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ABSTRACT

CONLAB (CONcurrent LABoratory) is an environment for developing algorithms for
parallel computer architectures and for simulating different parallel architectures. A
user can experimentally verify and obtain a picture of the real performance of a parallel
algorithm executing on a simulated target architecture. CONLAB gives a high-level
support for expressing computations and communications in o distributed memory
multicomputer (DMM) environment. A development methodology for DMM algorithms
that is based on different levels of abstraction of the problem, the target architecture,
and the CONLAB language itself is presented and illustrated with two examples. Simu-
lation results for and real experiments on the Intel iPSC/2 hypercube are presented.
Because CONLAB is developed to run on uniprocessor UNIX workstations, it is an
educational tool that offers interactive (simulated) parallel computing to a wide audi-

ence. © 1993 by John Wiley & Sons, Inc.

1 INTRODUCTION

Today. much algorithm design for parallel com-
puter architectures and most implementations are
done in conventional programming languages like
Fortran and C. Normally. this is a very tme-
consuming process. especiallv in an innovative
phase where different ideas and prototpe imple-
mentations are examined. It would be desirable to
be able 10 express the computations in as high
level of absiracton as possible and to focus on the
parallelization issues and problems for different
architectures. The application area we have in
mind is matrix computatons that are basic in
most scientific. economic. and engineering appli-
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cations. It is well known that block algorichms are
amenable for many parallel architectures [1-37.
Good interactive development environments for
sequential computations exist. notably MATLAB
(MATrix LABoratory! [4]. MATLAB has simple
operators and built-in funcions for martrix addi-
ton and multiplicatons. matrix factorizatons.
etc. This paper presents the CONLAB environ-
ment with focus on algorithm development for dis-
tributed memory multicomputers {DMM).
CONLAB (CONcurrent LABoratory} is an envi-
ronment for developing algorithms for parallel
computer architectures and for simulating differ-
ent parallel architectures. This means that the
user can experimentally verify and obtain a good
picture of the real performance of a parallel algo-
rithm executing on a simulated target architec-
ture. The aim with CONLAB is at least twofold.
namely. to provide an environment for developing
and testing parallel algorithms. and an educa-
tional tool for inwoducing parallel computing in
hoth teaching and research. Because CONLAB is
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developed to run on uniprocessor UNIX worksia-
tions it offers interactive (simulated; parallel com-
puting to a wide audience. At present. CONLAB is
mainly focused on algorithm design for. and simu-
lation of. DMM architectures with message pass-
ing communication.

CONLAB gives a high-level supporr for ex-
pressing computations and communications in a
DMM environment. Section 2 gives an introduc-
tion to the CONLAB language. the simulation of
parallel execution in CONLAB. and different tools
related to parallel algorithm design and simulation
of DMM architectures. Section 3 introduces a de-
velopment methodology [or DMM algorithms that
is based on different levels of abstraction of the
problem. the target architecture. and the CON-
LAB language itself. In section 4. the development
methodology using CONLAB is illustrated with
two examples. Simulation results for and real ex-
periments on the Intel iPSC/2 hypercube are pre-
sented in section 5. Finally. in section 6 some con-
clusions are given and the future development of

CONLAB is discussed.

2 THE CONLAB ENVIRONMENT

CONLAB has inherited many characteristies from
MATLAB [4]. It is an interactive environment for
scientific and engineering computations that also
offers parallelism. The language used for pro-
gramming in CONLAB is similar to the MATLAB
language (in reality a subset because all facilities
of MATLAB are not implemented; and is ex-
tended with constructs used for expressing paral-
lelism, synchronization, and communication. In
the discussions and descriptions that follow we as-
sume that the reader has some familiarity with.
and experience in, using MATLAB [+, or a
MATLAB-like environment. As in MATLAB the
only data structure are matrices (scalarsare 1 X 1.
vectors are 1 X n [row vectors] or m X 1 [column
vectors]. and matrices. e.g.. m X n). The colon
notation is used to specify columns. rows. or sub-
matrices of a matrix 4. For example. A{:. 7} de-
notes the i:th column of 4 and A(i:/. & :{) denotes
the entries of A in rows ¢ through j and columns &
through I. We will frequently refer to and use con-
cepts like predefined and user-defined functions,
different matrix operations. etc.

Because CONLAB is an interactive environ-
ment it frees the user from issues like compilation,
linking, etc. The user can define a function in-

teractively and call it immediately. In the same
way. a process (see section 2.2} can be delined.
assigned to a set of processors. and simulated par-
allel execution can be started instantanecusly.

In the following we give an introduction to the
parallel concepts ol the CONLAB language. the
simulation of parallel execution in CONLAB. and
different tools related to parallel algorithm design
and simulation of DMM architectures. Mustra-
tions ol their use are shown in two examples of
section +. Other reports provide more information

about CONLAB [5-7].

2.1 Where Does CONLAB Run?

CONLAB is mainly intended 1o run on uniproces-
sor UNIX workstations. but it could profitably be
ported to multiprocessor workstations or even su-
percomputers to achieve better performance of hig
simulations. The computational part of CONLAB
is based on the high-performance linear algebra
package LAPACK [31. which is portable to many
of today’s advanced computer architectures. In
fact. by running CONLAB on a very powerful ma-
chine it is possible o simulate the actual compu-
tations faster than running the same application
on the DMM target machine (at least for the first

and second generations DMM architectures’.

2.2 Extensions for Parallelism

Parallelism is expressed with a new contwrol strue-
ture. the process. A process is very similar to a
function. in that it is a named collection of state-
ments that can be initialized with a set of argu-
nients, A Pr()("(‘ﬁ.“ can })P 21.~'Ri\{:nf*(l to one or more
virtual processors. and parallel execution of these
processes can be simulated by time sharing on a
UNIX workstation. Arguments can be passed to
the process when it is assigned and they are typi-
cally used for different initializations.

