Rule Engine. The keyv is assigned bv

e

the developer in the rules file. It is often
used 1o indicate a help or supplemental in-
formation file (i.e.. 54.1xt).

6. curvVarKey is the key linteger code} associ-
ated with the current variable being evalu-
ated by the Rule Engine. The kev is as-
signed by the developer in the variables file.

7. curActKey is the key {integer code) associ-
ated with the current rule being evaluated
by the Rule Engine. It is assigned by the
developer in the actions file.

4.2 The RBVar and RBChoise Classes

The RBVar Rule-Base Variables class contains
data for each decision variable. The data member
choAnchor points to a list of menu choices for a
ment tvpe ol variable. and nbrChoice is the
number of choices in the list. The RBChoice class
comains the information for each menu item:
choSym is u unique character siring identification
svymbol and choDesc is a character string de-
scription for the item. varSym is a character suing
for a unique identificaton svmbol for this vari-
able. varType is the wvpe of the variable that may
be one ol the following: menu. logical. siring. inte-
ger. or floating point. varKey is the integer code
assigned by the developer in the variables file 10
specify an auxiliary process.

An auxiliary process is normally a function pro-
grammed by the developer 1o accomplish a spe-
cilic task: for example. reading a remote sensor,
instantiating another Tripod object with a differ-
ent rule-base. or displaving a text file on the
screen. A developer may wish o use kev "534 10
display text file 54.1xt on the screen when the user
requests help with the query for a pardecular vari-
able. The developer assigns the value 54 10 the
keyv for the variable in the variable file. and then
programs a function for the wrapper to respond 1o
a “variable key'" message having the value 54 by
displaving 54.txt.

varQuest is the question for the variable and
varNL is the number of lines in the question.
varUCF [31 stores three arbitrary coefficients for
the variable. Originally these coefficients were go-
ing to be used to represent uncertainty. However.
this feature has not vet been implemented and the
coefficients are unused. varEval is a flag indicat-
ing whether or not this variable has been previ-
ously evaluated. If it has been previously evalu-
ated. varRslt stores the value. varRslt is a
data union that stores a logical (Boolean), string.

C++ CLASS FOR RULE-BASE OBIECTS 169

float. menu. or integer depending on the type of
variable.

4.3 The RBAct and RBOpAry Classes

The RBAct {Rule-Base Actions) class contains
data for each action. The data member vOpAn-
chor points to a list of operations that the action
is 1o perform on decision variables. and nbr-
varops is the number of operations in the list.
The RBOpAry class contains information for the
operation. opern [2! stores two character sym-
bols indicating the tvpe of operation to be per-
formed. oprnvar |21 contains the two operands.
Three types of operations are currently available.
and they are described in the next section.

Other data members in RBAct include actSym.
actKey. and actUFC [3]. which are analogous to
varSym. varKey. and varUcCF |31 previously de-
fined. actDesc is a character string with the de-
seription of the action. and actNL is the number
of lines in the description. spsOtpt is a flag 10
suppress display of the description. actTsted is
a flag to indicate whether or not the action has
been previously invoked. Seuing this flag sup-
presses subsequent executons of this action.
questInpt is a flag modifving the acton. Three
flags are permitted at this time. and they are de-
scribed in the next section.

4.4 The RBRue and RBRueTst Classes

The RBRue [Rule-Base Rules} class contains data
for each rule. The data member rueTstAnchor
points to the list of tests for the rule. and nbr-
Tests is the number of tests in the list. TueSym is
a character string containing the unique identifier
for the rule. rueActSym is the svmbol of the
action associated with this rule. and rueActPtr
is a pointer to it. rueKey. rueUCF [3]. and
rueTsted are analogous to actKey. actUCF [3].
and actTsted.

The RBRueTst class contains information for
each test. tstType is a character indicating the
tvpe of test: V" for variable. "R for rule. and
“A” for action. tstVarRueAct1dx is the identi-
fier of the variable. rule. or action for this test.
tstRueAnchor is a pointer to a list of pointers to
rules nested in this test. nbrTstRueMu is the
number of nested rules in this test. not is a flag
indicating whether NOT should be applied to the
results of this test (i.e.., true becomes false). crit
is a data union for a Boolean. string, float. or inte-
ger. It contains the values that will cause the test to
evaluate true. '

170 GRENNEY

5 PROTOTYPE APPLICATION

Decisions regarding the deployment of personnel
and heavy equipment for snow and ice prevention
and removal are made by the maintenance fore-
men in geographical districts. Districts range in
size from a few hundred to several thousand
square kilometers. Data available to the foremen
include local and national weather forecasts. real
time data from remote sensors. and personal ob-
servations. During a winter event, foremen rely
upon these data in varying degrees and upon per-
sonal rules of thumb for dispatching crews and
equipment, and for releasing crews near the end
of the event.

