
Misleading Performance Reporting in tlte
Supercomputing Field

DAVID H. BAILEY
.\'umerical Aerodynamic Simulation (.\AS; Systems Dirision at Y4S4 Ames Research Center, :lloffett Field, CA 94035

ABSTRACT

In a previous humorous note, I outlined 12 ways in which performance figures for
scientific supercomputers can be distorted. In this paper, the problem of potentially
misleading performance reporting is discussed in detail. Included are some examples
that have appeared in recent published scientific papers. This paper also includes some
proposed guidelines for reporting performance, the adoption of which would raise the
level of professionalism and reduce the level of confusion in the field of supercomput­
ing.

1 INTRODUCTION

\lany readers may haYe read my predous article
··Twt>lw "·ays to Fool the \lasses \·nwn Ci,·iul!
Pt·rformance Reports on Parallel Computers .. [1:.
The attention that this anide ref'eiYed frank~\' has
bet>ll surprisinl! [:21. E,·idt>ntly it has struck are­
,;ponsi\ e chord among many professionals in the
field who share my concerns. The following is a
H'IT briPf ,;tuunwn· of the ··Tweh·e ,,-an;'·: . . .

1. Quote only :32-bit performance results. uot
(H-bit results. and compare your :3:2-bit
results with others· b-i-bit results.

2. Present inner kernel performance f!)!ures

Editorialnott·: dw Hlllhorufthi' paper~ in consultation with
the editor~ of tid~ journal. Ita~ d1o:·Wil tu lt"a\e HJJOllYJHott:->

ref,.n·m..-~ [:r-~6:: ;S:-[Hf. [1":':. and I:Zr. lfthe mnlwrs of
any ofdu-sPpap•·r~ would !ik.·to corTe~pond publicly n·;wnlinl!
this pajwr. we would wl'lcwne lt·ttPr~ to the editor. llllL of
('our~w. t.HHHtyrnit~ would then be lo:-.t.

R··•·•·i"·d .\uu11't 1 ()<1:2
H .. \i,,·d (lt-t,',),..r 1 'l'l:2
.\ot sul•j•·n to eopyri;.du within the l·nitt·d :-;wtt·s. Puhli,lwd l>y
John \\"il•·,· & Son~. l!w.

Sci .. milic Protrnwlminl!. \-oL l. 1'1'· 1-tl-131 : !99:2.:
Cet: 10.}P,-<Jl-t-t/'J:1/0:20H1-11

as the perforrnanf'e of the entire applica­
tion.

:3. Quietly employ assembly code and other
low-JeyeJ lanl!uage constructs. and com­
pare your assembly-coded results with
otht>rs' Fortran m· C implementations.

-i. Seale up the problem size with the number
of proce:-;sors, hut Jo not clearly disclo~e
thi~ fact.

:). Quote performance results linearly pro­
jectPd 10 a full system.

6. Compare your results against scalar. un­
optimized. sin~.de processor code on Cray,:;.
Compare with an old code on an oh,..olete
S\-Sle!H.

8. Ba~e megaflops operation counts on the
parallel implementation instead of on the
best sequential implementation.

9. Quote pt>rformance in term;;; of procPssor
utilization. paralld speedups. or nwl!a­
llops per dollar (peak megaflop;;;. not :-;us­
tainPd).

10 . .\lutilate the algorithm used in the parallt>l
implenwntation to match the architecture.
In othPr words. employ algoritluns that are
numericallY indlieient in order to exhibit
artificially hil!h me)!aflops rates.

11. .\leasure parallel ruu times on a dedicated

141

142 BAILEY

system, but measure conventional run
times in a busy environment.

12. If all else fails, show pretty pictures and
animated videos. and do not talk about
performance.

Some readers of the "Tweh-e \\'avs" have in­
quired whether the article was intended to be a
criticism of parallel supercomputer vendors or of
the technology of parallel computing in general. It
was not. This misunderstanding may have arisen
from the fact that in the copy published in Super­
computing Reuiew, the word "scientists" in an in­
troductory paragraph was changed by the editors
to "vendors" for unknown reasons. Instead. I
wrote the article out of concern that the field of
parallel supercomputing may lose credibility un­
less scientists themselves are more circumspect in
reporting performance and in reviewing the work
of their colleagues.

The "Twelve \\' ays" article jocularly suggests
deliberate attempts by scientists to mislead their
audiences. Clearly few. if any. who have employed
one of these "techniques" have done so with such
dark motives. But this sort of material still looks
unprofessional and. if nothing else. has resulted in
a great deal of confusion in the supercomputing
field.

2 THE PRESSURE FOR REPORTING
HIGH PERFORMANCE

Perhaps it was ine,·itable that this problem would
arise in the field of parallel scientific computing.
For many years, parallel computer;; were almost
exclusively the prm·ince of theoretical computer
scien<~e. In the mid 1980,.;, commercial parallel
systems became available. but their performance
ratings were a far cry from those of commercially
available vector supercomputers at the time. In
the late 1980s, commercial parallel systems were
finally marketed with peak performance rates that
equaled and even surpassed those of vector su­
percomputers. In response to these developments,
a number of laboratories acquired these systems.
and their scientists began to implement serious.
full-scale applications. Inevitably, one of the first
questions asked of these researchers was "How
does your parallel computer compare with a con­
ventional supercomputer on this application?"'

Thus, since 1988 scientists programming the
parallel systems have been under pressure to ex-

hibit performance rates comparable to or exceed­
ing those of convention~l supercomputers. This
pressure has increased in the last year or two a;;
these same groups of scientists have been called
upon by their respective managements to justify
the multimillion dollar price tags that serious par­
allel supercomputers now command. ln many
cases, aggressive long-range performance goal;;
have been set by high-level managers that will re­
quire rapid progress for years to come. Loominl!
budget cuts at larg<' scientific laLoratories have
added additional pressure. At the very leasL re­
searchers feel obligated to hi1£hlight experience
with certain application:" that are naturally well
suited for highly parallel systems and t!ltls aehiew
high rates. and to downplay more ehallengin:z ap­
plications that for Yariou;; reasons do not n:'t
achieve high rate,;.

