
A C++ Class for Rule-Base Objects

WILLIAM J. GRENNEY
Professor, Civil and Em·ironmental Engineering, L'tah State L'niversity, Logan, CT 8·1-322-8200

ABSTRACT

A C++ class, called Tripod, was created as a tool to assist with the development of rule­
base decision support systems. The Tripod class contains data structures for the rule­
base and member functions for operating on the data. The rule-base is defined by three
ASCII files. These files are translated by a preprocessor into a single file that is located
when a rule-base object is instantiated. The Tripod class was tested as part of a proto­
type decision support system (DSS) for winter highway maintenance in the Intermountain
West. The DSS is composed of two principal modules: the main program, called the
wrapper, and a Tripod rule-base object. The wrapper is a procedural module tho!
interfaces with remote sensors and on external meterologicol database. The rule-base
contains the logic for advising an inexperienced user and for assisting with the decision
making process. © 1993 by John Wiley & Sons, Inc.

1 INTRODUCTION

State,:; in the Intnmountnin \\'est support expen­
sin• prnt(ram,; for highway ,;;now und ice remond.
For example. the sHne nJ Ctah eXfH:'cts to spend
on·r S-:'.000.000 per year on state highway:; for
winter maimenancP. The timinf! of tlw di;;patch
and relea:-e of road (Tf'w;; i!" imponant to ,.aft>ty
and co,.;ts. If the erews are di,;patdwd too hue or
relew.;Pd too Pa rl~·. driYin~ hazards could develop.
If the crews are di!"putdwd too early or released
too late. excp,.;;jye <·o,:;ts could be incurred. Deci­
sions rt'f('ardintr the deployment of personnel and
heavy equipment are made by maintenance fore­
men and supervbors. Data an;ilable to them in­
clude local and natioual weather forecasts and
realtimP data from n•mote sensor!". as well as pet·­
:-onal ob,.,t'n ation,.

n .. ,.,.;wd \Jay 1 911:2
.\nTpwd '\o~<'lldH'r]()<);2

© 1 <J<J:) by Joh11 \\.ill'y & ~""~- Inc.

s,·ielllifi•· Prof!rmmning. \'oL 1. PI'· l b:3-1-:':> :19'1'21

CU: 10;jil-Y'2-t-t/'1:3/0:2016:l- J:j

The purpose of this ;;tudy was to den· lop a rule­
base deei~ion support ,.:ystem :DSS) to as;;i;;t
maintenance foremen pt>rfonn tlwir dutie,; during
winter storms. :\ ;;pcondary objecti\·e wu;; to pro­
Yide a training deyiee f(w inexperiPneed personnel.
Tht> Hudy iuYoln,d two eoncurn·nt endeaYors:

1. Selt>ction or de\·Plopmcnt of a tool for imple­
menting a rule-lm,;e DSS

:2. Dnelopment of a prototype application for
winter highway maintpnanee utilizing the
tool

\lost of tht' study dfon went into 1 bt> op\·dopnwnt
of the rule-ha,;e DSS tool that is de,;cribed in thi;;
paper.

21MPLEMENTATION STRATEGY

The fir,;t acth-ity undertakl"n to de:--ign the DSS
was the e:-tabli;;hmem of a panel of expt>rt,;. Four
foren1en from highway maintenance departments
in Colorado and Ctah were inYited to form the
panel. They runged in educatiun from high school

164 CRE:'\'\EY

to -t years of college engineering. :\.11 four had
lengthy experience makinf! decisions regardintr
snow plow and deicing operations. During the lir,;;t
meeting the experts listed the decisions that they
make during a variety of winter storm events. and
identified the data that would be nice to have
available in order to decide on a particular course
of action. They considered the following feawre-;
essential for a useful DSS:

1. Lead a novice user through a step-hy-step
process to reach a reasonable conduAion

2. Display tables and graphics quickly and
concisely for experienced 11serA

3. Provide optional supplemental information
to assi;;t with the interpretation of displayed
data

4. Interface with thinf party ;;oftware to aeces,.;
remote sensors and data ba,.;es

0. Operate on a computer plmform readik
available to n1aintenance fort;>men

This last feature dictated the use of IB:\1 .386
cla,;s microcomputers becausE' tlwy are affordablP
or already available at hig-hway maintenance site;;.
Abo, the software interfact' prm·ided by the man­
ufacturer of thE' remote ,;;en;;;ors operates under
DOS. However. we also con:"idf'red portability to

be an important featurl"'. \IS windows. OS:2. and
Cl\"IX are encroaching on DOS. and we would likt•
to adapt to tht:'se operating ;;ystt;>m,.; a,;; they Le­
come more prevalent.

The second actidty undertaken to design the
DSS im·olved the se!Pction of a modeling tech­
nique (languagP or shell': for the- rool. The rule­
ha:"e ~tmcmre wa;; iif'lt>ctt>d a,.; the ba,:;j,;; for the
DSS for several reasonA. It is a natural way to rep­
re;;ent the deci;;ion making- proee:"s. it is a better
way than mo,.;t to capture the thou)!ht pn1ee;;,;e,.; of
expen;;. and it can lw expandt>d and updated "·ith
a minimum of repro;rramming effort (1-:3;. \\-t'
decided tn evaluatP three techniques: (1) a com­
mercial shell. (2) Prolog. and (.3) C++. Two grad­
uate students went to work on two ;;eparate proto­
type projects. One used the 1:'\SICHT 2+
commercial shell [-t J and the other used Turbo
Pro log f5]. I deYeloped a prototype using Turbo
C++ (6:. \\-e compared prog;res,; weekly during
the evaluation period.

Work ·with the shell was pursued for about 2
months and then abandoned. The shell worked
very well for quickly establishing rules and it pro­
vided an impressive user interface. However. we
had difficulty interfacinl! the software for the re-

mote sen:-ior,.;. This ;-;oftwart' wa:" an undo\'u­
memed ;-;tand-alone package compo,-,.d of ~onw
complex DOS batch file,; that exenllt'd Pa,;eal
program;;. TIH' software chang;<'d enYironnwntal
Yariables, dominated memory. and fn•tptently
switched the ,;ereen between text and graphic;;
modes. The ,;;oftware wa,.; proprietary and wt· did
not lun-e acces;; to the ;;ottrce code. ln tltP final
analysi,;. we jtt;;t did not have the expeni,;e necp,;­
sarv to interface tltP remote sen,.;ot·,.; with tlw shell.
The shell did p:in• us. howen•r. a good initial ,;pt of
rules for the nther two project,.;.