Communication via message
achieved with send and receive primitives. A
message can be sent to one or more processes and
a type is specified for the message. Reception of
messages can be done by specifving the sender
and/or message type. Communication can be ei-
ther svnchronous or asvnchronous. When syn-
chronous communication is used the sender waits
until the message is completely received by the
receiver. whereas for asynchronous communica-
tion the sender continues execution immediately
after submitting the message.

passing  is



2.3 Simulation of Paraliel Execution

The simulation in CONLAB is based on o stack
machine. The CONLAB swatements are compiled
to a4 pseudo code that is executed by o virtual
stack machine. The vulues on the stack are matri-
ces. which are the only data type in CONLAB. and
the machine instructions perform matrix opera-
tions on the stack elements.

The processes share the CPU of the simulator
atd execute a series of stack machine instructions
operating on their private high-level stack.

To control the simulated parallel execution of

the processes. all processes are provided with a
time value, which deseribes how farin execution a
proces= has reached. These values are uzed 1o de-
termine the scheduling of the processes as well as
o control the synchronization of the processes.
For each stack machine instruction a process exe-
cutes. its tine value is increased according 1o a
time model. described in section 2.4,

Parallel execution of processes is achieved by
letting the processes execute in a tme shared
manner. During one tme slice a process is allowed
1o execute a few stack machine instructions. oper-
ating on its own private stack. as long as it does
not execute instructions with side effects e.g..
communications’. Because a side effect is depen-
denton and changes the global state of the svstem
of processes. u process that exeeutes an instrue-
tion with side effects must be the process with the
lowest virtual simulated  tme value, Otherwise it
has 1o wait for the other processes “catching up™’
in virtual dme {7 . After one time slice another
process is selected for execution. and the new ae-

live process operates on ts private stack. and =0
on.

After each instraction a process executes. a
new time value is computed for the process. This
time value is checked against the time slice and
the proecess is allowed to continue execution as
long as the tme value does not exceed the time
slice.

At each step the process with the smallest time
value s selected for execution. This ensures that
all processes will eventually be allowed o execute.
provided that they perform {loating point opera-
tions and/or communicatior.

2.4 The Time Model for Simulation of
DMM Architectures

The execution of the processes on the virtual pro-
cessors is controlled by a dme model that com-
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putes the elapsed time on each virual processor.
The maodel is divided into two parts. computations
and communications. Different DMM architec-
tures can be simuolated by changing this tdme
maodel.

The time model for computations is hased on
the number of {loating point operations « flop=; a
process performs. and the costfor one flop. In this
context multiplications as well as additions. sub-
tractions, and divisions are considered as floating
point operations with the same cost. The user
specifies with a call o the luncion floptime. the
cost for one floating point operation. Typically.
this value represents an average of the practical
performance of the node processor. Fach tme a
computation is performed by a process the new
time value. tral. of that process is computed as

tral = teal + #flops -ty

where (4, is the time cost associated with a o=
g pomt operauon.

The time model {or communications on DM
architectures is hased on the fact that on a real
DMM. communication can take different sce-
narios depending on the relutive order in which
the sending and receiving nodes issue the send
and receive calls. respectively.

1. Unbuffered communicauon is the result
when the receiving node has issued a receive
call before the message has arrived at the
node. When this happens the communica-
ton svstem knows where to put the message
and no communication buffers have 10 he
used.

Buifered conununication oceurs when the
receiver has not performed the receive call

I

when the message arrives. Because the
communication svstemn cannot know where
in the user data area the message is 10 be
placed it is forced 1o use internal buffers.

The communication ume model has the {ollow-
ing components:

1. Send time is the time it takes for the sender
of the message to contact the local com-
munication system. The send ume includes
copving the message from the local data
area to the communication svstem bufters.
The send time is divided into bulfered send
tme and unbulfered send ume o distin-
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FIGURE 1

guish between the two tvpes of communica-
ton.

Receive time is the time it takes for the re-
ceiver to deal with a message that has ar-
rived at the node. Note that receive time
only concerns buffered communication.
Delay time is the time it takes for the mes-
sage to reach the target node after the
sender has initiated the send operation.
Total communication time. When unbul-
fered communication is used the receiver is
blocked on receive when the message ar-
rives. The total communication time for un-
buffered communication is the time it takes
for the message to be fully transmitted to the
receiver from the point where the sender is-
sued the send call.

The following small program illustrates the
communication time components.

process P
send:message to ()

end
process (J

receive/message from P

end

send time |

|
I

receive(...) —

Communication time components for buffered communication.

The process P sends a message to the process
Q). using the send statement. Process () receives
the message from the process P. with the receive
call.

If O initiates the receive after P has made the
call to send then buffered communication is used.
Figure 1 shows the relationships between the time
components when buffered communication is
achieved in the above program.

If the receive call is executed before the call to
send then unbuffered communication is used.
which is depicted in Figure 2. In Figure 2 the delay
time decides when the receiver changes state from
idle. waiting for a message 10 active in communi-
cation. During simulation the delay time is used to
determine if the message has reached the receiv-
ing node by the time the receive call is done. This
information is used to decide if buffered or unbul-
fered communication is to be accomplished.

The communication time components are pre-
sented to the CONLAB simulator by specilfving a
function expressed in CONLAB notation. This
function is implicidy called every time a communi-
cation is inidated by a send call and it i= responsi-
ble for computing the time components described
above. The funcdon takes the message size and
type. and the sender and receiver processes as ar-
guments and delivers the send. receive. delay, and
total communication times as results. The tume
components are then used to calculate new time

P |
T

I
-—send(...) —

| delay lime ) time
I L
\ tolal time |
r 1
ol |
-~———— receive(.. ) ————

FIGURE 2 Communication time components {or unbuffered communication.
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FIGURE 3 CONLAB function for compurting com-
munication tme components for the iPSC/72 hyper-

t'u‘w.

values for the processes involved in the communi-
cation.