During the first three meetings with the panel of
experts. the scope of the problem was discussed
and terminology was established that was mean-
ingful to the members of the panel. The objective
of the study was focused on preparing a simple
prototype of a DSS that would help foremen make
decisions about the dispatch and release of road
crews during a winter event. The prototype should
provide table and graphic displays of data from
remote sensors, and provide a step-bv-step advi-
sor for novice users [9].

The importance of terminology used for com-
municating with the panel of experts should not
be underestimated. Terms were established by the
panel defining three categories of information:
variables, actions, and rules. Forms were devel-
oped to assemble information in these three cate-
gories. These forms were the basis for the input
tiles for the preprocessor.

5.1 The Variables File

The variables file contains the input data for the
variables. Table 1 shows the input format for each
variable in the file. A unique symbol for the vari-
able is enclosed in parentheses. The symbol may
be up to 20 characters long. This is followed by
the declaration of the tvpe of variable: menu (M.
string (8). logical (L), integer {1}, or floating point
(F). A menu type declaration must be followed by

Table 1. Input Format for Variables File

{(variableSymbol} M3 2 1 0.1 0.2 0.3
This line contains the question for the
user.
choiceSymbol._ 1
choiceSymbol_ 2
choiceSymbol__3

First menu choice
Second menu choice
Third menu choice

the number of items in the menu list. as shown
above. The next field contains the integer “kev™
code (2). This code is passed to the wrapper with a
message from the Rule Engine when an external
process is requested for the variable. The next
item in the first row is an integer specifving the
number of lines in the question. The last three
fields (0.1, 0.2, 0.3) were originally intended for
coefficients quantifving uncertainty. but this fea-
ture is not yvet implemented.

The second row contains the question that will
be displaved for the user when this variable is en-
countered in a rule test. If the variable is a menu
tvpe, as shown in Table 1. the remaining rows
contain the choices for the menu. If the variable is
an integer of float type. only one row follows the
question. and it contains the minimum and maxi-
mum permissible values for the variable.

Table 2 contains a partial listing of the vari-
ables identified by the experts. A key of =17 sig-
nals the wrapper to obtain and display informa-
tion from the ScanCast weather forecasting svstem
[10]. This procedure requires accessing a remote
data base over telephone lines. A key of 27" sig-
nals the wrapper to obtain current meterological
data from remote sensors at a highway station.
This information includes air temperature. pave-
ment tenlperauu‘e. Wind Sp(‘,’ed. precipitatinn. reI~
ative humidity. and other pertinent data.

5.2 The Actions File

The actions file contains specific actions to be
performed as a consequence of the state of the
system. An action mayv be a screen display giving
recommendations to the user. an operation to be
performed on a set of variables. or a message 1o
the wrapper to execute an external process. Table
3 shows the input format for each action in the
file. A unique symbol for the action is enclosed in
parentheses. followed by the key code. Three flags
are permitted following the key:

1. /5 suppresses the sereen display of the

action deseription

/Q signifies “questionnaire” and will force

all tests of a rule having this action to be

evaluated. Normallv. the evaluation of tests

within a rule will be discontinued ar the first

false.

3. /0 indicates that this action is to perform
operations as specified by cades following
the description line(s).

|3

Table 2.

C++ CLASS FOR RULE-BASE OBJECTS 171

A Partial Listing of the Variables File (.IDV)

(expectPrecip)

M3 2 1

Is there a possibility of precipitation in the next 3 hours?

rain There is a possibility of rain in the next 3
hours.

snow There is a possibility of snow in the next 3
hours.

no No possibility of precipitation in the next
3 hours.

(expectDrift) L 2 1

Is there a possibility of drifting in the next 3 hours?

(snoRateNow)

M3 1 1

what is the rate of snow fall now?

light Light (less than 1 in/hr).

medium Medium (between 1 and 2 in/hr).
heavy Heavy (greater than 2 in/hr).
(hwyPriority) I o] 1

what highway priority are you considering (1 to 47
14

{crewOnDuty) M4 0 1

Is there a crew on duty?

noCrew No crew is on duty.

nightCrew A normal night crew is on duty.
skelCrew A skeleton crew is on duty.
maintCrew A maintenance crew is on duty.
{stormDirection) M4 2 1

The storm approaches from which direction?
southEast Storm from the southeast (moisture).
northwest Storm from the northwest (winds).
west Storm from the west (moisture)
southWest Storm from the southwest (severe).
(timeOfDay) F 0 1

What is the time to the nearest half hour (24 hour clock)?
0 24.5

(specialEvent) M4 0 1

what type of special event is scheduled?

sport Major sports event.
conv Major convention.
holiday Holiday celebration.
polit Major political event.