The ;;econd ;;tudent had no pn·,·iou;; <'XfWri­
ence with Prolog. After dim!)inp: tlw leuminp:
curve. hP came to pn .. f<'r Prolof! ovPr (: and For­
trail. He utilizf'd Borlnwf,.; Turbo Prolop- Toolbox
[5~ to develop pff<•ctivr> pull-down menu,;. HP
coded a module that re.;pond,; tn a nwr111 item and
automaticalh· accp,;;e,.; a national wt·atlwr data
base [:]. He den•loped routine,; to ;,;pje,·t data
from the data ha,;e and di,;play it in p:raphical fqr­
mats. He made an initial attempt to intt'rfact-> the
sen,.;or nwmtfaeturer·;-; ,:;oftware packap:P and "·a,.
not succe,;;;ful. After the diffieultie;; encottmered
during our fir;;t expt>rience. we electt>d not to

spt>rKl additional time tryintr to ilHt'rface the ;;t>n­

sor;;. but instead to complE'te hi;; project a,; a pro­
totype interface to tlw national weather data ha,;e
[
01 O>

Durinp: m~· eniluation projE'('L I found it difli­
cult to adju:"t from traditional ;;tructured pro!Jram­
ming to the object oriented programmin).! ,()OPi
approach adnwated lw C++ den .. lopt->r:-i. How­
ever. it was worth the effort. OOP i;; intuitiwlv
con;;istent with the en·nt-drin:·n paradif!m tlwt i;;
becoming inrrea~ingh- popular. and "-hich l found
to be an effeetiw way 10 de;;ign the DSS .. \lthouf!h
we still had trouble interfacing with the remote
sensor,;. nHm\· altt->rnati,-e,.; for work-arounds wen·
antilable. w(' decided to se!Pcl C++ on•r a com­
mercial shell and Prolog. Tlw main n·ason,;; fol­
low:

1. The comnwn·ial slwll wa;; efli>ctive for·
quickly corl.~tructing a prototype. However.
learnintr to u;;e it for a practical application
involving- remotf' sensors appeared to lw al­
most a;; difficult as learning a lower level
language. and the shell lacked procedural
programmintr capabilitie;;. A commercial
shell would not be as portable to other plat­
form;; as C/C + +. Also. commercial shell;;
often have a rovalt\' fee a;;~nciated with ea('h
run-time license.

:2. Turbo Prulol! wa" found to],e a Yery power­
ful lanf!ual!e for this application. t>"l wcially
when u"ed in conjunction with Borland· s
Toolbox. Altlwug-h popular in other parts of
tlw world. Prolof! appears to he declininl!
and]o,.;inf! Hlpport in the Cnited States. For
Pxample. Borland di,;continued ,;upport for
Turbo Prolog. \\.f' did not think that Proln!-(
would he as portable to other platforms a,;
C/C++.

:3. \!omentum i,.; l!rowinl! in ,;upport and ex­
IPnsions for C++. Borland·,; C++ prm·ide,;
a framewor·k for deyeloping object orietllt'd
prof.!Tam,;. OOP i" iruuitiYt>ly con,..;i.-;tPnt with
t!w n·ent -driYPn paradigm t!wt is lwcominf!
innea,-,inl!ly popular.

It :'lrnuld lw t>mphasized that tlri,; entluation of
three producl!"i wa,; far from "eit>ntilic or l'ompre­
lwn,.;in·. It focu,..;ed on one application. and in par­
ticular on portability and the interfacinl! of proce­
dural module,;. At the Yen· lea,..;t it \Yas !Jia,..ed ll\· . .
my hackf!rOUIHl as a C prof!rammer. Howe' er. in
,.;umnwrY it i:' ,.;aft' to ;;ay that rwitht>r the L'ommt>r-. .
cia! ,.,ht:>llnor Prolol! offt:>rs ,_ufliciPnt ach·antages to
""·itch from tiH' C/C+ + family for thi,; applica­
tion.

Anotlwr cori>-ideration played an important
part in the deci,.;ion. The experh had trouble for­
mulutillf! t!wir idea,.; directly imo typical antt'ced­
ent-con.-.eqtwnce type rule,.; in l'Onn·ntional for­
mal'>. Hm,·e\er. they Wt>re quite effectiYe in
deYelopinl! rule,; by mearb of a three-,;tt>p proce­
dure. The lir,.;t "tep was to make a li,.;t of the im­
portant actions •'conM'<]llt'Il<'t's: that they "·otdd
perform durin!! a winter "torm t'\ ent. The ,;;econd
,-,tep wa,.; to make a list of \aria!J]e,.; type,.; of data:
that were u,.,eful in deciding" hich action to takt>.
The third ,..;tt·p im oh·eJ the dewlopment of a deci­
sion matrix for as;;;ociatinl! action,; with nu·ia!J!t's
and their ndue,;. The decision matrix defines the
rule,.; for the application . .'\n example of the rule
format i,; pre,;emed later in thi,; paper.

The three data ,;et,.; a,;sembled lw the abm e
pnwt>dure completely define the rule-Lw,;e. \\'e
"·antt:>d to deYelop a preproce,-,.;or that would au­
tomatically conn'rt the three data ,;ets into a sin!-(le
nrle-lm.•w tlwt could be efficiently input to a DS.S
of our de,.;if!ll. It seemeJ like a f!ood idea to trans­
late directly from formats that the t:>xpert,.; were
able to construct and comprehend. to a rule-ba,;e
file that the DSS could d'Jiciently read. By dointr
,.;o. the Pxperts could quickly ,;t'e the results of a
chanl!e to one of their file,; "·ithout an intermedi-

C++ CL\SS FOR HLLE-B\SE OBJECTS 165

ate intt>rpretation by a knowledl!e enl!ineer. All of
the knmy]edge enl!illt'f'ring f!Oes into the formation
of the three data sets which. for this ca,.;e. were
ea~ily under,;tood by the exper·t,;. \'\: e found that
C/C + + was an d'fecti' e lanf!UHf!e for developintr
both the prt>pruce,..snr and the DSS.

3 PROGRAM DESIGN

Con,.;iderinl! the list of essential feature,; for the
DSS JHe\ iou,.,Iy li,.;ted. ,..;ome are more suita!Jle to a
rule-ba:-;e de,.;ipl and "ome to a procedural desitrn.
The deci,.,ion makinl! and informatiYe a,.;pect,..; of
the application lend them,.;eh·es to tht' rule-ba,.;e
approach. The ,.,en,.;or intt>rfacitl!-(and data ma­
nipulation a,.;pects are best suited to the pnH'e­
dural approad1. \\'e wanted a hyLrid tool that
proYide,.; the fit> xi! Ji!it y of both approache;;. \\' t'
di,tinl!ui,.;hed lwtween two fundanwntal ap­
proaclws: 1l.i formulatinf! the application in a de­
darati,·e architecture that utilizes and coordinates
procedural module;; and r:z:: formulatinl! the ap­
plication in a procedural architecture that utilizes
and coordinatt's rule-ba,;e objt:>l'b. The commer­
cial slwll and to ,;;ome extent Prolol! arf' declaratiYe
a pproache,; that permit interfacing "ith proce­
dural module,;. \\~e found sif!nificant problems
"·ith data tran,;fer among modules. Because we
were much more confident in our proceJural than
declarati' e prnwamming ,;kills. we decidf'd to de­
,;if!n a tool compo,;;ed of a procf'dural "wrapper"
that ha,; the capability to in,-tantiate multiple rule­
base ohjecl:'i. Because our rule-base object ob­
tains knowledl!e from three data sets. we nanwd it
"Tripod ... Information exchange (data and cum­
nww.l,; '1 is accompli,hcd by messaf!es sent be­
tween the wrapper and the Tripod objt:>ct.

3.1 Rule-Base

Fif!ure 1 illu,.;trates the D~S application proct':'is.
The terminolo1-.ry used in the following discu:;:-;ion
eYoh-ed durin!! interTiews with the panel of ex­
rwrts. Term,; "·ere selected that prm·ided the best
communication with the experts. Three ASCII
files. "hown at the left of Figure 1 are prt>pared by
the expt:>rts and the de,·eloper. These files are de­
;;cribed in greater detail later in this paper.