Figure 3 shows an example of a CONLAB func-
tion that computes the communication {ime com-
ponents of the Intel iPSC/2 hypercube. The time
components {or bullered communication bs, br:
and unbutfered communication us, ut, dl: are
approximated by the usual linear model

[l‘lllll[!()lh'lll = o 1] -+ B

where 8 and o denote the start-up cost and the
per-unit cost for transferring a message of size M
double words (8 bytesl. respectively, Detailed
communication benchmarks resubting in this time
model for communication is described in [8].

By changing the value of floptime and/or the
tubles of the communicaton tme funciion. the
user can. lor example. examine different compu-
tation-to-communication ratios of a DMM model.
Different DMM architectures can be simulated by
writing new functons for computing communica-
tiom time components. The time model for com-
putations does not incorporate the simulation of
memory hierarchies. It would then be necessary 1o
extend floptime 1o a Tuncion that approximates
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different components as in the communication
time model (e.g.. cache effects, pipe-lining).

2.5 Performance Measuring

The functions timer. arithtime. and commtime are
used 1o calculate the timing characteristics of a
CONLAB program. The timer function returns the
current time value of a process {it is initialized 10
zero when the process starts) and it can be used to
measure the elapsed execution time of a process.
similarly. the functions arithtime and commiime
return the current times for arithmetic computa-
tions and communications. respectively iboth ini-
tialized to zero when the process starts).

The arithmetic time can also be computed as

Sfloptime - jlops. where the funcion flops returns

the number of floating point operations performed
by the process.

2.6 Monitoring Process Status During
Simulation

During simulation the user can obtain information
about the status of all processes. Process wiliza-
tion {the number of busy processes’ and process
status (busy or waiting! can be plotted as a func-
tion of tme csee Fig, 41 Processes in busy sate
are marked in black green on a color screen’.
while processes in walting or idle states are
marked in white ired:.

2.7 Animated Replay of Messages

As an option CONLAB will generate wrace files of
all communications and can therefore offer the
user & way of replaving the simulation in terms of
commuunication by message passing. This replay
shows sending and receiving processes. respee-
tivelv., for each message that was transferred. It
also shows the message tpe and size and the
times the message was sent and received. The
contents of the message can also be printed out. In
this wav. the message replay is a ool for debug-
ging the communication of a distributed algo-
rithni. Belore the replay starts. the user has the
option 1o sort the messages by send time or receive
time. The message replay window is shown in Fig-
ure 5. This window dump shows that node 11 is
receiving a message [of tvpe 2 and length 256
byvtes] from node 8.
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2.8 ParaGraph

There is a possibility to use trace files generated by
CONLAB in the visualization tool ParaGraph [9].
ParaGraph. which primarily is intended as a
postprocessor to the instrumentation package
PICL [10], includes several graphs describing al-
gorithm performance when used with CONLAB.

3 ALGORITHM DEVELOPMENT
METHODOLOGY

The methodology for developing parallel algo-
rithms in CONLAB is based on different levels of
abstraction of the problem. the target parallel ar-
chitecture, and of the CONLAB language itself. By
following -the methodology the user will imple-
ment, at as high abstraction level as possible.
functions and processes in CONLAB that define
the architecture topology. communication on the
topology, node and host algorithms, and a user
interface. Below, we describe the different levels of
abstraction.

Messagetype
Ressagesize :

Send tie 72022.8
Reception time H 74325.5
Communication tise 1992.68

@®@

St

backuard | (6o backuard][Stop}{Go foruard][Step forvard]

FIGURE 3

1.

_E{Snt by recelve tine][Print usuge]@

The message replay replay:, window.

The first level of abstraction concerns pro-
cess topology functions. These functons
describe the topology of the target architec-
ture (real or virtual) and are used 1o navigate
in the topology. For example. process topol-
ogy functions in a two-dimensional mesh
translate a two-dimensional processor in-
dex into a single process number and vice
versa. Typically. a binary reflected Gray
code numbering of the processors in a to-
pology le.g.. ring. mesh. or hypercube; is
used to assure that logical adjacent proces-
sors are also physical neighbors. Other to-
pology functions may deliver the physical
neighbors in the four directions of a two-
dimensional mesh (north. south. east. and
west).

The second level concerns communication
functions. These functions are problem de-
pendent but can of course be general. Typi-
cally, they perform some kind of compound
communication on the target architecture,
for example. rolling messages row-wise in a
two-dimensional mesh or broadcasting a
message to a set of nodes. The communica-
tion functions use the process topology
functions to direct the messages and the
send and receive primitives in the CON-



LAB language 1o execute the intended com-
munication by message passing.

3. The third level delines the node proeess that
implements the distributed algorithm. Tyvpi-
callv. a node program starts by receiving
problem data from the host {see the next
level; before entering a loop comprising
computations and internode commumnica-
tions. Finally. the result= are delivered 1o the
host process. Computations are expressed
in the high level constructs and operations
offered by the CONLAB language. Com-
munications are expressed by using the
communication functions,

+. The founrl level defines the host process
that starts the node processes by assigning
them to virtual processors. Typicallv. the
host process distributes problem data to the
node processes and collects resulis at the
end of the execution. Also the host-to-node
communication jand vice versa} Is ex-
pressed in terms of the communication
{unctions.