\\·hen thi;; external pressure is added to tht•
natural human tendencv of scientists to be exu­
berant about their own work, it should comp as
little surprise that some have pre;;;ented ;;;loppy
and potentially misleading performance material
in papers and conference presentations. And be­
cause the reviewers of these papers arP tlwm;;elws
in many case,; caught up in the excitement of this
new technology. it should not be surprising that
they have tended to be somewhat permissive with
questionable aspects of these papers.

Clearly the field of ;;upercomputing in general
and parallel computing in particular does not do
itself a favor by condonintr inflated performance
reports. whatever the moti\·es of those im·oh-ed. In
addition to fundamental i;;sues of ethic;; ami sci­
entific accuracy. thert> is a real possibility that our
field could ;;;uffN a ;;erious loss of cn·dihilitv if. for
example. certain instnnn•,.; are giH·n prnmirwnt
media coverage. At the very least. there is the po;-;;­
sibility that laboratory managers and ewn appli­
cations scienti;;ts will sour on parallel computin:z.
much in the same way that the expansive duims
and promises of the anilicial intelliw·nce field in
the early years has led to the pre;;ent widesprt><Hi
skepticism.

There is another reason to uphold a high levd
of forthrightness and clarity in performance re­
porting. In order for highly parallel computt>rs to
achieve widespread acceptance in the scit>ntific
computing marketplace, it is essential that they
deliver superior performance on a broad rantre of
imponant scientific and engineering applications.
Thus it is my opinion. shared by other,; in the
field, that the best way to ensure that future paral­
lel scientific computers will be succe~sful is to pro-

.\llSLEADl;\:G PERFOR.\IA;\:CE REPORTI;\:G 143

3.5

3

2.5

'i? 2 ::>

:5
<)

8 1.5
~

0.5

o~··
0 I 000 2000 3000 4000 5000 6000 7000 8000 9000 I 0000

Number of Objects

FIGL'HE 1 Timings of uCTBE/1 0 :lower a!ld CraY _\ -\IP upper' on a defense appli­
cation.

Yide early feedback to manufacturers regarding
their weaknesAes. Once the reasons for le:'ls-than­
expected performance rates on eertain problems
are iJentified, then ,·endors can ineorporate the
required imprm·emems, both software and hard­
ware. in the next generation.

In this pap(•r. l "·ill present a number of exam­
ph•" of questionable performance reportinf! that
ha,·e appeared in published papers during the
past few years. 1 han· restrictPd this ,.;tudy only to

articles that haYe recently appeared in refereed
,;cientific journals and conference proceedings. I
hm·e not included press releases. marketing litera­
ture. technical reports. n•rbal presentations. or
papers 1 hun• read only as a reft:'ree.

_\[y only purpo;,e in citing these example;; is to
provide eoncrt-te instances of the pt>rformance is­
,.;ues in question. I do not wish for these eitation:o;
to be misconstrued a;, criticisms of indiYidual sci­
entislii. laboratorie:-;. or iiUJWrcomputt:'r manufae­
lllrers. This is lwcau;;e 1 personally do not beli<'Ye
this problem is f'Pstrieted to a handful of awhnrs,
laboratorie;; and Yendors. but that man\· of us in
the fit>ld llltliit share blame (see Sf:'('tion ~n. For this
n•ason I h:.n-e decided 10 take the tmustwl step of
not in('hHiin!! detailed refert>nces for these papers
,.;o a;; not lO cause the authors undue emharra,.;s­
ment. These rd'ereJJ('PS are anlilahle. howeYer. to

rt'\'it•wer,; or others with a !Pgitimate need to kuow.
I "uf!ge,;t dwt n·aders who learn the ideJJtitie:-; of
these authors use this information with di,.,('J'etion.

3 PLOTS

Plots can be effective ,-ehicles to present technical
information, particularly in verbal presentations.
Further. plots are in many eases all that high-leYel
managers (such as tho;,e with authority for com­
puter acquisitions) hm·e time to digest. Cnfort u­
natdy. plots can also mislead an audience. espe­
cially if prepared carelessly or if presented without
important qualifying information.

Figure 1 is a reconstruction of the final perfor­
mance plot from a paper describing a defense ap­
plication [3]. The plot compares timings of the
authors' nCLBE/1 0 code with timinf!,.; of a com­
parable code running on a Cray X-~IP/·ilb. The
plot appears to indicate an impressi,·e perfor­
mance adYantage for the nCCBE system on all
problem sizes except a small region at the far left.

Howe,·er. examination of the raw data u:-;ed for
this plot. which are shown in Table 1. gi,·es a dif­
ferellt picture. First of all. except for the largest
problem size (i.e .. object count). all data points lie
iJ1 the small region at the far left. In other words.
mo:-;t of the two curY<'S ,.;hown are merelY the linear
connections of the next-to-last data poiHts with
the final poims. Further. the Cmy X-.\IP is actu­
ally faster than the nCCBE for all sizes except for
the large;,t problem ;;ize. _\ly personal yje\\·. shart:'d
hy ;,;ewrnl eolleagut•,.; who hm·e seen this graph. is
that a lognrithllli(' ;.;cale would ha\e been more
appropriate for this data.

144 BAILEY

Table 1. Raw Data for Plot in Figure 1

Total nCCBE CraY X-.\IP
Objects

20
40
80

160
990

9600

aDenotes estitnate.