3.1.1 The Variables File

A ,·ariable is a quantifiable characteristic of the
system. The ,;;tate of the system at any rime is de-

166 GRE:\:\EY

fined bv the values of the variables. The variable
file (identified b,· the extension .IDY) contains a
list of unique identification symbols and a;;soci­
ated information for each variable. such as the
type of the variable (i.e .. intef!er. float. logical.
menu, or string). Each variable also has a ques­
tion associated with it that. when needed. will be
di:;played on the screen reqtwsting a ,·alue from
the user.

3.1.2 The Actions File

An action is a consequence that is invoked when
an associated rule fires (e.g .. evaluates true). The
actions file (identified by extension .IDA) contains

a list of unique identification symbols and associ­
ated information for each action. such as the type
of action to be performed. An action may di,;play
text. display graphics. or perform an operation. A
variety of operations may be performed by an
action, for example. manipulating the values of
variables. sending a message to the wrapper. and
branching to a specified rule in the rule-base.

3.1.3 Rules and Tests

A rule is an IF -THE:'\ statement specifying the
appropriate action for a particular state of the sy.~­
tem. as defined bv the values of the variables. It
has the standard form:

IF (variable_l ruleValue_l) fu~ (variable_2 <= ruleValue_2) AND THEN (action_l)

The antecedent is made up of ·'rests.,. shown in
parentheses. For a test. if the value of the variablt>
(i.e .. variable_1) satisfies the comparison (i.e ..
equals rule\"alue_l), then the test is true. If all of
the tests for a rule are true. then the rule is true
and the action is invoked. If anv one of the tests is
false. then the rule is false. The rule file (identified
by the extension .IDR) contains a list of unique
identification svmbols and associated information
for each rule. Among other things. each rule has a
list of tests that can includt> variables. actions. and
other rules.

3.1.4 The Preprocessor

A preproce,;sor performs error chf'cking on the
three files ancl produces a rule- base file that can
be efficiently read by the Tripod object. Changes
to the rule- base file may be made only through the
variables. action,;. and rule,; fj)p,;_

File
Preprocessor

3. 1.5 The Fact Data Base File

Figure 1 also shows a .. Fact Data Base .. filt>. This
file contains initial value::; for variables in the rule­
base. It is an ASCII file with a list of variable iden­
tification symbols. each followt>d by its initial
value. The Fact Data Ba,;e may be updated any
time prior to the instantiation of the Tripod object.
Variable,; not li:-ited in the Fact Data Base are au­
tomaticallY initialized to an .. unknown·· state lJ\·
tht' object.

3.2 The Wrapper

Figure 1 shows the wrapper intt>racting with a Tri­
pod object and an auxiliary proce,;,; lsu<'h as a
remote sensor 1. The wrapper is a procedural main
program that instantiatE's and coordinates Tripod
objects a,; wE'll as performs auxiliary pnH'Ps,;;es.
The wrappt>r is the ma>'tt'r of diP application: it

FIGURE 1 · The Decision Support System application proce,;s.

communicates with Tripod objects by means of
mes,.;ages and !!athers information to respond w
the messa!!es by means nf procedural l\1nctions
!auxiliary processes). The wrapper is tailored for
tlw rule-hase. or ,:.;et of rule-ba,:.;es. in a specific
application. The "-rapper must know how to n:-­
spond to me;;,_;age,:.; it recein·s . .\lessages are ime­
ger Yalues. For example. action_message .. 2"
from the Tripod object request,.; data from a re­
mote sensor buffer. The wrapper often responds
by s1·ndiug a me,.;:;al!e containing the data back to

the Tripod object.

3.3 The Tripod Obiect

\'\'lwn a Tripod o!Jject is in,.;tantiated by the wrap­

per. it I ills in data ,.,tructure::; from the Rule- Ba,.;e
lile. It dwn initialize,.; appropriate data memlwr
'alue,; from the Fact Data Ba,.;e file. and ret urn,;
t'Oillrol to the wrapper. The object is dormatlt un­
til it receiYes a messal!e from the wrapper to be11in
te,.;ting it.,.; rule-base at a tij.weified rulf'. Rule test­
in!! is conduf·ted by a member function in the Tri­
pod object that is descrilwd later in thi:; paper.
Huk."' art> te,.ted in ."'equem-e until one fire.". \\'hf'n
a rule /ires the a:;,;ociated action i,; performed by
anodu·r Tripod IllellliJer function. a "rule _fin·d ..
messal!e is ::>elll. and prowam control is returned
to the wrapper.

3.4 Program Procedure

3.4. J Overview

Fif!un· 2 illu;;tmtes the prol!ram procedure as a
;;erie;; of <·ommunit"ation en·nt" between the wrap­
per awl dw Tripod object. The circled number,.; in

Fi11un· 2 cotTe,.;pond w tl!tllllwr,.; in parelltbe,.,e . .:; in
dw followinf! di,.;cu,.;:'ion.

~taninl! at the top left of Fi!fure :2. the liSt' I' t"Xe­
t'llles dw \\Tapper and dw wrapper in,.,talltime, a
Tripod nd<·-ba,e oiJjt·t·t '1 '. Tlw olljt•('(" ('Oll­

;;tnwtor loads t!H· Ruk-Ba,.,t• lile. initializt', Yari­
a!Jlt>s from dw Lwt Data Baste Jile. ami ret um,.,
,·ontrol to tlw \\T:tpjwr :1 . The wrapper· ,.,,·Hd.,., u

llWSS<If!t' to tlw Tripod olljt•t·t to lwf!ill tt·,.,tillf! ntk,.,
in "~'<jlWIH'<'. ~turtillf! \Yith u dt·,..i!ftHll<'d nd~· :~ .
Tlw nde tt•,.,lill!f ulf!oridlll! in t!w olt.iect entlttalt>,_

tlw l<'"h a,.,.~ocinted \YidJ tlw t't!!Tt"llt rult·. \lo,.;t

!<',.,!,..\\ill rnpw,..t a n·,..ponst• from dw U:-.t•r a" i]l(li­
t·alnl in Fi!l·un· :2.

.\ny tinw tlw Tripod tdlj<•t·t requ~·,.,ts u n'"IHJ!l,.,t'.

tl1•· ''"''r lw,.; d1P "!Jiion lo :-e!ld a llll'""~lf!<' lu tlw
\\l'<li'J'''I' \ia tilt' t>!Jjt'('l. \\ hl'll thi,.; lwplWlb the

C++ CLASS FOH Rl'LE-BASE OBJECTS 167

mput/ Wrapper: Tripod Input/
output main program object output

(~1---J' 1
~) J ~un .,u~pper .

(1)

~)
~ tnstantJate ObJ.

read Rufe

! r(~l
Base lAB) I!·'· ---. run the Rule

Engtne UEl

I I
evaluate i···---~\
a rule ,.._l respon.::.}

I I evlauate IF I , ;)I a rule ~,response

-evaluate tl Y'eld

I i message ! contr-ol

(external ·r----t ks) process 4
I ' ' resume n res~me

I . " I ~·-
I I concluSIOn F1 ::;:~ I ! -,: , acuon
i ~ 6 ll yield

___ /
evaluate ~ control
mess.age I i

I r~:~onse L-... I
i

conttnue or I 1 termtnate
I

FIGCHE 2 Pn•I!Tam procedure.

object ,.,tore:' its eli!TI"Ill :'-latus. sends the mPssa;re.
ami return;. control to the "Tapper ;-t:-. ,\fter the
wrapper ref;pond;; to tht' me,;sal!e. wltit'h mif!ht be
the execution of an auxiliury pnH't'SS. for example.
it ;;ends a me,.;sa;re to the object to n>ume from
when· it lefr off 1:) .