5. The fifth and topmost level is the simulation
function that defines the interface 1o the
CONLAB user. assigns the host process o a
virtual processor. and starts the simuladon.
Tvpically. the simulation function commu-
nicates problem and architecture parame-
ters ‘e.g.. problem size. input data. and the
number of processors:.

Conceptually.  the described  development
methodology is well known and hopelully used by
most algorithm designers for DMM architectures.
The novelty is that CONLAB gives a high-level
support for expressing the compuations and de-
fining topology and communication functions.
CONLAB is extensible in the sense that functons
and processes once defined will afterwards exist
within the environment and can be used similarly
to predefined functions.

The host and node processes define the distrib-
uted algorithm. which is a composition of commu-
nicating processes. The concept of a host process
and node processes is motivated by the commer-
ciallv available DMM architectures. and in CON-
LAB. thev are considered equal. Within each pro-
cess all computatons are sequenutal and
performed within a single address space {the local
memory of the node).

The simulation function can be seen as the
problem (or application) level of the abstraction.
By changing problem sizes and/or the number of
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processors. the user can evaluate the parallel per-
formance of the distributed algorithm for the sim-
ulated (scalable) DMM architecture.

See also the XYZ ubstracion levels defined by
Snvder [11. 12 where the X-level is formed by the
sequential operations performed within a process,
Phases. the parallel composition of processes. de-
fine the Y-level. Finally. problems. the composi-
tion of phases. define the Z-level.

4 TWO EXAMPLES OF ALGORITHM
DEVELOPMENT FOR DMM
ARCHITECTURES

i this section we illustrate the algorithm develop-
ment methodology for DMM architeetures, de-
scribed in the previous secton. with two exam-
ples. The first example shows how a disuibured
algorithm for block matrix multplication on a
torus connected two-dimensional mesh of proces-
sors is developed and implemented in CONLAB.
The second examiple shows how an already exist-
ing serial algorithm for a block QR factorization.
expressed as a MATLAB function.® can be paral-
lelized into a ring-oriented diswributed block algo-

rithm in CONLAB.

4.1 Block Torus Matrix Multiplication

Given n X nmatrices 4. B we will compute C =4~
B on a two-dimensional mesh of p processors {p =
s - s) with torus connectivity. To simplify the nota-
tion we assume that n = nb - s. thatis. 4. B (and
C) have s” blocks denoted 4. By {and C)). re-
spectively, of size nb X nb. Otherwise. the last
block column and block row of the matrices will
have rectangular blocks.

The serial jk-algorithm for block matrix mulii-
plication iblock inner-product) looks as follows.

fori=1:s
for;j=1:s
C’:l' = ()
for k= 1:s
(,‘,‘/‘ = ("li + ."‘1,';\» #* B;{j
end
end

end

In the distributed algorithm the processors are
organized in a two-dimensional mesh where com-

* MATLAB and CONLAB functions have the same syntax
so the sample function could also have been developed in

CONLAB.
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munication takes place berween nearest neighbors
as well as around the edge in both directions. In
order to compute Cj; at node (i, /) we need access
to block row i of A and block column ; of B.
Initially, the matrices A and B are distributed
block-wise among the nodes in the mesh so that
node {i. s} has the blocks Ay and By;. where & =

C,:,‘ =0
for¢=1:5

Receive Ay and By;. where k

C,J = (,w,'/‘ + A,‘k * ng

(i +j— 2)mod s + 1. This means that the marrix
A is skewed row-wise and B is skewed column-
wise. This distribution scheme allows node (i. j) to
compute Cj; with only nearest-neighbor communi-
cation in the two-dimensional mesh. The main
steps of the algorithm [13] for node (i. j] look as
follows,

={+7+t—3imods+ 1

Send A, to nearest neighbor to the west
Send By, to nearest neighbor 1o the north

end

Notice, the first dme node {i. ) receives an A-
block and a B-block thev are delivered by the
host. but the following blocks originate from the
nodes to the east and sout} . e:pecmely

It would also be possible 10 let node {I. /} ini-
tially hold blocks 4 and B,;. However. this would
impose some initial redisuibution of the blocks
into the skewed pattern described above. In the
node algorithm above, we assume that the host
process will effect this skewed distribution at once.

Figures 6 through 10 describe the structure of
the complete CONLAB program. The topology
functions {see Fig. 6; are coord2node. node-
Z2coord which convert coordinates in the two-di-
mensional mesh into a node number {obtained by
the predefined CONLAB function getpid; and
vice versa. and north and west which deliver the
node number of the neighbors o the north and
west. respectively. Thev use the functions gray
and gine. which return the grav and inverse gray
codes. respectively. The communication funetion
is roll {see Tig. 6} which sends a message in a
specitied direction of the two-dimensional mesh
and receives a new message from the opposite di-
rection. In Figures 7 and 8 the CONLAB program
for the node process and an accompanving header
file torus.h are displaved. Figure 9 shows the
CONLAB program for the host process. Besides

the header file. the host process also includes the

file block. k. which contains the macros for the an-
tomatic matrix blocking facility {6°. Notice. the
distribution of A. B to the nodes and the reception
of C could also have been defined as communica-
tion functons. Finally, the simulation function
with the parameters A. B and the size of the two-
dimensional mesh is displaved in Figure 10,

4.2 Ring-Oriented Block QR
Factorization

In this example we will see how an existing
MATLAB program can be parallelized and imple-
mented in CONLAB. We consider a block algo-
rithm to perform a (R {actorization of anm X n
matrix 4. that is

A=0 R

where the m X m matrix () is orthogonal and the
m X n matrix R is upper triangular ‘trapezoidal .
The QR factorization can be computed in several
ways. for example. by wilizing block Householder
transformations [ 14 . A block Householder trans-
formation @), is a product of nb = the block size
Householder matrices. Here we only consider one
block algorithm that is based on the H1 represen-
tation of block Householder lnn1sl‘<)l‘nmlions ) =
[+ 1y [14] The main steps of the algorithm
are summarized below.