Run Time

8:18
9:11

11:59
15:07
21:32
31:36

Run Time

0:16
0:26
0:57
2:11

19:00
3:11 :50"

Other difficulties are encountered when the text
accompanying this graph and table is read. First
of all. the authors concede that the runs on the
Cray X-.\IP/416 (a four-processor system) were
madP on a single processor, and that .. the Cray
version of the code has not been optimized for the
X-,\IP." The authors assert. howeYer. that tuning
"would not be expected to make a substantial dif­
ference."

Second, for the largest problem listed. the only
one where the Cray fails to outperform the
nCCBE, the Cray X-:\lP timing j,; by the author,.;"
admission an estimate. an extrapolation ba,.;ecl on
a smaller run. In the paper, as in Figure 1. the
Cray curve leading out to the last point i;; dashed.
possibly intending to indicate that this is an esti­
mate, but this feature is not explained in either the
caption or the text. Some readers interpret thi,.;

102
c::
0
·~

~ ...
8.
"' 101

"0
c::
0
u
<>
Vl
;:J
0..
u

feature as merely an indication of the region where
the nCCBE is faster.

To the authors' credit, they did include the raw
data. and they did clearly acknowledge the fact
that the Cray code is not fully optimized and that
the last Cray timing is extrapolated. Thus it ap­
pears that the authors were entirely professional
in the text of their paper. But the reader is left
to wonder what fraction of the audience that
has seen this plot fully appreciates the details be­
hind it.

Figure 2 is a reconstruction of another perfor­
mance plot from a paper describintr a fluid dy­
namics application [i J. This plot compares tim­
ings of the author's codes mnning on a 6-iK C:\I-2
with those of comparable codes nmning on a one­
proce,;sor Cray X-:\IP. The two curYes shown for
each computer system repre;;ent a ,.;tructured and
an unstructured grid version of the code. respec­
tiYely. As before. the plot appears w indicate a
substamial performance ach·antage for the C\I-2
for all problem size,.; and both types of wids.

Once again. careful examination of the text ac­
companying thi,;; plot places these results in a dif­
ferent light. First of all. the author admits that hi:'
C\1-2 results have been linearly extrapolated to a
6-lK system from a smaller system. The author
then explains that the Cray ver:"ion of the unstruc­
tured grid code is ··unvectorized. ··

An additional difficulty with thi,.; plot ean be

~· .. ··:
' .• '

.'I---~---_/:
.• ' _ ··:------1
' ··r-~----

100
----- --------- ----:;-4·~ --- -~

Number of Grid Cells

FIGURE 2 Timings of C.\I-2 (:mlid and da,;lws) and Cray X-.\IP (da,.;h-dot,; and dots'
on a fluid dynamics application.

.\1ISLEADI:\"G PERFORMAl\"CE REPORTING 145

parameter (nx = 16, ny = 16, nz = 32)
common /com/ a(nx,ny,nz), gv(nx,ny,nz), t(nx,ny,nz), d(nx,ny,nz),

$ gr(nx,ny,nz), gi(nx,ny,nz)
c

do 120 kz = 1, nz
do 110 jy = 1, ny

do 100 ix = 1, nx
t(ix,jy,kz) = a(ix,jy,kz) I gv(ix,jy,kz)
d(ix,jy,kz) = gr(ix,jy,kz) I gi(ix,jy,kz)

$ I gv (ix,jy,kz)
100 continue
110 continue
120 continue

FIGURE 3 Original Cray-2 code fragment.

:-,een by carefully examining the two Cray cun·es.
In the original. as in Figure 2. these are precisely
straight lines. l\"eedless to say. it is exceedingly
unlikely that a Cray code. scaled over nearly three
orders magnitude in problem size, exhibits pre­
cisely linear timings. Thus one has to suspect that
the two Cray ·'cun·es'' are simply linear extrapo­
lations from single data points. In summary. it ap­
pears that of all points on four cun·es in this plot.
at most two points represent real timings.

The author of this article does not mention the
precision of the data used in the C:\I-2 version.
but from his description of the C\I-2 as having
:32-bit floatinl! point hardware. it appears that the
author is comparing a :32-bit C:\1-2 code with a
6-i-bit .X.<\1P code.

4 TUNING

The previous two examples, in addition to tlwir
potentially misleading usage of graphic informa­
tion. show how performance comparisons are
made based on something less than comparable
tuning efforts. In some cases this may happen be­
cause the implementors of parallel codes are ex­
pe11S on a particular parallel system. but the~· do
not have a great deal of experience programming
the other system (usually a vector system) against
which the comparison is being made.

For those of us who have significant experience
programming both Cray-class ,·ector multiproces­
sors and the ,·arious highly parallel systems. it is
j1l"etty clear which are easier to use at this point in
time. both for initially implementing an applica­
tion and for tuning to obtain full performance. In­
deed, the difficulty of programming and tuning

codes on highly IJai·allel systems is currently an
obstacle to more widespread usage. It has been
my personal experience that even for applications
that are a challenge to \·ectorize. it is still easier to

program and tune them on a single processor of a
Cray system than on a highly parallel distributed
memon' S\'Stem. This assessment does not sub­
stantially change when one includes the addi­
tional effort required to utilize autotasking (multi­
processing) on Crays.

Thus one has to be skeptical of instances in the
literature where an application has been ported
and tuned on a highly parallel computer. usually
requiring months of effort. and yet the corre­
sponding Cray code exhibits poor performance,
typical of a code that is not even vectorized. much
less parallelized. One example of a performance
comparison of this sort is shown in Paper C [5]. In
this paper. the performance of a code fragment is
listed as 18 megaflops on a Cray-2. but the trans­
lated code is claimed to run at 7-± 1 megaflops on
the C:\1-2. First of alL one can question whether
this is a fair comparison, because the Cray-2 per­
formance was for a 16 X 16 X :32 problem.
whereas the C:\1-2 performance was for a 6-± X

6-± X 6-i problem. Al;;o, as in the pre,·ious exam­
ple. it is clear that the author is comparing a :32-
bit code on the C:\1-2 with a 6-±-bit code on the
Cray-2. Further. only one processor of the four­
procp;;sor Cray-2 is being utilized.