\\'hen a ntle is tme i.e .. all of it,:.; te,.;ts e\'aluate
tnw) the associmed m·tion is in Yoked. and a
"ntle_firt>d .. llW"="H/!e i;; se!ll and comrol is re­
t.urnf:'d to the wrapper 6 :·. The wrapper typically
n,<jUt':'t,.; tlw tbtT to det·ide whether to t'ontinue or

to terminate the run.

3.4.2 The Rule Engine

The Rule En!!itw is dw memlwr function of the
Tripod objet·t that t'\ aluaJc,.; the rule,. It takt'ii as a
para!IWlt'l' tbt· onlt,r ntttuLwr of a rult> in the rule­
lw,.;t~. It "tarts l1y e\aluating tile Jir;;t t<""l ill the Ji,t
of t<",.,b a,..,.,nciat<·d with tlwt rule. If the fir,-t te,..t

t'\alttall'" lrtte. it !l:ot::- to dw ,.;t•cond. nnd "o 011. If
ull of the tt·,.,h an~· tnw. tlw Hule Enl!illt' t'Hll,.; the
fwwtiotl execAction (J. This funt'tion take,., as a
paranwwr ilw p<~i!ll!'l' tu an actioll. uud jWI'fonlb

the operation "'f'('t'ili<·d !J~ tile action. F(Jr t·xalll­

pk. it lllif!ll! n·plan· tlw \alue of one \uriuble with
tlw \ altw fn>Ill <I!IOdlt'r. or it llli!!lll jtt,.;t di::-play tt'Xt
o11 dw ,...,-r,·en. Af:Pr execAction () relllrn,.;. the
Huk En;ri11e ~tun·,., tile cuncnt :--tunt,.; oftl1t> Tripod

168 GRE:\:\EY

object, sends. a ··ru}e_fired .. me'5Saf'e. and re­
turns control to the wrapper.

If a test evaluates false. the Rult> Engine discon­
tinues evaluatintr tests for the rule. marks the rult>
as false, and goes on to the next rule in the rule­
base. This process continues until a rule is en­
countered in which all tests evaluate true.

Three types of tests are permitted: variablP.
rule, and action. The variable type test provides
the symbol for the variable and a value (or range
of values). The Rule Engine first checks to see if
the variable has been previously evaluated and if
not calls a member function query () . This func­
tion displays the question associated with the ,·ari­
able, and compares the user's respon;;e with the
test value(s). It returns a true or false flag to tlw
Rule Entrine depending on tlw re;;ults of the com­
parison.

A rule typr- test provides a pointer to another
rule. The Rule Engine call;; iHelf to evaluatP this
n1lt>. If the rule is true then the test is trut>. other­
wiiie the test is false. Tlw Rule Engirw operate,;
recursivelY on nested rules to anv reasonabiP
depth.

An action type test provides a pointer to an
action. The Rule Engine checks to see if the action
has previously been invoked /i.e .. a;;sociated with
a rule that has already fired i. and if not bt>gins
testing all of tlw rule.'i as;;ociated with the action. If
one of these rules {ires. then the action is im·oked
and thf' test is true. If none of the,.;e rules fire. then
the test is fal5e.

Branching is handled by a special operation in
an action. \\-hen an action is invoked bv execAc­
tion () it may pt>rform several types nf opera­
tions. Ont:> typ~' is to branch to a specified ntle.
This is accomplished by returning a me,;sal!e to
the Rule Engine directing it to leave off what it ha"
been dointr and begin evaluating the ;.;pecified
mle. For example. if a nested rule fires and ih
action specifies a branch to another section of the
mle-base. the Rule Engine does not finish evalu­
ating the higher rules in the nt>st.

4 TRIPOD DATA STRUCTURES

4.1 The Tripod Class

Continuity is maintained by continually updating
the Tripod data ;;tructures. The Tripod object re­
tains the results of all previous operations. For
example, it records which rules have fired, which
actions have been invoked. which variables have