) = L the identity matrix of order m
nbl := n/nb. number of column blocks isith 7H columns: in A4

fori= 1:nbl

Find " and } such that ¢, =

i of A below the diagonal {eolumns {1 — 1:

I + 7 zeroes block column

b+ 10 b,

»\ ply Q; 1o the remaining column blocks of 4
P !

=00,

end
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end

end

function node = north(me, side)
row = floor(me [ side);

col = me — row * side;
if (row == 0}

else

end

end

function node = west{me, side)

row = floor(me [ side);
col = me — row x side;
if {col == 0)

else

end

end

end

% Convert coordinates in the mesh into a node number
function node = coord2node(row, col, side)
node = gray(row — 1} + side + gray{col — 1};

% Convert a node number into mesh coordinates
function [row, col] = nodefcoord(node, side)
row = ginv{floor{node [ side)) + 1
col = ginv(node — floor(node [ side) * side} + 1

% Return node number of neighbor to the north of me

node = gray{ginv{row) + side — 1) * side 4 col;

node = gray{ginv(row} — 1} * side + col;

% Return node number of neighbor to the west of me

node = row * side + gray{ginv{col} + side — 1};

node = row * side + gray(ginv{col) — 1}

% Send a message M to the node in direction and receive
% a new M from the node in opposite direction
function M = roll{M, direction, type)

send(M, direction, type, async);

M = receive(default, type);

FIGURE 6 Topology and communication functions for block torus maaris multiplica-

o,

The MATLAB function grh for this algorithn is
shown in Figure 11.

It is easy 1o see that the application of ¢ 1o any
one of the remaining column blocks of 4 can be
done independentdy and the data flow avthe block
level goes from the lelt -currem block columni o
the richt ‘remaining bloek columnsin alinear list,
I we partition data =0 that each node in the fist
cets one column block of -1 then the update can be
done in parallel. that is. each node updates s
own column block of 1 with O Our first atiemipt
1o a distributed algorithm goes as follows: node 1
computes (. sends O 10 node 20 which sends it
10 node 3. and »o on. Node 2 through p then up-

date their column blocks independently and in
parallel. Next. the procedure is repeated but we
start with node 2 instead of node 1. and so on
until all nodes have computed their part of () and
R. The obvious drawback with this algorithm is
that after the first trn node 1 is idle and ~o on.
The remedy is to let each node have more than
one column block and wrap-map them so that
node ¢ holds column blocks i. ¢ + p. i + 2p and =0
on where pis the number of processors. This gives
us a ring topology with a much better load balance-
ing of the computational work, Now. the muain
steps of the node algorithm looks as follows.
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#include "torus.h"

% Node process for block matrix multiplication on a
% 2-dimensional mesh with torus connectivity
process torus_node{side)

% Find out who I am

me = getpid;

% Find out my nearest neighbors to the north and to the west
NORTH = north{me, side);
WEST = west{(me, side);

% Receive from the host my matrix blocks of A and B
A = receive(default, A/NIT);
B = receive(default, BINIT};

% Start timing
time = timer;

% Initialize C
C = zeros(length(A));

% Loop through all nodes in my block row
for t=1:side

C=C+A*B;
if (¢t "= side)

A = roll(A, WEST, ABLOCKY:
B = roll(B, NORTH, BBLOCK');

end
end

% End timing

time = timer — time;

% Send the computed C-block to host
send(C, HOST, CBLOCK, async};

% Send elapsed time for me to host
send(time, HOST, TIME, async);
end

FIGURE 7 Node program for block torus matrix muluplication.

bl = 0. counter for the number of blocks my node holds
nexttogenerate = 1. keeps track of which process generates the next transformation

for i = 1:nbl
if I am nexttogenerate
1. bl =1bl+ 1

2. Compute H'T factors for my column block /bf
3. Send /" and ¥ to my right neighbor
else
4. Receive H'1 factors from my left neighbor and send it further
end
5. Update my remaining column blocks of A with the new H and ¥
6. Update my row blocks of ) with the new H and ¥
end




% Process id’s

% Host id is used together with ParaGraph
% to distinguish it from the nodes
tdefine HOST —32768

% Message types
tdefine NDIM
tdefine AINIT
#define BINIT
tdefine ABLOCK
tdefine BBLOCK
#define CBLOCK
tdefine TIME

[ i < < SRR
[ SR

[
BN

FIGURE 8  1leader file. torus. /i, for block torus martrix

multiplication.

What new function= do we need o realize this
algorithm? In step 2 we need a function that com-
putes 1 and Yo but this functon already exist» in
the serial algorithm hshbg for Householder block
generator.,

In ~teps 3 and 4 we need 1o communicate with
the lefcand right neighbors in the ring. One simple
wav of doing this is to number the nodes {rom 0 w0

p — 1 and then the left and right neighbors have
the node numbers me — 1 and me + 1. respec-

tivelv. The topology functions feft and right are
shown in Figure 12, Communication functions
disth and rech for diswribuiing and receiving block
wrap-mapped data are shown in Figure 13, For
example. the funcion rech receives column ‘or
row’ blocks of a matrix distributed with column
or row; block wrap-mapping and packs them ino
a local array.