The tunin/-(' problem in this paper is evident
when one studies the Cray-2 Fortran code frag­
ment that is the basis of this comparison. This
code fragment (with minor changes) is shown in
Figure :3. The performance of this code on the
Crav-2 at l'\ASA Ames is not as low as the author
of this article reported-e,·idently the author's

146 BAILEY

parameter (nx = 16, ny = 16, nz = 32, nn = nx * ny * nz)
common /com/ a1(nn), gvl(nn), t1(nn), dl(nn), gr1(nn), gi1(nn)

c
do 100 i = 1, nn

tl(i) = a1(i) I gv1(i)
d1(i) = gr1(i) I (gi1(i) * gvl(i))

100 continue

FIGURE 4 Tuned Cray-2 code fragment.

timing was based on an earlier version of the Cray-
2 compiler. But it is not hard to see that without
special compiler trickery, the performance of this
code will be quite poor, because the inner loop
vector length is only 16.

Figure 4 contains an equivalent fragment of
code, but with the three dimensions of the various
arrays collapsed to a single dimension. This tuned
code runs on the NASA Ames Cray-2 at 160
megaflops. It is impossible to know how fast this
tuned code would have run when the author wrote
his article, but it is certain that it would have run
much faster than 18 megaflops. It is regrettable
that such material appeared in a published con­
ference proceedings. Fortunately, however, the
above-mentioned code fragment and perfor­
mance comparison was omitted when the paper
was subsequently republished as a journal article.

Another apparent example of this type of po­
tentially misleading material can be seen in Paper
D [6]. This paper compares the performance of a
physics application running on several systems,
including a 16K C:M-2 and a Cray X-MP/14. A
substantial effort was made to tune the C.:\1-2
code, including calls to low-level PARIS routines.
The resulting C.:\1-2 implementation runs at 126
megaflops, mush faster than the 3.1 megaflops
achieved on the Cray. The author explains that
the reason for the poor performance on the Cray
X-:\IP is that two key phases of this calculation
"do not vectorize."

However, the reader is struck by the fact that
both the Cray and the C.:\1-2 can be thought of as
SIYID processors. A code that has been imple­
mented efficiently on a C.:\1-2 should be directly
translatable to an efficient vectorizable code on
the Cray. Lubeck et al. [7] provides an excellent
demonstration of this principle, where three appli­
cations that had been programmed and tuned on
the CYI-2 were ported back to the Cray Y -)1P with
high performance.

Thus the reader of Paper D [6] is left to wonder
why, if the C.M-2 code for this application runs so

well, did the author not try to adapt the C:\I-2
code to the X-.:\1P? Because one of the author's
CM-2 codes was written entireh· in C~I Fortran
(i.e., Fortran-90 with directives). why did the au­
thor not try simply running this same code on the
X-.:\IP? After alL the Cray Fortran compiler now
accepts many of the F ortran-90 array constntets.

5 PROJECTIONS AND EXTRAPOLATIONS

The practice of citing estimated and extrapolated
performance results is. unfortunately. fairly wide­
spread in the field. This may in part be an unin­
tended consequence of limited research budgets
at many research labs, where scientists often have
to settle for scaled-down versions of highly parallel
systems. As a result, researcher;; frequently cite
performance results that are merely linear projec­
tions from much smaller svstems. often without
the slightest justification.

The practice of linearly extrapolating one's per­
formance results to a larger system is doubly per­
plexing because the question of whether various
computer designs and applications will '·scale·' is
in fact an important topic of current research. It
seems that many scientists using parallel com­
puters are willing to assume as an established fact
one of the most fundamental questions in the
field!

~'e have already seen one instance of citin~ ex­
trapolated results. Another example is cited in Pa­
per G [8]. where the authors compare their de­
fense application running on an nCT.JBE-2 with
comparable codes running on a Cray Y -.:\IP and a
CM-2. Three tables of timings are included in this
paper. Fortunately, all of the nCCBE-2 timings in
the three tables are real timings. But out of a total
of 33 figures listed for theY -MP and C\-I-2, more
than half (17) are merely projections or estimates.
There does not appear to be any attempt to mis­
lead the reader, because the authors indicate
which figures in each table are projections by

means of asterisks. 1\"onetheless, one is left to
wonder about how reliable these comparisons are,
and whether they will always be quoted with the
appropriate disclaimer.

In most cases authors clearly disclose estimates
and projections, but not always. In Paper E [9],
the author gives performance results for his fluid
dynamics code in a table at the end of the article.
Timings are included for an 8K C.\I-2, a 16K C.\I-
2, and a 64K C:\I-2. Curiously, the timings for the
64K system have parentheses around them, but
nowhere in the text does the author state the
meaning of these parentheses. However, by noting
that this column of numbers is identical to the
16K numbers, shifted down by one. one has to
conclude that the 64K numbers are merelv linear
projections from the 16K results.

Some authors have taken the practice of citing
projections one step further. In Paper F [10] the
author states in his abstract that his code runs ·'at
the speed of a single processor of a Cray-2 on 1 I 4
of a C~I-2." Some 13 pages later, the author cites
a timing on a Com·ex C210 and then states ·'ex­
perience indicates that for a wide range of prob­
lems, a C21 0 is about 1 I 4 the speed of a single
processor Cray-2." l\o further mention is made of
the Cra\·-2.

It is well known that for both the Convex C21 0
and the Cray-2, timings and megaflops rates can
,-ary dramatically depending on the level of vec­
torization, inner loop vector lengths, compute-to­
memory reference ratios, compiler features, and
other factors. Thus any blanket performance ratio
such as 114 is rather dubious. But the most trou­
bling item here is the fact that the author, in the
abstract of his paper. implies a performance com­
parison with a Cray-2. even though he evidently
has newr run his code on a Crav-2.