The next field in the first row specifies the num-
ber of lines in the description. and the last three
fields are place holders for future development.
The second row contains the description of the

Table 3. Input Fermat for Actions File

{actionSymbol) 57/8/Q/0 1 0.1 0.2 0.3
This line contains the description of the
action.

=V variableSymbol_1
=C variableSymbol_.3
B ruleSymbol

variableSymbol_2
constantvValue

action. This rext will be displaved to the user when
this action is invoked unless the /8 flag is set. If an
operation flag {/O) has been set. then additional
rows are needed to specify the operations to be
performed. Three tvpes of operations are cur-
rently available:

1. =V"" means set the value of the first vari-
able equal to the value of the second.
2. =" means set the value of the specified

variable equal to the value of the constant.
3. B means branch to the specified rule.

172 GRENNLY

Table 4. A Partial Listing of the Actions File (.IDA)

(Wait) 0 1

No decision necessary at this time.

(AlertCrew) 0o 1

Alert crews for possible dispatch in 2 to 3 hr.

(EmergencyAlert) o 2

Emergency condition expected, alert contractors, and/or highway

patrol.

(DispatchSklCrew) ¢ 1
Dispatch a skeleton crew.

{DispatchCrewSnd} 0 1

Dispatch a standard crew with sand trucks.

(DispatchCrewP/Sy 0 1

Dispatch a standard crew with plow and sand.

{(EmergencyAct) 0 1

Implement emergency actions: contractors, state patrol, etc.

(ReduceToSkel) o 1
Reduce to skeleton crew.

{(ReleaseCrew) 0 1
Release Crew.

(AlertRelCrew) 0 1

Alert relief crew for possible dispatch in 2 to 3 hr.

{DispatchRelCrew) 0 1

Dispatch a relief crew to replace a standard crew.

Table 4 comains a partal listing of the actions
identified by the experts. Each acton is made up
of a unique symbol and an expanded deseription.
No kevs were needed for dhis application. Blank
fields in the input file are interpreted as nudl by the
file preprocessor.

5.3 The Rules File

Rules associate the state of the svstem. as charac-
terized by the values of the decision variables.
with the actions o be performed. Each rule con-
tains a list of tests. A test may be based on a vari-
able. an action. or another rule. In its simplest
form. the rule-base may be represent by a deci-
sion matrix where each row is a rule and each
column is a test. The elements in a row contain the
values that will cause the tests to evaluate true. An

Table 3. Input Format for Rules File

action is associated with each rule. and when a
specific rule fires. it is thix action that is invoked.

The experts used a deecision matrix 10 establish
the rules for this application. Each row (rule: in
the decision matrix was represented in the input
file as shown in Table 3. A unique svmbol for the
rule is enclosed in parentheses, followed by the
svinbol for the action associated with this rule. the
key code. and the three wnused cocflicients. The
second row contains the description of the rule.

Each row following the deseription deseribes a
test for the rule. The first two characters in each
row indicate the kind of test. A 777 as the first
character indicates that the result of the test is 10
be reversed {i.e.. true becomes false’ after evalua-
tion. Three kinds of tests are permitted:

1. V7 means to test a variable against the
specified eriteria.

(ruleSymbol)

actionSymbol 111 0.1 0.2 0.3

This line contains the description of the rule.

\Y variableSymbol_.1
R ruleSymbol _1
tA actionSymbol

criterionForTRUE
ruleSymbol.2
ruleSymbol_4

ruleSymbol..3
ruleSymbol .5

C++ CLASS FOR RULE-BAsE OBJIECTS 173

Table 6. A Partial Listing of the Rule File (. IDR)

{102) AlertCrew 0

Put a crew on stand-by for snow,

v expectPrecip Snow

v snowStart 26

v crewNotified false

v crewOnDuty noCrew

(103 AlertCrew 0

Put a crew on stand-by for rain.

v expectPrecip rain

v rainstart 2 8

v rainRateThen mist drizzle rain
v crewNotified false

v crewOnDuty noCrew

v pvmtFrzStart 2 6

{109 DispatchCrewP/S 0
Dispatch crew with plow and sand.