Steps D oand 0 are basically the same as in the
serial algorithm. Now. we only apply the H} fac-
tors to the blocks of 4 and Q) that each node holds.
The CONLAB program [or the node process
rcomprising two parts) and accompanying header
file are shown in Figures 14—106. By block wrap-
mapping () row-wise the update of @} is similar 1o
the serial algorithm 'see Figs. 11 and 153, For re-
ceiving block wrap-mapped data from the host we
use the communication funcuon reclh isee Fig.
13 The host program is siraightforward: it as-
signs the node program to the different nodes.
starts the simulation. distributes 4 and (). and fi-
nally. receives the results from the nodes. The dis-
tribution of 4 and @ is effected by using the com-
municaton function disth {see Fig. 13, Figure 17
shows the CONLAB code for the host process. Fi-
nally. the simulation function grb_sim with pa-
rameters 4. the block size of 1 and the size of the
ring is displaved in Figure 18.

CONLAB 195

5 SIMULATION RESULTS FOR AND REAL
EXPERIMENTS ON THE INTEL iPSC/2

The two algorithms presented in section 4 have
also been implemented in € block torus matrix
multiplication: and Fortran ‘ring-oriented block
QR lactorizationt and tested on our Intel iPSC/2
hypercube. The machine has 64 scalar SX nodes.
cach equipped with a 16 MHz Intel 80386 proces-
sor with 4 Mbyte memory and a Weitek 1167 75N\
with a theoretical peak performance just under
0.6 Milops in double precision real arithmetic.
The iPSC/2 communication module uses a di-
rect-connect rowting module -DCM. on each
node. with a bandwidith of 2.8 Mbvtes/sec in each
direction. Detailed communication benchmarks
and models defining the communication time
funcion in CONLAB for the iPSC/2 are presented
by Jucobson [§ see Fig. 3.

Table 1 shows the real and simulated results for
the block torus matrix multuplication. Table 2
shows similar results for the ring-oriented block
QR factorization. In Tables 1 and 2 we use the
following notation: rn.= m. the matrix size. p the
number of processors. T, the parvallel time in secs
for p processors. S, the parallel speedup com-
puted as T,/ T,. £, the parallel efficiency com-
puted as SI,//).

The results for the ring-oriented block QR fac-
torization agree almost completely. whereas the
results for the torus matrix muldplication do not.
The main reason is the super-linear speedup of
the block torus algorichm on the iPSC/20 which is
hard 10 understand completely (the node proces-
sors are utilized more efficiendy for smaller mauri-
cest. CONLAB underestimates the execution time
on one processor. resulting in oo pessimistic
speedup factors for 4. 16, and 64 processors.
However. the results from CONLAB correspond 1o
what is expecied in theorv: for fixed number of
processors the parallel efficiency increases as a
function of the problem size but keeps below 1.0.
The time model makes it impossible 1o obtain su-
per-linear speedup in CONLAB.

Figures 19 and 20 show window dumps from
ParaGraph displaving characteristics of the exe-
cutions of the ring-oriented block QR algorithm on
the iIPSC/2 and in CONLAB. The Spacetime dia-
grams show the communication paths. where a
line between two nodes indicates communication.
a horizontal line indicates computation. and the
absence of a horizontal line means that the pro-
cessor is idle. Notice that the implementations are
not identdcal. On the iPSC/2 the ring is ordered
with Gray code numbering. whereas the ring in the
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tinclude <block.h>

‘#include “torus.h"

process torus.host(p, A, B)

end

stde = sqrt{p); % Length of side of two-dimensional mesh
nb = length(A) | side; % Blocksize of A, B and C

% Create blocked versions of matrices

% A, B and C called A_blk, B_blk and C_blk
blockmatriz( A, A_blk, nb, nb);

blockmatriz(B, B_blk, nrb, nb);

newmatriz(C, C_blk, rA, cA, nb, nb); %Zero matrices

% Load node programs and assign virtual processes
assign(torus_node{side), 0:p—1);

% Distribute A and B skew-wise to the nodes
for i = 1l:side
for j = l:side
k = mod{i 4+ j ~ 2, side) + 1;
node = coordZnode(d, 3, side);
send(A_blk(1, k), node, AINIT, async);
send( B_blk(k, j), node, BINIT, async);
end
end

% Receive C-blocks from the nodes

for i = lip
% Receive block of C from any node
[Block, node] = receive(default, CBLOCKY);
[row, col] = nodeZcoord(node, side);
C_blk(row, col) = Block,

end

% Check the result by computing the 2-norm of the residual
disp('norm(A*B—-C) ="', norm(A » B ~ C));

% Receive elapsed times from the nodes
time = {],
for i=1:p
time = [time, receive(default, TIMFE)];
end
% Parallel time is the maximum over the node elapsed times
disp(* Parallel time ="', round(maz(time) / 1000}, * msec');

i

FIGURE 9 Host program for block torus martrix multiplication.

function dummy = torus(A, B, side)
% Compute number of nodes
p = 2 side;

% Start host process on virtual processor p
% giving it process id HOST
assign(torus_host(p, A, B), p, HOSTY;
simulate

end

FIGURE 10 Simulation function for block torus matrix multiplication.
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function [4, Q] = g¢rb(A, nb) |
% QRB computes a QR-factorization of A by utilizing block-Householder
% transformations, where nb is the column block size.
% This variant uses the WY-representation (method 1, Bischof-Van Loan).
[ma, na] = size(A);
nbl = fir((min(ma,na) + nb—1))/nb; %number of column blocks
Q = eye(ma);
for k =1 : nbl
s = (k=1)xnb + 1; % start of current block
e = min(s+nb—1, min(ma,na)); % end of current block
if & == nbl % last column block may have different size
nb = e~s+41;
end
% Generate the block Householder transformation that
% QR-factorizes A(s:ma,s:e)
[Wk, Yk] = hshbgl(A(s:ma,s:¢));
% Apply the block Householder transformation to remaining blocks
A(sima,s:na) =  A(s:ma,3:na)+ Yks( Wk'+ A(s:ma,s:na));
% Accumulate block Householder transformation
Q(, s:ma) = Q(:, sima) + (Q(:, s:ma) » Wk) = Yk';
end
end

FIGURE 11 MATLAB function for block QR factorization.