6 COUNTING FLOPS

A common practice in the field of scientific com­
puting is to cite performance rates in terms of
millions of floating-point operations per second
(megaflops). For various reasons, some in the field
have suggested that the practice of citing
megaflops rates be abandoned. However, I am of
the opinion that although direct timing compari­
sons are always preferred, megaflops rates may be
cited if calculated and reported consistently.

~Iegaflops figures may of course be misleading,
particularly on parallel computers. This confusion
derives from the method used to determine the

.\IISLEADL\G PERFOR.\1:\:\C:E REPORTL\G 147

number of floating-point operations (flops) per­
formed. ~fany authors count the number of flops
actually performed in their parallel implementa­
tions, a number usually obtained by analyzing the
parallel source code . .\Iegaflops figures computed
in this manner may be used, for example, to indi­
cate the extent to which the peak processing
power of the computer system is being utilized.

However, parallel implementations almost al­
ways perform significantly more flops than serial
implementations. For example, some calculations
are merely repeated in each processor. Csing the
actual number uf flops performed on a parallel
computer thus results in megaflops rates that are
inflated when compared to rates obtained from
corresponding serial or vector computer imple­
mentations.

Another difficulty with basing megaflops rates
on the actual parallel flop count is that this prac­
tice tacitly encourages scientists to employ numer­
ically inefficient algorithms in their applications,
algorithms often chosen mainly for the com·en­
ience of the particular architecture being used. It
is easv to understand how such choices can be
made, because it is widely accepted in the field
that algorithmic changes are often necessary when
porting a code to a parallel computer. But when
this practice is carried too far, both the audience
and the scientist mav be misled.

Because of the potential for misleading com­
parisons of megaflops figures, it is clear that a sin­
gle standard flop count should be used when com­
paring rates for a given application. In my view,
the most sensible flop count for this purpose is the
minimal flop count-the value based on an effi­
cient implementation of the best practical serial
algorithms. In this way, one is free to use an im­
plementation with a higher flop count on a partic­
ular architecture if desired, but no extra credit is
given for these extra operations when megaflops
rates are computed. This standard also acts as a
deterrent to the usage of numerically inefficient
algorithms.

I have seen definite instances of inflated flop
counts in papers I have read and in technical pre­
sentations I have attended, but it has been diffi­
cult to find clear-cut examples in published litera­
ture that are understandable to a general
audience. Rather than cite examples of this type, I
wish to cite instead some legitimate published
results that emphasize the distinction between
"parallel" megaflops rates (i.e., megaflops rates
based on the actual number of flops performed on
the parallel system) and what I will term '·BPSA

148 BAILEY

Table 2. Parallel Megaflops Rates Versus BPSA Megaflops Rates

Solver Floating-Point
Algorithm Operations

Jacobi 3.82 X 1012
Gauss-Seidel 1.21 X 1012

Least Squares 2.59 X 10 11

Multi grid 2.13X10q

megaflops" (i.e., megaflops rates based on the
flop count of the "best practical serial algo­
rithms").

The first paper contains an interesting compar­
ison of several different numerical schemes that
can be used to solve a convection-diffusion prob­
lem [11]. Based on the authors' data. I have com­
puted both parallel megaflops rates and BPSA
megaflops rates for four of these schemes. These
figures are shown in Table 2. The BPSA mega­
flops rates are based on the flop count of the
multigrid algorithm.

When one looks at the column of parallel
megaflops figures. it appears that the Jacobi
scheme is the fastest, ·with a performance rate of
1,800 megaflops. The other schemes are slower,
and the multigrid scheme, at only 318 megaflops.
is the slowest of all. However, when one examine:;
the BPSA megaflops column, then a verv different
picture emerges: the Jacobi scheme is the worst.
and the multigrid scheme is the best. Thus al­
though the parallel megaflops figures may provide
some useful information. it is clear that the BPSA
megaflops figures are more meaningful when
comparing computational performance.

Gustafson et aL [12] emphasize this same
poinL where the authors of the Slalom benchmark
describe Bjorstad and Boman's discovery. These
two scientists found that a preconditioned conju­
gate gradient method could be used to produce
the required solution of the Slalom benchmark in
much fewer flops than the scheme previously
used, albeit at a lower megaflops rate on many
svstems.

Admittedly, it may be a challenge to determine
the minimal (i.e .. BPSA) flop count for a given
problem. However. at the least a scientist should
be expected to analyze the source code of an efti­
cient implementation on a serial or vector com­
puter. Those with access to a .1\EC SX system or to
a Cray X-l\IP/Y -)1P system can take advantage of
the hardware performance monitot·s present on
these computers to obtain accurate flop counts.
However, one must still be careful to ensure that

CPU Time Parallel BPSA
(Sec) ~legaflops ~legaflops

2.12i 1,800 1.00
883 1.365 2.-tl
185 1.-+00 11.51

6.7 318 :318.00

the code being measured by the hardware perfor­
mance monitor employs the best available algo­
rithms and is well optimized.

Along this line. perhaps those of us performing
research in the area of numerical linear algebra
should at some point reconsider the usage of clas­
sical formulas for flop counts in favor of flop
counts based on implementations that employ
Strassen 's algorithms [13]. Strassen' s algorithm is
a scheme to multiply matrices that requires fewer
floating-point operations than the conventional
scheme. It has been demonstrated that Strassen's
algorithm is now practical and in fact produces
real speedups for matrices "ith dimensions larger
than about 128 [1:3]. Further. Strassen's alg-o­
rithm can be employed to accelerate a variety of
linear algebra calculations [H. 15] by substitut­
ing a Strassen-based matrix multiply routine for
the conventional mauix multiply routine in a
L\PACK [16: implementation. If a Stra:o;,.;en­
based flop count were adopted for computing the
megaflops rate in the solution of a 16.000 X

16,000 linear system. the resulting rate would
have to be cut by roughly one third from dw usual
reckoning.