ll; =chor .t- 'ABCM;;~;~
I nbrChoice ---, choSym J ! varSvm (choOesc

varQuest
varNL I I
::;~~~· ··---·

----~ J ::;~c;IJJ
(I!JilQll LJ ~
I ~:~e~~t-or I

I
I ~~~~~~hor fl.._,l .. lli!!ill-RBA ·h.~

~~~~f;hor I ~~:'v~~g~~r ~· = 'I 
1 kbTrace actSym oprnVar{2! 

1 ! rueEngldx!2J I actt<ey I '- oprnC J 

I
I ~e;~~~1•t•d .I I l1 :~:~~:~3, J ~--· 

curVarKey I spsOI~pt t 

curActKey I ~~:~st~~ 
, curRueKey '" 

" I --_ 
~-· ABRvle \ ---~ ! rueTstAnchorJ______.,." ~ 1 

I 
nbrTests I i tstType I 
rueSym 1 tstVarAueActldx 
rueActSym lj tstRueAnchor 

I 
rueActlDx nbrTstRueMu l 

~~=~~(31 ~ : ~~: 
i, rueTsted l ·-----

FIGL'HE :3 Tripod data ,;tructun·,.,. 

bet>n enduated. and what n1lues h;ne lwen a,;­
signed. Thi,o, is facilitart-'d by ew·ap,.;ulnring tlw 
data for tl1P actions. variable~. and rulPs ,;epa­
rateh-. 

Figure :3 shows tlw nHbt important data mem­
bt>rs in the cia;;, stnwturP. The Tripod clas:' con­
tains varAnchor. actAnchor. and rueAnchor. 
which arP pointers to ]i,.;r,;; of nuiables. action,;. 
and rule,;. respectiYdy. ThP data memlwr,; 
nbrVar. nbrAct. and nbrRue arP the number of 
entries in the n•specti\·t' list,;. The data mPmlwr,; 
kbFile and kbTrace are tile handles for tlw 
ndt>-base input file and an output tile to record a 
trace of the steps performed hy tlw u,.;er. The 01 her 
data members are for control purpost>,.;: 

1. rueEngidx [2] records the indices of t!w 
principal rule (the highest in the hierarchy 
of nested rules) and the current nt>,.;!ed rule 
bt>ing evaluated. 

2. nestDth is the depth of the current rulP 
being evaluated within a set of ne;;ted ruh·"· 

3. nbrRueTsted is the number of rule,; that 
has been tested during the current run. 

4. curCode is the latest message sent to the 
wrappPr from the Rule Engine. 

.::J. curRueKey is the key (integer code) associ­
a ted with the current rule being evaluated in 
by the Rule Engine. The key is assigned by 



the deYeloper in the rules file. It i:-; often 
u,;ed to indicate a help or "upplenwntal in­
formation file li.e .. 2)-i.txt). 

b. curVarKey i,; the key (integer code) associ­
ated with the current variable beinf! endu­
ated by the Rule Engine. The key is as­
,;igned by the dneloper in the Yariable,; file. 
curActKey i:-; the kPy (integPr code) associ­
atPd with the currellt rule being evaluated 
by the Rule Engine. lt is assitrned by the 
de,eloper in the actions file. 

4.2 The RBVar and RBChoise Classes 

Tlw RBVar Rule-Ba,.;e YariaiJlp,.; clas,.; contains 
data for each deci,.,ion \ariahle. The data nwmlwr 
choAnchor point" to a li,.;t nf mPmi choi(·p,.; for a 
menu type of Yariah!P. and nbrChoice i,.; tlw 
number of choice,; in the li,.;t. The RBChoice class 
contains the information for each menu item: 
choSym is a unique character string identification 
symbol and choDesc is a character "tring dP­
:,cription for the item. varSym i:-; a character ,.;tring 
for a unique identification symbol for this vari­
able. varType i,; the type of the Yariable that may 
l1e one of the follo"·ing: menu. logical. string. ime­
ger. or floating point. varKey i,; the integer code 
a,.;,;ignt>d by the dt>Yt'lnper in the varialJle,; file to 

specify an auxiliary proct',.;:;. 
An auxiliary JH'OI'P"'"' is normally a function pro­

p:ramnwd by the dt'\ Plopt>r to tH'compli,.,h a spe­
cific ta,.;k: for Pxamplt>. rPading a rt'mote sf'nsor, 
iibtantiating another Tripod object with a differ­
em rule-ha;;e. or di,.,playing a tPxt file on the 
,o;creen. A de,·eloper may wi,;h to use kt>y ... ~-± .. to 
di,.;play tP.xt file ?i-t. txt on tlw ,.;cn .. en when the u,.;t'r 
rPque,.;ts lll'lp with tlw quf'ry for a particular ,-ari­
al>le. ThP deYeloper as,.;igns the ndue ?i-t to the 
kP,. for the Yariahle in the Yariahle file. and then 
prognmb a function for the wrappe-r to re,.;pond to 
a "ntriahle key .. me~,.;age haYing the Yalue 3-i by 
di,.,playing ;~-f. txt. 

varQuest is the que,.;tion for the Yariable and 
varNL is the numlwr of lines in the question. 
varUCF [:31 ,.;tores t!m."e arbitrary coefficie-nts for 
the yariahle. Originally the,;e coefficients were go­
ing to he used to n•prt>sf'nt uncertainty. However. 
this feature has not yet been implemented and the 
coefficients are unused. varEval is a flag indicat­
ing whether or not thi;; ,-ariable has been pre,·i­
ou;,ly e\·aluated. If it has been previously evalu­
ated. varRsl t stores the Yalue. varRsl t is a 
data union that stores a logical (Boolean). string. 

C++ CL\~~ FOH HL LE-13:\~E OBJECTS 169 

float. menu. or intetrer depending on the type of 
YariabiP. 

4.3 The RBAct and RBOpAry Classes 

The RBAct Rule-Base Action,o;) class contains 
data for each action. The data membe-r vOpAn­
chor point~ to a li,.;t of operations that the action 
is to pt'rform on dPcision Yariables. and nbr­
VarOps is the numbe-r of ope-rations in the list. 
The RBOpAry class contains information for the 
operation. opern [:2~ ,.;torp,; two character :-;ym­

bols indicating the type of operation to he per­
fnrnwd. oprnVar [21 contains the two operands. 
Thn•p tyJWS of o1wrations are currently 3\·ailable. 
aud theY arP de,.,ITilwd in the next ><Pction. 

Otlwr data members in RBAct include actSym. 
actKey. and actUFC [:3~. "·hich are analogous to 

varSym. varKey. and varUCF l:3i pn·,·iowdy de­
fined. actDesc i,., a character ,.;triug with the de­
scription of the action. and actNL is the number 
of lines in the description. spsOtpt is a flag to 

suppre~s di,-play of the de,.;cription. actTsted is 
a flatr to indicate whether or not the action has 
been prPYiou;;ly invokt>d. St>tting this flag sup­
prp,.;,.;p,; ,;uh,.;equPnt Pxecutions of thi,.; action. 
questlnpt i,;; a flag modifyiug the action. Three 
flags are permitted at this time. and they are de­
scribed in the next ,o;ection. 

4.4 The RBRue and RBRueTst Classes 

The RBRue !Rule-Base Rules) class contains data 
for Pach rulP. The data member rueTstAnchor 
poillls to the list of tests for the rule. and nbr­
Tests i;; the 11umber of test,; in the li,.;t. rueSym is 
a character ,.;tring containing the unique identifier 
for the rule. rueActSym is the symbol of the 
action as,.;ociated with this rule. and rueActPtr 
is a pointer to it. rueKey. rueUCF [3]. and 
rueTsted are analogous to actKey. actUCF [3~. 
and actTsted. 

The RBRueTst class contains information for 
each te,;t. tstType is a character indicating the 
type of test: .. , .. , for ,-ariable ... R .. for rule. and 
"A" for action. tstVarRueActidx is the identi­
fier of the Yariable. rule. or action for this test. 
tstRueAnchor is a pointer to a list of pointers to 
rules nested in this test. nbrTstRueMu is the 
number of nested rule,; in this test. not is a flag 
indicating whetlwr 1\'0T should Le applied to the 
results of this test (i.e., true becomes false). cri t 
is a data union for a Boolean. string, floaL or inte­