v expectPrecip Snow

v snowStart 02

v snoRateThen light medium heavy
{110} DispatchCrewSnd 0
Dispatch a standard crew with sand.

v expectPrecip rain

v pvmtFrzStart 0 2

v rainStart 01

(111 DispatchCrewp/S 0
Dispatch crew with plow and sand.

v expectPrecip snow

v snoRateNow light medium heavy
(112) DispatchCrewp/S 0
Dispatch crew with plow and sand.

v expectDrift true

v windStart It_1 1.to.3
v windSusThen 10.to..20

v SnoForDrift 10 100

2. R means 1o test the following list of rules
in the specified order.

3. AT means to test an action. A list of rule
symbols {associated with the action) may
follow to dictate the way in which the action
is 1o be evaluated.

Table 6 contins a partial listing of the input
file for the rules developed by the experts. The
experts would first select an action, then decide
which variables were important {or decisions re-
garding the action, and finally what values of the
variables would cause the action 10 be wken. In
Table 6. integer and floating point variables are
followed by a range of values. The variable will
test true for any value within this range. and false
otherwise. Menu variables are followed by a list of

choices. Selection of anv one of these Hems will
cause the variables to test true.

6 PRELIMINARY TESTING

Most of the testing effort went into exercising the
procedures in the preprocessor. the wrapper. and
the Tripod object. During this process many error
trups and wamings were added in order 1o ensure
consistency among the input files. The preproces-
sor prepares a list of all variable and action sym-
bols not used in the rule file so that the developer
can see i important elements have been inadver-
tently omitted from the rule-base. In the case
where an action operates on two variables, the
preprocessor checks 10 ensure that the variables

174 GRENNEY

are of the same tvpe. If they are menu tyvpe vari-
ables. the first variable must have at least as many
menu items as the second and a warning is dis-
plaved if corresponding choice symbols are not
identical.

The preprocessor also checks to see if the de-
veloper has used a rule in a test for that rule. For
example, in a test containing several levels of
nested rules. a developer could easily include the
rule within a test for itself. Obviously such a mis-
take could result in run-time endless recursion. a
situation that occurred on several oeccasions be-
fore this trap was added.

Next to displaving text for the user. the branch
is the most useful action operation. We used it as a
means to partition a rule-base. For example by
evaluating a few rules first. we could branch to
major sections of a rule-base to acquire detail in-
formation about a particular subject. Also. we
could design the rule-base to skip over major sec-
tions of rules that are no longer relevant after a
particular action has been invoked. Branching
can be used to construet loops in the rule-base:
however. we did not have an immediate practical
need for this construct. Like nesting rules. using
branches must be done carefully in order to avoid
run-time thrashing. We have not devised a tech-
nique for the preprocessor to detect inappropriate
branching.

During prototype testing. the wrapper and rule-
base performed quickly and efficiendy. The Rule
Engine utilizes pointers extensively. and can eval-
uate more than 50 tests without an obhservable de-
lay between display screens when operating on a
25 MHz 386 class microcomputer.

Preliminary testing of the protonype decision
support system by the experts led to some adjust-
ments to the existing rules and formulation of ad-
ditional rules. The experts found the three data
sets (variables. actions. and rulesto be a practical
approach for constructing the rule-base.

The prototyvpe was used in a case study for the
Denver, Colorado area. The Colorado Depari-
ment of Transportation maintains records ol ma-
jor storm events including weather forecasts prior
to and during the storm. remote sensor data. anid
personnel and equipment allocatons. A nonex-
pert was given the historical data from two storms.
and asked 10 make decisions regarding the dis-
patch and release of maintenance crews. Using
the decision =support model. the nonexpern
reached the same conclusions as the expert. The
prototvpe was used for a small sample of relatively
simple situatons. Expansion of the rule-base and

additional testing of much larger sample sizes
would be needed in order to establish a useful
decision support svstem.

Additional testing of the Tripod object was con-
ducted for two more applications. One was a
screening tool for transportation agencies 1o
quickly evaluate the appropriateness ol a variety
of hazardous waste remediation technologies for a
specific waste at a specific site [11:. This applica-
tion demonstrated the coordination of three rule-
bases. a data base. and a simulation model by
means of a wrapper and three Tripod objects. We
found it to be more convenient to assemble three
rule-bases that could be instaniiated as needed.
than to assemble one large rule-base. The second
was a conceptual application o reconeile non-
graphical data with digital maps for use in Geo-
graphic Information Svstems [12]. In this case.
there was very littde need to solicht information
from the user during a session. The actions oper-
ate on the values of the variables according to a set
of predelined conditions that are nearly the same
for all nongraphical data files and digial map
files. We found this approach o be a viable alter-
native o programming a complex system of [F-
THEN-ELSE statements directly in the code. The
difference in computational time between in-line
code and a rule-base object was significant hut
not excessive for this application.