In this vein. I must confess to citing pott>ntia!ly
misleading rwrfomumcP figurP" [1-+ 1. The,:;e arti­
cles include one processor Cray-2 and Y-)[p pcr­
formancP rates for some Stra,;st>n matrix routine,;.
Foil owing establi,;hed custom. my coauthors ami I
computed megaflops ratt>s bast'd on the cla,.;,;ical
flop count for matrix multiplication !2n:3). Be­
cause the Strassen routint's ean produce the ma­
trix product in fewer llofls. it could be argued that
these megaflops figures are inllated.

7 OTHER ISSUES

~Iany authors report "speedup" figures for their
parallel applications. Such figures indicate the de­
gree to which the given application .. scales" on a
particular architecture. However. here also there
is potential for the audience to be misled. espe-

eially when speedup figures are Lased on inflated
single processor timings.

For example. users of the Intel iPSC and other
message-passing systems often base speedup fig­
ures on a single node timing of the multiple node
version of the program (for example. see Paper H
(1 '7'). \~-hen running on a single node. the multi­
ple node program needlessly synchronizes with it­
self and passes messages to itself. These ""nH:-s­

sages ,. are handled quite rapidly. becau;:;e the
operating system recognizes thtH theiie are local
transmissions . ."\ont'theless. a ,-ignificant arnoum
of overhead is still required. and it is not unu,;ual
for the single node run time to increase by :20%
\\·ith the addition of message-passing code. There
is a similar potential for distortion when citing
spet"dup llgui-eS for Cray multiprocessor n•ctnr
.'iystems. Clf'arly spet>dup ligures ,.;hould be based
instead on the timing of a well-optimized. purely
,..ingle proce;:;sor program (i.e .. a program without
unneces;:;ary multiproce;:;sor constnlcb \.

Some authors pre;:;ent ·'scaled ,;peedup .. iif[­
ures. first introduced hy Gustaf;:;on et a!. [181.
where the problem size is scaled up with the Hum­

ber of procPssors. Sueh fip:ures may be informa­
tiYe. bm it i:-; e,;sential that authors who <JllOte ,;uch
figures clearly disdo,;e the fact that they haw
scaled their problem size to match the prnce,.;sor
count. h is also important that author,:; proYide
detail,; of exactly how this scalinp: wa,.; done.

Another a,.;pect of performance reponinf!: that
needs ro be carefully analyzed i,;, how the amhor,­
measure 11111 time . .\lost of the scientists I hme
queried about this issue ft>el that elapsed wall
dock time is the most reliable measun· of run
time. and that if po;:;sihle it ,.;hnuld be mea:"ured in
a dedicated t'll\ iwnment. By eoiJtra,.;t. CPC time
ligures. such as tho,;e frequemly quoted by u,.;ers
of Cray sy,.,tem~. may mask f'xtra elap~ed time rt>­
<Juired for input and output. Abo. it is known that
on the C.\1- 2. .. C.\1 Busy Time .. and · ·C.\1 Elapsed
Time .. are quite different for some codes. t.'Yen
with no l/0 and no other users ;;baring the parti­
tion (19. :20].

One linal aspect of performance reporting i;:; the
,;ouree of untold confusion i11 the supercomputillf!
field: are the re;:;ult~ fo1· :3:2-hit or 6-t-bit floating­
point arithmetic? Becau,;e on nwrn· sYstem;;. :3:2-
bit computational perfonnnnce ra.te~ are nearh·
twice as high as 6-t-bit rate,;. there is a temptation
for author,; to quote only .3:2-IJit result,;. to fail to
disclose that rates are for :32-bit data. and to com­
pare their :3:2-hit re:"ults with others· 6+bit
results. 1t i;;; clear that ::3:2-bit I 6-i- bit confusion is

~liSLEADI:\'G PEHFOR:'\IA:\'CE REPOHTI:\'G 149

widespread in performance reporting, because we
have already seen several examples.

In my \iew, quoting 32-bit perfonnance rates is
permissible so long as (1) this data type is clearly
disclosed and (2) a brief statement is included ex­
plaining why this precision is sufficient. Along this
line, it should be kept in mind that with new com­
puter systems it is now possible to attempt much
larger problems than beforf'. As a result, numeri­
cal issues that previously were not ,;ignificant now
are significant. and some programmers are dis­
covering to their dismay that higher precision is
necessary to obtain meaninp:ful results.

I ,;u,;pect that in the majority of case,; where the
authors do not clearly state the data type. the
results are indeed for :32-bit data. One example of
this is Paper I [21 i. where in an otherwise excel­
lent 1 0-page paper. the authors never ,;tate
whether their impre;;;,.;j,·e performance rates are for
.:32-bit or 6-i-bit calculations. at lea,;t not in anv
place where a reader would normally look for sud~
information. That their results are indeed for :32-
bit data can hmwver be deduced by a careful
reading of their :"ection on memory bandwidth.
where we read that operands are four bytes long.

8 RESPONSIBILITY

It is most likelv true that none of the authors cited
above deliberate!\- intended w mi;:;lead their audi­
ences. After all. in most cases the potentially mis­
leading a:"pects of the,;e papers ~wre evident only
because of detailed information included in the
text of the paper. It is also likely that in at least
some cases. the authors' performance claim,;
mip:ht Le largely upheld if the full facts were
known. :'\onetbeless. the overridinf! impression of
th6e examples is that whatewr the moti\·es and
actual facts may he. the material as pre;.;ented
generally giYes the appearance of inflating the au­
thors' performance re,;ults in eompari,;on to other
systems. Such material certainly has the potential
to mislead an audience. And. at the very least. one
can aqrue that these papers rt>prt"st>nt sloppy sci­
ence.