CONLAB implementation is numbered consecu-
tvely. Because the algorithm only uses nearest-

neighbor communication.  the dme model for

muli-hop communication is never involved and
the node numbering does not affect the resulis.
Similar diagrams for the block torus matrix muli-
plication are shown in Figures 21 and 220 In this
example we have a more complex conmmunication

function res = left(me. p)
% Who is my left neighbor in a ring of p processors?
% Processors numbered 0:p-1

if (0 <= me) & (me <= p-1)

res = me — 1;
if {res == —1), res = p—1; end
end
end
function res = right(me, p)

% Who is my right neighbor in a ring of p processors?
if (0 <= me) & (me <= p-—1)
res = me + 1;
if (res == p), res = 0; end
end
end

FIGURE 12 Topology functions for a ring of proces-

SOrs,

pattern. but sull the communication paths of the
CONLAB simulation are accurate. The overhead
from the tracing facility on the iPSC/2 is more
visible in Figure 21 than in Figure 19. Both these
examples do not use a communication channel of
the iPSC/2 for more than one message. This
means that we will not encounter any communica-
ton channel contention. At present. contention in
the communication svstem is not modeled in
CONLAB. Therelore. the results from a simula-
tion in CONLAB can be 100 optimistic for algo-
rithms that involve contention in the real com-
munication svstem. However. our experiences
show that we stll get a fair picture of the relaive
parallel performance when changing the size of
the problem or the size of the scalable DMM archi-

tecture.

6 CONCLUSIONS AND FUTURE
DEVELOPMENT

Algorithm development for DMM architectures by
using the CONLAB emvironment has been illus-
trated by two examples concerning matrix compu-
tations. The algorithm design process follows a
development methodology for DMM algorithms
that is based on different levels of abstraction of
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function distb(A4, b, nb, p, wise)
% Distribute matrix A with block row/column wrap-mapping
% on a ring of processors.
% b = block size, nb = # blocks, p = # processors
% wise = distribution (ROW or COL)
ginclude "arb A
[m n] = size(A);
node = 0,
for i+ = O:nb-1
s = ixb + 1; e = min(s+b—1,n);
if wise == COL
send(A(:,s:¢),node, MDIST, async);
else % wise == ROW
send{A{s:e,1),node, MDIST, async);
end
node = right{node, p);
end
end

function {4, mynbl] = recb(nbl, me, p, wise, type)

% Receive in A my blocks of a matrix distributed

% by block row or block column wrap-mapping.

% nbl = total number of row/column blocks distributed

% p = number of processors

% wise = ROW if row-wise or COL if column-wise distribution
% mynbl = my number of blocks

#include “grb A"

A=[];

if me == HOST
mynbl = nbl;
from = (;

else
mynbl = fir{nbl |/ p);
if me < nbl — mynbl « p

mynbl = mynbl + 1;

end
from = HOST,

end

for i = limyndl
if wise == COL
A = [A, receive(from,type)};
else % wise == ROW
A = [4; receive(from,type));
end
if me == HOST
from = right{from,p};
end
end
end

FIGURE 13 Communication functions for distributing and receiving block wrap-

mapped data.

the problem. the target architecture. and the
CONLAB language itsell. Different tools and ways
for debugging algorithms and interpreting and
evaluating the results have also been discussed.

CONILAB has extensively been used in parallel

computing eourses at our University. Further. the
parallel algorithms presented [1. 2. 15[ have first
been designed in CONLAB and then explicitly
translated by hand to Fortran or . By designing
and experimentally verifving the parallel algo-



process grb_node (w, nbl, rbla, nblg, m, p)
% Node process for ring topology block-Householder QR factorization
% w = column block size, nbl = # block Householder transformations,
% nbla = # column blocks of global A, nblg = # column blocks of global Q
tinclude “qrb.h"
me = gelpid;

% Receive my column blocks of A, store in A
[A, nablk] = recb(nbla, me, p, COL, MDIST);
[ma, na ] = size(4);

% Receive my row blocks of Q, store in Q

(@, ngblk] = recb(nblg, me, p, ROW, MDIST);

[mq, ng ] = size(Q);

bl = 0; % counter for WY-factors generated by me

nerttogen = 0; % keeps track of which process generates next WY-factors
LEFT = left{me, p); % my neighbors

RIGHT = right(me, p);

time = timer; flps = flops, % time this process
for i = 1. nbl
if nexttogen == me % miy turn to generate next WY-factors
bl = bl + 1,
st = (Il — 1) « w + 1; s = (i—1)sw+];
el = min{lblxw, min(na, sl + m — s)};
% Generate WY-factors that factorizes A(s:m, sl:el)

[Wk, Yk] = hshbg(A(s:m, si:el));
send([Wk, Yk], RIGHT, WYFACTOR, async);
send([s, el—si+1], RIGHT, IND, async);

else
WY = receive(LEFT, WYFACTOR),
se = receive(LEFT, IND);
if RIGHT ~= nerttogen %WY not generated by RIGHT
send( WY, RIGHT, WYFACTOR, async);
send(se, RIGHT, IND, async),
end
s = se(l) wl = se(2);
Wk = WY(, 1wl
Yh = WY(, wl+1:2xwl);
end
% Apply WY-factors to my remaining blocks
sl = Iblx w + 1; if nexttogen == me, sl = si — w; end

if sl <= na
A(s:m,slina)=A(s:m,sl:ina)+ Yk»( Wk '+ A(s:m,sl:na));

end

FIGURE 14 Node program for ring-oriented block QR factovization. part 1.