ger. It contains the values that will cause the test to 
eyaluate true. 



170 GRE:'Ii:\EY 

5 PROTOTYPE APPLICATION 

Decisions regarding the deployment of personnel 
and heavy equipment for snow and ice prevention 
and removal are made by the maintenance fore­
men in geographical districts. Districts range in 
size from a few hundred to several thousand 
square kilometers. Data available to the foremen 
include local and national weather forecasts. real 
time data from remote sensors. and personal ob­
servations. During a winter event. foremen rely 
upon these data in varying degrees and upon per­
sonal rules of thumb for dispatching crews and 
equipment, and for releasing crews near the end 
of the event. 

During the first three meetings with the panel of 
experts. the scope of the problem was discussed 
and terminology was f'Stablished that was mean­
ingful to the members of the panel. The objective 
of the smdy was focused on preparing a ~imple 
prototype of a DSS that would help foremen make 
decisions about the dispatch and release of road 
crews during a winter event. The prototype ;;hould 
provide table and graphic displays of data from 
remote sensors, and provide a step-by-step advi­
sor for novice users [9]. 

The importance of terminology used for com­
municating with the panel of experts should not 
be underestimated. Terms were established b,· the 
panel defining three categories of informa.tion: 
variables, actions, and rules. Forms were devel­
oped to assemble information in these three cate­
gories. These forms were the basis for the input 
files for the preprocessor. 

S.l The Variables File 

The variables file contains the input data for the 
variables. Table 1 shows tht> inplll format for each 
variable in the file. A unique symbol for the vari­
able is enclosed in parenthese:-;. The symbol may 
be up to 20 characters long. This is followed by 
the declaration of the type ~f variable: menu ('\I}. 
string (S). logical (L), integer (lJ, or floating point 
(F). A menu type declaration must be followed by 

Table 1. Input Format for Variables File 

{variableSymbol) M3 2 1 0.1 0. 2 o. 3 
This line contains the question for the 
user. 
choiceSymbol_1 
choiceSymbol_2 
choiceSymbol_3 

First menu choice 
Second menu choice 
Third menu choice 

the number of items in the menu lise as shown 
above. The next field contains the integer .. key"' 
code (2). This code is passed to the wrapper with a 
message from the Rule Engine when an external 
process is requested for the variable. The next 
item in the first row is an ime~er specifyin~ the 
number of lines in the question. The last three 
fields (0.1, 0.2. 0.3) were originally intended for 
coefficients quantifying uncertainty. but this fea­
ture is not yet implemented. 

The second row contains the question that will 
be displayed for the user when this variable is en­
countered in a rule test. If the variable is a menu 
type, as shown in Table 1. the remaininp: rows 
contain the choices for the menu. If the \·ariable i;; 
an integer of float type. only one row follow,.; the 
question. and it contains the minimum and maxi­
mum permissible values for the variable. 

Table 2 contain;; a partial li:"ting of the vari­
ables identified by the experts. A key of .. 1 .. sig­
nals the wrapper to obtain and display informa­
tion from the Scan Cast weather forecasting system 
[10]. This procedure requires accessing a remote 
data base over telephone lines. A key of ··2 .. sig­
nals the wrapper to obtain current meterological 
data from remote sensors at a highway station. 
This information includes air temperature. paw­
ment temperature. wind speed. precipitation. rel­
ath·e humidity. and other p<'rtinent data. 

5.2 The Actions File 

The actions file contains specific actions to be 
performed as a consequence of tlw stare of the 
system. An aerion may be a screen display gi,·ing 
recommendations to the user. an operation to be 
performed on a set of variables. or a message to 
the wrapper to execute an external process. Table 
:3 shows the input format for each action in the 
file. A unique symbol for the action is enclo~ed in 
parentheses. followed by the key code. Three flags 
are permitted following the key: 

1. IS suppresses the screen display of the 
action description 

2. /Q signifies "qut>stionnaire .. and will force 
all tests of a rule hm·ing this action to be 
evaluated. 1\'ormalh·. the entluation of tests 
within a rule will be. discominuf'd at the lir;;t 
false. 

:3. /0 indicates that thi:-; action i;; to perform 
operations as specified by codes followintr 
the description line ( s). 



C++ CLASS FOR RLLE-BASE OBJECTS 171 

Table 2. A Partial Listing of the Variables File (.IDV) 

(expectPrecip) M3 2 1 
Is there a possibility of precipitation in the next 3 hours? 
rain There is a possibility of rain in the next 3 

hours. 
snow There is a possibility of snow in the next 3 

hours. 
no No possibility of precipitation in the next 

3 hours. 

(expectDrift) L 2 1 
Is there a possibility of drifting in the next 3 hours? 

(snoRateNow) M3 1 1 
What is the rate of snow fall now? 
light Light (less than 1 in/hr). 
medium Medium (between 1 and 2 in/hr). 
heavy Heavy (greater than 2 in/hr). 

(hwyPriori ty) I 0 1 
What highway priority are you considering (1 to 4)? 

1 4 

(crewOnDuty) M4 0 1 
Is there a crew on duty? 
noCrew 
nightCrew 
skelCrew 
maintCrew 

No crew is on duty. 
A normal night crew is on duty. 
A skeleton crew is on duty. 
A maintenance crew is on duty. 

(stormDirection) M4 2 1 
The storm approaches from which direction? 
southEast Storm from the southeast (moisture). 
northWest Storm from the northwest (winds). 
west Storm from the west (moisture) . 
southWest Storm from the southwest (severe). 

(timeOfDay) F 0 1 
What is the time to the nearest half hour (24 hour clock)? 
0 24.5 

(specialEventl M4 0 1 
What type of special event is scheduled? 
sport Major sports event. 
conv Major convention. 
holiday Holiday celebration. 
polit Major political event. 

The next field in the first row specifies the num­
ber of lines in the description. and the last three 
fields are place holders for future dewlopment. 
The second row contains the deseription of the 

Table 3. Input Format for Actions File 

(actionSymbol) 57/S/Q/0 1 0.1 0.2 0.3 
This line contains the description of the 
action. 
=V variableSymbol_1 
=C variableSymbol_3 
B ruleSymbol 

variableSymbol_2 
constantValue 

action. This rext will be displayed to the wwr when 
this action is invoked unless the /S llag is set. If an 
operation flag JO) has been set.. then additional 
rows are needed to specify the operations to be 
performed. Three types of opennions are cur­
l'eJH!v available: 

1. ·· = y·' meanE> set the value of the first vari­
a!Jie equal to the value of the second. 

2. ··=C .. means set the value of the specified 