\\'ho is to blame? .\"'I stated in Section 2. it is
not my opinion that the hlame lies soldy with the
indiYidual authors .. -\ny scienti,;t can write a paper
that is not thoroughly ;:;ound-it is the duty of his
or her colleague,.; and professional orl!anization::;
to ensure that questionable aspech of the paper
are corrected before publication or public presen­
union. For example. in the aboYe cited example,;.

150 BAILEY

these results were almost certainly presented to
colleagues at the respective institutions. and in
most cases the manuscript,; were read by col­
leagues before the authors submitted them for
outside publication. :\lore significantly. these
manuscripts were in all but four cases formally
refereed by fellow professionals in the field. The
four conference papers that were not formally ref­
ereed were informally refereed by committee
members of major conferences. who are generally
prominent scientists in the supercomputer field.
Thus whatever "blame'' is to be assigned must be
shared rather widely. Furthermore. how can these
authors be accused of violating the .. mles·· when
we have never established anv standards for re­
porting performance?

9 PROPOSED GUIDELINES

Clearly this field needs a detailed set of guidelint>s
for reporting supercomputer performance, guide­
lines that are formally adopted and widely dissem­
inated to authors and reviewers. Yirtuallv everv
field of science has found it necessarY at some
point to establish rigorous standards for the re­
porting of experimental results. and ours should
be no exception. To that end. I propose the fol­
lowing. These guidelines focus on computational
performance. because that is the topic of this pa­
per and apparently the most frequent arena of
confusion. However. it is hoped that the spirit of
these guidelines will be followed by researchers
reporting performance in other areas of super­
computers, such as in mas;; storage and local area
nenvorks.

1. lf results are presented for a well-known
bt>nchmark. comparative figures should be
truly comparable. and the mles for t~w par­
ticular benchmark should be followed. For
example. Linpack 1000 results should not
be compared against Linpack 100 re,;ults.

2. Only actual performance ratPs should be
prt>sented. not projections or f'xtrapola­
tions. For examplt>, perfornumce rate,;
should not be extrapolated to a full ,;y,.;tpm
from a s~:alt>d-down system. Comparing ex­
trapolated figures with actual performance
figures. such a,; by including both in the
same table. i,.; particularly inapproprintt>.

3. Comparath·e perf(mnanee figurPS should be
ba,;ed on comparable len .. ls of lUning. For
example. resulrs tunPd with m<mths of effort

on one svstem should not be dirt'cth· com-. .
pared with re,;ults on a well-known vector
system where no attempt has been made to
even fullY vectorize the code.

4. Direct comparisons of run tinws are pre­
ferred to comparisons of megaflops rates or
the like. \\-henever po,.;sible. timings ~hould
bt> tme elapsed time-of-day measurements
(this might not bP possible in some .. pro­
duction'' en..-ironments).

::>. ~legaflops figures should not be presented
for any comparative purpo,.;e unless they are
computed from consi,.;tent flop count~. pref­
erably flop counts ba,.;eo on efficient imple­
mentations of the best practical serial algo­
rithms. One intent here is to discoura!!e the
usaf!e of numerically ind'ticient algorithms.
which may exhibit a11ificially high perfor­
mance rates on a particular parallel s\·stem.

6. If speedup figures are presented. the sin!!le
processor rate should be based on a rt'ason­
ably well tuned program without multi­
processing constructs. If the problem ,;ize is
scaled up with the number of processors.
then the results should be clearh· cited a,;
"',;caled spet>dup' · figures. and detail,;
should be givPn explaining how the problem
was scaled up in size.

..., .\ny ancillan· information that would ,;itrnifi­
cantly affPct the interpretation of the perfor­
mance results should be fullv disclosed. For
example. if the results are for 32-bit ratlwr
than for 6-t-bit data. or if assembh--le..-<>1
coding was employed. or if only onP proces­
sor of a conventional system is !wing u,;ed
for cornpari,;oii. these facts should lw
dearlv .'·ilated.

8. Due to the natural prominenct' of ah,;tract,;.
figurt's. and tablt-'s. srwcial care :'!wuld lw
takt>n to <-'Iblll"i' that theiit' items are not mis­
leadinp:. en·n if presented alorw. For exam­
ple. if significant pt-'rformancP claims are
made in tht> abstraet of the r~<IJWr. any im­
portant qualifying information should ab<J
he included iu the abstract.

9. \\"he never pos.~il>le. the folln" in!! should l)t~

included in the tPxt of the paper: the hard­
wan•. ,.;oftware. and sv,.;tPm t'nvirnnment:
tlw langua;;:P. altrorit hm,.;. tlw datat YP""·
and prnp:ramminf! tPchnique,.; employPd:
t!w natUrP and PXtellt of tuning fWrfnrnwd:
and tlw lm,.;iii for timings. flop I"Ot!Ilt,;. and
speedup lif!ll!"I-'S. Tlw goal lwn• i,~ to t'llHhle
other sci1·nti,.;r,; to accurately reprodncc> tlw
1wrformnuce re,.;ults pre:-;emed in tlw p<qwr.

1 am not presentillf! thPse f!lliddinPs as manda­
tory. inflt'xib1e requirements. Clearly in a fast­
mminf! field such as our:'.. it would be unwi"e to do
so. l-lowen•r. if a paper or pre"entation doe;-;
pre,.,t->nt re;-;ults that "if!nificantly deYiate from
tht'se f!Uidt->lines. I :'.Uf!f!t'St that the author has an
o!Jlif!ation to dearly state and justify these deYia­
tions.