Table 1. Real and Simulated Performance Results of Torus Matrix Multiplication

Torus C =48 iPSC/2 CONLAB
n P T, S, £, T, S, £,
128 1 10.674 1.0 1.00 8.42 1.0 1.00
+ 2.29 4.7 1.16 2.21 3.8 0.95
16 0.63 17.1 1.07 .65 12.9 0.80
64 0.19 5.6 0.87 .30 28.2 0.44
256 1 88.07 1.0 1.00 67.24 1.0 1.00
+ 21.58 4.1 1.02 17.22 3.9 0.98
16 +.60 18.9 1.18 +.67 14.4 0.90
64 1.27 69.5 1.09 1.54 +3.7 0.68
384 1 — — — 226.79 1.0 1.00
+ T2.54 1.0 1.00 D7.02 3.9 0.98
16 15.99 4.5 1.13 15.20 14.9 (.93
64 +.08 17.8 1.11 +.55 +9.8 0.78




% Accumulate block Householder transformations
if mg =0
Q(,8:ng) = Q(.e:ng) + (Q(:,s:ng)+ Wk) = Yk

end
nerttogen = right(nertlogen,p); %next process to generate WY factor
end
total = timer — time;
arith = (flops ~ flps) * floptime;
com = total — arith;
disp(* Time pid = *, me, * Total = ', total, * Arith = ', ...
arith, * Com = ‘', com)
% Results to the host

for i = 1. nablk
send(A(:, (i—=1)rw+T:min{ixw, na}), HOST, ARES, async);
end
for i = 1. ngblk
send(Q({i=1)xw+1:min(ixw. mq), :), HOST, QRES, async);
end
end % process bqr.node

FIGURE 13 Node program for ring-oriented block QK factorization. part 2.

% Host id is used together with ParaGraph
% to distinguish it from the nodes
#define HOST —~32768

% Message types

#define MDIST 20
#define WYFACTOR 30
#define IND 40
#define ARES 50
#define QRFES 60
% Type of matrix

#define ROW 100
#define COL 110

FIGURE 16 Header file. ring.h. for ring-oriented block (A factavization,

process qrb_host(A, nb, p)
% Host for ring-oriented block-Householder QR factorization

% nb = blocksize, p = number of processors

#include vgrb k"

[m,n] = size(A); % get size of matrix

nbl = fiz(((min(m,n)+nb—1))/nbd); % number of Householder transformations
nbid = fix((n + nb — 1)/nbj); % total number of column blocks

nblg = fiz{(m + nb — 1) /nb); % number of q blocks

Q@ = eye(m);

assign(grb_node(nb,nblnbid nblg,m,p), 0:p—1);

% Distribute A with block-column wrap mapping
distb{ A, nb, nbld, p, COL});

% Distribute Q with block-row wrap mapping
distb( @, nb, nblg, p, ROWY;

% Receive results
[R z] = recb(nbld, HOST, p, COL, ARES);
[@ z] = recb(nblgq, HOST, p, ROW, QRESY;

end

FIGURE 17 Host program for ring-oriented block QR factorization.




Table 2. Real and Simulated Performance Results of
Ring-Oriented Block (R Factorization

CONLAB

Ring (JR iPscrs2 CONLAB
m=n P 'I',, S, E, T, S, L,
O+ 1 5.406 1.0 1.00 D5.462 1.0 1.00
+ 1.58 3.4 0.86 1.71 3.5 0.87
8 0.95 5.7 0.71 0.93 2.9 0.74
16 0.04 8.5 0.53 0.60 9.1 0.57
32 ().49 11.0 0.34 0.42 12.5 (.39
128 1 43.23 1.0 1.00 42.23 1.0 1.00
+ 11.26 3.8 0.94 11.28 3.8 0.9+
8 6.22 6.8 0.85 6.14 6.9 0.86
16 3.69 11.4 0.71 3.50 11.9 0.7+
32 244 17.3 0.5+ 2.26 18.7 0.58
O+ 1.82 23.3 0.30 1.59 20.0 .42
240 1 274.70 1.0 1.00 27440 1.0 1.00
4 70.92 3.9 0.97 T0.89 3.9 0.97
8 37.20 T4 0.92 3711 T4 0.92
10 20.73 13.3 0.83 20.28 13.5 0.85
32 12.43 221 0.69 11.87 231 0.72
6+ 8.28 33.2 0.52 .01 361 0.56
function dummy = qrb_sim(A, blksize, p)
% Simulation function for a ring-oriented
% block Householder QR factorization.
% A = matrix to be factorized, blksize = block size,
% p = number of processors
% Uses processes qrb_host and qrb_node
tinclude “grb.h"
% Start the host process on virtual processor p
% giving it process id HOST
assign(grb_host(A, blksize, p), p, HOSTY;
simulate
end

FIGURE 18 simulaton function for ring-oriented block QR lactorization,
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FIGURE 22 Spacetime diagram for the block torus matrix multiplication simulating
the iPSC/2 in CONLAB.



rithms in CONLAB the efficicney and the qualiny
of the development process have been improved
appreciably.

The future directions of development of CON-
LAB are twolold. First. the introduction ol time
models for several DMM architectures s under
wav. A mechanism for choosing a DN architec-
ture il corresponding architecture parameters
exists afready. Second. and in parallel. the devel-
opment of @ CONLAB compiler ranslator has
started. It takes o DMM algorithm in CONLAB
sviax as input and will produce a similar C pro-
gram 1o run on the target architecture. Ax in CON-
LAB. the numerical compuations will be hased
on LAPACK {3 . Further. the conmmunication will
Lie based on efficient and portable implementa-
tions of topology und communicaton funetions
ssee sections 3 and 4
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