\ariable equal to the value of the constant. 

:3. '·B·' means branch to the specified nde. 



172 GRE'.;'.;E Y 

Table 4. A Partial Listing of the At:>tion>" File (.IDA) 

(Wait) 0 1 
No decision necessary at this time. 

(AlertCrew) 0 1 
Alert crews for possible dispatch in 2 to 3 hr. 

(EmergencyAlert) 0 2 
Emergency condition expected, alert contractors, and/or highway 
patrol. 

(DispatchSklCrewl 0 1 
Dispatch a skeleton crew. 

(DispatchCrewSndJ o 1 
Dispatch a standard crew with sand trucks. 

(DispatchCrewP/Sl 0 1 
Dispatch a standard crew with plow and sand. 

!EmergencyAct) 0 1 
Implement emergency actions: contractors, state patrol, etc. 

( ReduceToSke 1) 0 1 
Reduce to skeleton crew. 

(ReleaseCrew) 
Release Crew. 

{AlertRelCrewJ 

0 1 

0 1 
Alert relief crew for possible dispatch in 2 to 3 hr. 

(DispatchRelCrew) o 1 
Dispatch a relief crew to replace a standard crew. 

Table -1 contain,.; a partialli,.;tin!! of tlw w·tion,.; 
identified by the experts. Each action i,; nuHlt' up 
of a unique symbol and an expanded dt>,.;eription. 
:i\o key:; were nt>eded for thi,.; application. l3!ank 
field:" in the input tile are interpreted a:" null by the 
file preprocessor. 

5.3 The Rules File 

Rules a:".~ociate the ,;tute of the ,.;y;;tem. a,; charac­
terized bY the \·alue,.; of th<> decision variabJP,.;. 
with the (~ction;; to be performed. Each rul<> con­
tain;; a list of tesb. A test may Lt> ba,.;ed on a ,·ari­
able. an action. or another rule. In its simplest 
form. the rule-ba,;e may be represeut by a deci­
sion matrix when• each row i;; a rule and each 
column is a test. The elements in a row contain thf' 
values that wlU cau,;p tht> tt'sts to eYaluate true .. -\n 

Table 5. Input Format for ltules File 

action i,.; a;;sociated with end1 rule. and wht•n n 
,;peeific rule fires. it is thi,; actiou dwt is im·okt·d. 

Tlw experh U:'t>d a dt>ci,.;ion matrix to e,.;rabli,;h 
the rule,.; for thi,; application. Each row , rule in 
the deei,.;ion matrix wa=- repre,;ented iu tht> input 
tile as shown in Tablt> 5 .. \ unique snnbol for the 
rule is enclosed in pan·nthe:"es. followt>d h\· tlw 
,;ymhol for tlw action a,;sociated with thi,.; rul(~. the 
key code. and the three tmu,.,ed cocfJicinll:-. Tlw 
second row contain,; tlw dt>scriptinn of th<> rule. 

Each row following the de,;cription de:'( Til >P,; a 
te;;t for the rult>. The fir.•;t two dwnwtt'rs in each 
row indicatP the kind of tt•,;t. :\ · ·: · · a,; tlw lir,;t 
character indicmes that the rPsult of tlw te,.;t is w 
be rPver~ed (i.e .. true becomes fabe. aftPr entlua­
tion. Three kimb of tt>,;b aw fWrmitted: 

1. .. \ · · means to tPst a varia hit> a!!ain,.:t tlw 
,.;pecified criteria. 

(ruleSymbol) actionSymbol 111 0.1 0.2 0.3 
This line contains the description of the rule. 
V variableSymbol_l criterionForTRUE 
R ruleSymbol_l ruleSymbol_2 ruleSymbol_3 
! A actionSymbol ruleSymbol_4 ruleSymboL_s 



C++ CL.\SS FOR Rl LE-IHSE OBJECTS 173 

Table 6. A Partial Listin~ ol' the Hule File (.IDH) 

f102) AlertCrew 0 
Put a crew on stand-by for snow. 
v expectPrecip snow 
v snowStart 2 6 
v crewNotified false 
v crewOnDuty noCrew 

(1031 AlertCrew 0 
Put a crew on stand-by for rain. 
v expectPrecip rain 
v rains tart 2 6 
v rainRateThen mist drizzle rain 
v crewNot ified false 
v crewOnDuty noCrew 
v pvmtFrzStart 2 6 

( 109) DispatchCrewP/S 0 
Dispatch crew with plow and sand. 
v expectPrecip snow 
v snowStart 0 2 
v snoRateThen light medium heavy 

( 110 1 Di spa tchCrewSnd 0 
Dispatch a standard crew with sand. 
v expectPrecip rain 
v pvmtFrzStart o 2 
v rainStart o 1 

(111) DispatchCrewP/S 0 
Dispatch crew with plow and sand. 
v expectPrecip snow 
v snoRateNow light medium heavy 

(112) DispatchCrewP/S 0 
Dispatch crew with plow and sand. 
v expectDrift 
v windstart 
v windSusThen 
v SnoForDrift 

:2 ... R .. 111ean,.; to te,.;t the follow·ing li;-;t of n1le,.; 
in t ht> ;;pecilied order. ' 

:3. "'_-\" mean,.; to te,.;t an action. A li;;t of rule 
,.;nnbol;; (a,.;,.;odated ~·ith the action) nun· 
f(.JIIo~· to diet ate the w·a\· in which the actio;J 
i;; to be eYaluated. 

Table 6 conwins a partial li:;ting of the input 
file for the rule,.; deYeloped by the experts. The 
experts would lir,;:;t st>le<"t an action, then decide 
which \·ariables were important for decision-; re­
f!arding the action, and finally what Yalue,o; of the 
Yariables would cause the action 10 he taken. In 
Table 6, integer and floatinf! point YHriables are 
followed by a range of ntlucs. The ,·ariable will 
test true for any n1lue within this range. and false 
otherwise. :\lenu Yariubles are followed Lv a list of 

true 
It_l 1_to_3 
lO_to-20 
10 100 

choices. Si·lection of an\· one of the»e items will 
cause dw Yariable:-i to tt>,.;t true. 

6 PRELIMINARY TESTING 

:\lost of the testing effort went into exercising the 
procedures iu the prq.Jroce,;sor. the wrapper. and 
the Tripod object. During this process many error 
traps and warnings were added in order to ensure 
consistency amoni! the input Iiles. The preproces­
sor prepares a li,.;t of all nniable and action sym­
bols not u:-ed in the rule file so that the Jewloper 
can see if important elemPnts haYe been inad\·er­
teuth· omitted from the rule-ba;;e. In the ca:-e 
wlwre an ~iction operates on two Yariables. the 
preprocessor chec·ks to ensure that the Yariables 



17 4 GRE.\:\EY 

are of the same type. If they are menu type vari­
ables. the first variable must have at least as mam· 
menu item,.; as the second and a warnin;:r is di.'i­
played if corresponding choice symbol,.; are not 
identi<'al. 

The preprocessor also checks to see if the de­
veloper has used a nrle in a test for that rule. For 
example. in a test containing several levels of 
nested rules. a developer could ea,;ily include the 
mle within a test for itself. Obvioush· such a mi,o;­
take could result in run-time endlt>ss recursion. a 
situation that oecurred on several occasions be­
fore this trap wa,o; added. 

l\"ext to displaying text for the u;;er. the branch 
i,o; the most useful action operation. \\·e used it a,; a 

means to partition a rulf'-base. For example b\· 
evaluating a few rules fir"t. we could branch to 
major section,; of a rule-base to acquire detail in­
formation about a particular subject. Also. we 
could design the mle-hase to skip owr major St>c­
tions of rult>s that are no lonw·r relevant after a 
particular action ha,; been invokt·d. Branchin!.! 
can be u,..;ed to construct loop,; in the rule-lxbe.: 
however, we did not have an immediate practical 
need for thi~ con:;truct. Like nestinf! rule:;. u~in!.! 
branche,; Illlbt be done carefullY in order to aYoid 
run-time thrashing. \\·e have not deYised a tech­
nique for tlw fWt>procPssor to detect inappropriate 
branchinf!. 

Durintr prototype te,;tintr. the wrapper and rult>­
base performed quickly and efficiently. The Rule 