7 CONCLUSIONS

A C++ class called Tripod and a file preprocessor
were developed 1o provide a tool for developing
rule-base decizion =upport svstems. The ap-
proach outlined i this paper was found o provide
several advantages over traditional procedural
programming for this applicaton:

1. The benefitz of a rule-base decision making
structure ta Tripod object; and the benefits
of procedural funetions ithe wrapper can
be effectively combined.

2. Muliple small rule-bases can he imple-
mented by the vrapper as an alternative 1o
one large rule-base.

3. The application Iogic can be modified and
expanded without changing the program
code, and numerical algorithms ean be
nodificd or added withowt changing the
I‘ll]l'—h(h‘l‘.

4. The approach utilizes memory efliciently
and permits interlacing sith third pary

programs that often reset environmental
variables. dominate memory. and return

Uﬂi(ill(’, status (‘()dt,‘r&.

Based on the Tripod class. a prototvpe rule-
base model was developed with the capability 10
interface with remote sensors and external me-
terological data bases. The model was applied 10
produce a prototype decision support system for
winter highwav muaintenance in the Intermountain
\V(’n(.

The rule-base for the model was developed by
interaction with a panel of domain experts. The
model was tested on a small sample of historical
data and responded favorably. It has the potental
to help an inexperienced person make rearonable
decisions consistent with those of an experienced
person in similar situations,

ACKNOWLEDGMENTS

Support for this project was provided by the Cen-
ter for Advanced and Applied Transporaton
Studies ar Utah State University.

REFERENCES

1L Walters and N0 R. Nivlsen. Crafting Knowlt-
edue-Boased Svstems. New York: Wilev, 1988,

20 I Turban. Decision Support and Eaxpert Sys-
tems: Management Support Svstems, Second
Edition. New York: MacMillan Series in Informa-
tion Systems. 1990,

C++ CLASS FOR RULE-BASE OBJECTS 1

(3]

o1

-3
(o]

H. Adeli. Knowledge Engineering. New York:
McGraw-Hill. 1990,

Information Builders, Inc.. Level 5 Expert System
Software Users Manual. New York: Information
Builders. 1986.

Bordand Internatonal. Turbo Prolog User’s
Cuide. Scous Vallev. CA: Borland International.
1988.

Borlund International. Borland C++ Program-
mer's Guide, scots Yallev., CA: Borland Interna-
tional. 1990,

Robertson Software. HX-Fiew: A Heather Graph-
ics Terminal. Geneva. IL: Roberson Sofrware.
1988.

1. D. Bjerregaard. ~Use of a weather information
svatem for management of winter highwayv main-
terance. Master of Science Thesis. Urah Sue
University. 1993,

W. I Grenney and Ho N Marshall. Areificial Intel-
ligence and Cieil Engineering. Oxford. England:
[nternational Conference on the Application of
Artificial Intelligence Techniques to Civil and
Structural Engineering. 1991, pp. 71-75.

581 Equipment manufactured by Surface bys-
tems. Ine. Saint Louis. MO: 8231 1990,

R. K. Penmetsa and W I Grenney. "\ computer
methodology for sereening rechnologies for haz-
ardous waste remediaton.” Adm, Soc. Cied Eng.
Ereirorental Division. Apnl 1993 in press:.
Wo b O Neill and Wo 1o Grenney. —Prototvpe
knowledge-hase model for marching non-graphic
road inventory files with existing digital carto-
araphic databases.” Proceedings of the 29%h An-
nual Conlerence of the Urban and Regional Infor-
ation Systems Association. Ban Franciseo, CAL
1991,

Advances in : ~ = Journal of

o . Industrial Engineerin
INultimedia e

Applied
Computational
Intelligence and Soft
- ; ey Lomputing—
H H nternational Journal of ! - "
The Scientific D gureter . ey B P —
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networks
and Communications Advances in

Artificial
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, =M Neural Systems

#

International Journal of
Computer Games
Technology

Intel ional J na
Reconfigurable
Computing

e . Computational i
t Ad S ~ Journal of
Journal of uman-Computer Intelligence and e, Electrical and Computer
Robotics Interaction Neuroscience Engineering