10 CONCLUSIONS

The examplPs 1 han' ciwd aiJfJ\·e art> somewhat
isolated in the litPrature. and I see no eYidence
dwt tlw prol>lt•m of inflated JWrformance report­
in!! is out of control. Howt·\·er. clearlY tho"e of us

' .
in tht- parallel supercomputini! field would be wi"e
to aJTPst any tP mlency in this direction before "·e
are fan'd with a "if!nilicant credibility problem. _.\,;
wa,.; lllel1tioned ahoYe. ~cienti;;ts in man\· other
di"ci pline,.; lun e found it nece,.,sary to adopt rif!or­
ou,.; standards for reportinf! experinwntal result,;.
and ours ,-,)wuld),e no exception. It is my hop<>
that thi,.; article. with the propost>d guidelines in
.SPction 9. will ~timulate a\\·an•nes" and dialogup

on the Hlbject and \Yill eYentually lead to consen­
:ous and formal :otandanls in the field.

ACKNOWLEDGMENTS

I wi;:;h to acknowledtf" tlw following rwr,.;ons "ho
haYt' proYided Yaluable insight and ;;uf!gestions:
R. BaJ,L. E. Barszcz. S. Chattt>rjee. R. Fatoohi. S.
Hammond. A. Karp. C. Kot>bd. T. Lasin;;ki . .J.
.\lcCraw . .1. Rif:!anati. R. Schreiber. .\1. Simmons.
H. ::iinwn. Y. Yenkatakrishnan. S. \\-eeratun1£a.
and ~\1. Zosel.

REFERENCES

:1 ~ D. I I. BaileY. · ·Twdn· ways to fool the masses
when triYin;.: pnformance results on parallel com­
puter,:· ;:jupcrcmnpul. Rcl'. yoJ. ~t, no. 8. pp.

\IISLE.\DL\C PERFOR\1.\:\CE REPORTL\C 151

.)--t-:J:l. 1 <JlJ1. :.\lso puhli~lwd in ,'>.11fH'IHJ/llfJtlll'r.

PI'. --t-:. 1 <J<) 1 . i
·:2] .1. \larkoff. ··\J..a,;urillf! how fast computtTs really

an·:· .\t·u·)(JI·k Times. ~<·ptemlwr :2:2. 1<J')1. I'·
HF.

::3] Paper .\.
~-+] PuperB.
[51 Paper C.
'()' Paper D.
~7i 0. \1. Lubeck. \1. L. :-;immons. and II. .1. \\ a,;sn­

man. Proceedings r~l SufiC!FilllfJllling 1 <J<J:2.
IEEE. pp. -t0:3--t 1 :2.

·8 Puper C.
· <f: Pupn E.
1 0 Papn F.

·11· .1. :\. :-;hadid and H.:-;_ Tumirwro. Pmcl'erlinil'-' n(
the Fi/ih ,<..,"f..l.\1 (·rJ!Ij;,,.,lln' u11 Purn//,/ Pmcessi!l/1."
fur .')"cil'lll(/ic Cul!lfJtllill{.!. l'hilatlt-lphia. P.\:
Sl.\\1. 1lJ9:2. pp. 1:2:3-1 :2<J .

. I :2, .1. Lu~tuf~un. D. Hu"'r. ::-,. Ulll'rt. ""d \1. Cartn.
··sL.\L0\1: "''" i' in!! ;" 1 .. 1,.,.,.,.,w•·. · · ·""t)(•rnlln­
tmt. Ret·. \ul. -t. no. 1:2. pp ..)-f-61. llJlJ1.

~ 1 :)]) . II. Bailey. · -Extra-hif!h ,.pe•·d nratrix multipli­
cation on the CraY-:2. ·· . ..:.J.L\1 ./. Scientific .C..,"tutisti­

cul Cumpul. yoJ. lJ. JlJl· (J(J:-3-hO"?. 1 <nm.
1--t · D. II. Bailey. 1\.. Ln·. and II. D. :-iinwn. ··L ,;in!!

:-;na~sen · ~ alf!oritlun to accelerate tlw ~"luti"n • ,f
lirwar "'"H·m,;:· ./. SufJ<;r,·umput., '"!. -t. 1'1'·
:3.-J-:'-:3-:-1. 1LJ<J1.

:1 ;:)_ :\. J. lli!!ham. ··Exploitillf! fa~t matrix multiplica­
tic Ill within the lt·n·l :3 BL\S: ·.I Cl/ Truns .. \luth­
cmuticol Sufttrure. Yo!. 1 h. PI'· :33:2-:31J8. 1 WIO.

[1 hj E. Andn,;on. Z. Bai. C:. Bi,;dwf. J. Demmel. J.
Don!!arra. J. DuC:roz. .\. Creenlwum. S.
llammarlinf! .. \. \lcl\.elllwy. S. O,;truuchoY. and
D. ~on·r~sorL The LIP l CA.: [sers · Guidt>. Phila­
dt·lphia. PA: .:-iL\\1. 1 1N:2.

, 1 7; Paper II.
·18~ J. Cu:-taf~orL C. H. \lo1111:. and H. E. Bennt•r.

··De\ dopme11t of parall<'l methocb for a 1 0:2-t­
prol"l',.,.or hypnndw. ·· Sl.l.\1 ./.Scientific ,'l"tulisti­

cul Cull/filii .. yoJ. LJ. JlJl· ll09-(J;)8. 1988.
:19· D. II. Bailey and P. 0. Frederick~ml. Proceedings

~~/Sufiercolllf!Ulinf! "9/. Lo~ .\lumit<h. C.\: IEEE.
1991. pp. lbb-1-:':3.

'2<>' \1. Carlwy a!Hi D. Le,·inP. Pruceedillgs ~~l the
Fourth SJ.-LIJ ('onference on Pural/el Processing
/in Snenl1{ic Cumputinf!. Philadelphia. P .\:
SL\\1. 1990. pp. :3-t0-:3-t:i.

[21: Paper I.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