Engine utilizes pointers extensiYely. and can entl­
uate more than 50 lf'Sl:'i without an obsen·able de­
lay between display seref'tl:-i when operating on a 
2:) .\{Hz 386 da,;,; microcomputer. 

PrPlimiuary tc-,tintr of the pn,totype d;•(+•ion 
sttpport ,;ystPm by tlw t>xrwrt~ ]r>d to :"nntP adjtt"l­

ments to the exi,;tinl! ruli·,; and formulation of ad­
ditional rule,;. Tlw expert;; found the thn•e data 
seb (yariahle;;. action,;;. and rules· to lw a practical 
approach for corl:-'tructinl! tlw mle-ba,.;t'. 

Tlw prototypt> \Hb used in a C<be ,;tud~· for t!w 
DPnYeL Colorado urea. The Colorado Dt->part­
ment of Tran . ..;portatiou nwinwitb n··con.b of ma­
j\H" .-ilorm en'nh indtulin)! weadwr forecn,.;t,.; prior 
to and dwinf! tlw storm. rPnwte ,.;en,;or data. and 
ppr,;onnel and t>quipnH'nt allonuiorh . ..\ JHlllPX­

rwrt wa,; )!i\.Pil tlw hi,-toric;d data from l\\0 ,..(nnll..;. 

and <bked 10 makP de·ci,-ion,.; n',!!anlin,!.!" tlw di,.;­
pat<"h and relea,.;e of mainH'tUlllf'\' en·w,... l.,.;in,.: 

dw deci,;ion ,;npport modt·L tlw 11Dll<'Xfl<'rl 

reached the ,;ame conclu,.;[mh a,.; tlw t'Xpcrt. Tlw 
prototype wa,.; u,.;c·d for a ,.;mall ,.;ample of reLniYPh 
,;implr· ,;ituation,;. Expan,.;iou of tlw rult·-b:t...;t• und 

additional testing of much larf!er sample sizes 
would be nf'edt>d in order to establish a meful 
decision support sy,;tem. 

Additional testing of the Tripod object was con­
ducted for two more applications. Otw was a 
screening tool for transportation al!enciPs to 

quickly evaluate thf' appropriatf'ness of a varit•ty 
of hazardou,; v•aste remediation technolof!i<>:'i for a 
specific waste at a specific sitf' [ 11 j. Thi,; applica­
tion demonstrated tht> coordination of dtrt>t> rule­
ha,..;es. a data base. and a simulation modd b,· 
mean,; of n wrapper and three Tripod objects. \\·e 
fouud it to be more conveniem to a,;;;emble thn•p 
rule-ba;;es that could he instantiated a,; needed. 
than to as,;emble one larf!e rule-ba,o;e. The ,;eeond 
wa,; a conct>ptual application to recorwile non­
graphical data with dif!ital maps for the in Geo­
f!raphic Information Systems [ 1:2 ~. In thi,; ca,.;e. 
tlwrP wa,.; very little rwed to solirit information 
from the ther durin;! a session. The action,. oper­
ate on the value,; of the ntriahle,; accordinf! to a ,;f't 
of predefined condition:' that are near!, the :iillllP 

for all nonf!raphical data lilf';; and dif!ital map 
files. \\·e found thi;; approach to he a \·iab!e niter­
native to IH"OI!nunmin;r a ('o!llpl,..x ;;y,.;tt>m of IF­
THE:\"-ELSE ;;tatement:'i directlY in the code. Tlw 
difference in computational tinw betwet'n in-lim· 
code and a rule- base object wa:' ,.;il!nilieant but 
not t>xccs,;iye for thi,; application. 

7 CONCLUSIONS 

A C++ cia,;,; called Tripod and a file pn·pnwp,;,.;or 
were deYdopPd to pro\-ide a tool for deYt'lopinf! 
rule-hu,.;e> dt•ci,-ion ,.;npport ,;;y,.;tt>Jll:'. Tlw ap­
proach outlitwd in thi,.; paper was found to pnl\ide· 
se>veral adntntaW'" oYer traditional pron·dund 
pnlf!l'a!H!llin,!! for tlti,.; applinuion: 

1. Tlw lwrwfit,.; of a ndt•- ha.~e dt•('i,;ion nw kinf! 
,.;tnwture 'a Tripod ohji'<"t · and tllt' lwrw!it..; 
of (H'ocPduml furwtiott,; .!lw \\Tappt'r <"<Ill 
lw l'ffet"tin·h· cont!JillPcl. 

·J \lultiplt' ,.;mall rul;>-lllt~;-·,.; nu1 lw impl('­
nli'nted by the wrappt·r a,.; an ulternati\·i' to 
one larf!t' ndt>-bn,-e. 

:~. Tlw applintti\Jll lnf!i\· ;•an lw modili;·d and 
i'.\.(lilllikd \\·ithotlt c·l~<m;rin,.: tlw pmf!l'<llll 
("<Hit·. awl llltlll<'t·i··al al,.:oritlun..; <":til lw 
tllodili;·d or add .. d witiHlltt t"it<llt!!ill,!! tlw 
ruh·-IJa.;t•. 

-t. Tlw "PI n·<>ach 11 til izr• . .; nwmory i"i'li<"ic·nt h­
aw I 1wrmih inu·rf:willf! \\ itlt 1 hird pww 



pro{.!ram~ dwt often reset enYironmental 
ntriables. dominate memon·. and return 
uniqtw staltb code,.;. 

Based on the Tripod class. a prototype rule­
lwse liHHid wa:o deYclopt'd with the capability to 
int<'rfact;> with rt'mote ,;en,;ors and t•xtt'nwl nw­
terolo!!ical data lnt.'-'eii. The lll<Hh·l wa~ applied to 

product' a prot01ype dt>eision support systt'lll for 
winter hif:hwuy llHtintenatH'e in the Intermountain 
\\·e,.,t. 

The ndP-IJ<b<' for Tlw mmlel wa" deq•)oped ll\· 
interaction with a 1wn<'l of domain expert,;. The 
modd was t<•,_;tt·d on a "mall ,_;ample of hi,.torical 
data and rt'-~ponded f;_norably. It lw.'"' tlw pott>ntial 
t<> lwlp an itWXfWrit·need JWr,.ou make rt>a,ona!Jif' 
<kci,..ion" t'Otbio-teut with tho,.;c of an expt>rienn:d 
jH'r,;on in ,_;imilar ,_;ituation;;. 

ACKNOWLEDGMENTS 

:->upport for thi,.; project wa,.; provided by the Ceu­
ter fnr .\dYalltTd and .-\pplied Tran,.p<H'tation 

~unlit>" at l tah ::-itatc L"niYt>r,;itL 

REFERENCES 

J. \\-nltt.•r:-> and '\. H .. '\i..I,_,.Il. Cn(fiin,!! A.'nmri­
,,J!:!-e-Husl'r/ S\·str•flts. '\c\\· York: \\-il<·y. 1 9H8. 
E. Turi><IIL /)ecisiun .... ;llfif!Orl utu! l ... !jit'f"/ .'l>·s­
/f'llls: JfunUf:!l'lliCIIl Support S;·sft'ms. ~t·t·ond 

Edition. '""' York: .\lac\lillan :-;erie,.. in lnfonnn­
tion ~\>-l<'lll,;. 1'l110. 

C++ CLbS FOH Hl LE-13ASE. OBJECTS 175 

[:3] H. Addi. Knmcledge Enf:!ineering. '\ew York: 
.\lcCraw-llill. 1990. 

; -t] Information Buildt>r;;. Inc .. Lcl'c! 5 Expert System 
Sc~{tu-are l"st>rs .l/wuwl. '\ew York: Information 
Builders. 1986. 

: 3} Borland lntenwrional. Turbo Proto{! L ser 's 
Guide. Scotts \'alley. C.\: Borland lmernationaL 
1988. 
Borland lnl!'rnational. Horlaml C++ Progmm­
mcr's Guide. Seorts Yalley. (;;\: Borland lntt'ma­
ti<Jllal. 1990. 
Rolwrt:'on Software. II X-l'inr: A II (•other Graph­
irs Tcrminol. Cem:nL IL: Robertson Sofrware. 
I 988. 

·g· J. D. BjetT<').mard. --L·~·· of a W<'ath<'r information 
~y,;;rem for mana;:enwnr of winter lri;:hway mai!l­
l!'llaJH"e.-- \la,;tt"r of ::-;cit·nc-c Tlw~i~. l'tah State 
l niwr,..itY. 1 <)<);_)_ 

·qi \'\". J_ Cwrmey and H.'\. \lar~halL lrtificiol Intel­
ligence w11l Cit·i! Enfl:ineerin!J.·· Oxf(lrd. En;:lnnd: 
International Cnnft.n·w·<> ort the .\pplication of 

Anilicial lntellif!<:llcP Technique,; to CiYil und 
:-itrucrural Enp-iru•t•rill)!. ]491. pp. "?1-"?5. 

10 ~ S!:-'1. Equipnwnt m<mufacturcd !Jy Surface ::-\y,;­
IPlllS. Inc. Saint Loui;; . .\10: S::il. 1990. 

·11 H. h. Pt'llllll't,;a and \\-_ .1. Cn.·nncy. --_\ computN 
IIH."tlwdolo,:.'\ for ~!T<:ettill)! t('chnolu!"ic:; for haz­
ardotb \\·a"te n·nwdiati<Hl. ·· elm. Sue. ('ici! L11g. 
l:'nriromnt•ntoi/Jirisinn. \pril 199:~ in pn·~..; ·. 

1:Z' \\' .. \. ()"'\t•ill ;md \\ . .1. Cretnt<'Y- ··Proronp.· 
knowlt·d!!I'-La,..<' modd for matehini! non-c.rr·aphi.­
road imTtJI<>ry Jik,; with existinl' dif!ital carto­

.i..'Taphic datal><t,;t•,."" PnH't'edinl£' td.the J!)th .\n­
nual ( :onfen·neP of the l'rban and H•·!!imwllnfor­
rnmion ::-\y,;tt·m,.; _\,..,.,ociatiotL :San Franc-i,..co. C:\. 
1 ()91 . 



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


