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ABSTRACT 

In a previous humorous note, I outlined 12 ways in which performance figures for 
scientific supercomputers can be distorted. In this paper, the problem of potentially 
misleading performance reporting is discussed in detail. Included are some examples 
that have appeared in recent published scientific papers. This paper also includes some 
proposed guidelines for reporting performance, the adoption of which would raise the 
level of professionalism and reduce the level of confusion in the field of supercomput­
ing. 

1 INTRODUCTION 

\lany readers may haYe read my predous article 
··Twt>lw "·ays to Fool the \lasses \·nwn Ci,·iul! 
Pt·rformance Reports on Parallel Computers .. [ 1:. 
The attention that this anide ref'eiYed frank~\' has 
bet>ll surprisinl! [:21. E,·idt>ntly it has struck are­
,;ponsi\ e chord among many professionals in the 
field who share my concerns. The following is a 
H'IT briPf ,;tuunwn· of the ··Tweh·e ,,-an;'·: . . . 

1. Quote only :32-bit performance results. uot 
(H-bit results. and compare your :3:2-bit 
results with others· b-i-bit results. 

2. Present inner kernel performance f!)!ures 

Editorialnott·: dw Hlllhorufthi' paper~ in consultation with 
the editor~ of tid~ journal. Ita~ d1o:·Wil tu lt"a\e HJJOllYJHott:-> 

ref,.n·m..-~ [:r-~6:: ;S:-[Hf. [1":':. and I:Zr. lfthe mnlwrs of 
any ofdu-sPpap•·r~ would !ik.·to corTe~pond publicly n·;wnlinl! 
this pajwr. we would wl'lcwne lt·ttPr~ to the editor. llllL of 
('our~w. t.HHHtyrnit~ would then be lo:-.t. 

R··•·•·i"·d .\uu11't 1 ()<1:2 
H .. \i,,·d ( lt-t,',),..r 1 'l'l:2 
.\ot sul•j•·n to eopyri;.du within the l·nitt·d :-;wtt·s. Puhli,lwd l>y 
John \\"il•·,· & Son~. l!w. 

Sci .. milic Protrnwlminl!. \-oL l. 1'1'· 1-tl-131 : !99:2.: 
Cet: 10.}P,-<Jl-t-t/'J:1/0:20H1-11 

as the perforrnanf'e of the entire applica­
tion. 

:3. Quietly employ assembly code and other 
low-JeyeJ lanl!uage constructs. and com­
pare your assembly-coded results with 
otht>rs' Fortran m· C implementations. 

-i. Seale up the problem size with the number 
of proce:-;sors, hut Jo not clearly disclo~e 
thi~ fact. 

:). Quote performance results linearly pro­
jectPd 10 a full system. 

6. Compare your results against scalar. un­
optimized. sin~.de processor code on Cray,:;. 
Compare with an old code on an oh,..olete 
S\-Sle!H. 

8. Ba~e megaflops operation counts on the 
parallel implementation instead of on the 
best sequential implementation. 

9. Quote pt>rformance in term;;; of procPssor 
utilization. paralld speedups. or nwl!a­
llops per dollar (peak megaflop;;;. not :-;us­
tainPd). 

10 . .\lutilate the algorithm used in the parallt>l 
implenwntation to match the architecture. 
In othPr words. employ algoritluns that are 
numericallY indlieient in order to exhibit 
artificially hil!h me)!aflops rates. 

11. .\leasure parallel ruu times on a dedicated 
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system, but measure conventional run 
times in a busy environment. 

12. If all else fails, show pretty pictures and 
animated videos. and do not talk about 
performance. 

Some readers of the "Tweh-e \\'avs" have in­
quired whether the article was intended to be a 
criticism of parallel supercomputer vendors or of 
the technology of parallel computing in general. It 
was not. This misunderstanding may have arisen 
from the fact that in the copy published in Super­
computing Reuiew, the word "scientists" in an in­
troductory paragraph was changed by the editors 
to "vendors" for unknown reasons. Instead. I 
wrote the article out of concern that the field of 
parallel supercomputing may lose credibility un­
less scientists themselves are more circumspect in 
reporting performance and in reviewing the work 
of their colleagues. 

The "Twelve \\' ays" article jocularly suggests 
deliberate attempts by scientists to mislead their 
audiences. Clearly few. if any. who have employed 
one of these "techniques" have done so with such 
dark motives. But this sort of material still looks 
unprofessional and. if nothing else. has resulted in 
a great deal of confusion in the supercomputing 
field. 

2 THE PRESSURE FOR REPORTING 
HIGH PERFORMANCE 

Perhaps it was ine,·itable that this problem would 
arise in the field of parallel scientific computing. 
For many years, parallel computer;; were almost 
exclusively the prm·ince of theoretical computer 
scien<~e. In the mid 1980,.;, commercial parallel 
systems became available. but their performance 
ratings were a far cry from those of commercially 
available vector supercomputers at the time. In 
the late 1980s, commercial parallel systems were 
finally marketed with peak performance rates that 
equaled and even surpassed those of vector su­
percomputers. In response to these developments, 
a number of laboratories acquired these systems. 
and their scientists began to implement serious. 
full-scale applications. Inevitably, one of the first 
questions asked of these researchers was "How 
does your parallel computer compare with a con­
ventional supercomputer on this application?"' 

Thus, since 1988 scientists programming the 
parallel systems have been under pressure to ex-

hibit performance rates comparable to or exceed­
ing those of convention~l supercomputers. This 
pressure has increased in the last year or two a;; 
these same groups of scientists have been called 
upon by their respective managements to justify 
the multimillion dollar price tags that serious par­
allel supercomputers now command. ln many 
cases, aggressive long-range performance goal;; 
have been set by high-level managers that will re­
quire rapid progress for years to come. Loominl! 
budget cuts at larg<' scientific laLoratories have 
added additional pressure. At the very leasL re­
searchers feel obligated to hi1£hlight experience 
with certain application:" that are naturally well 
suited for highly parallel systems and t!ltls aehiew 
high rates. and to downplay more ehallengin:z ap­
plications that for Yariou;; reasons do not n:'t 
achieve high rate,;. 

\\·hen thi;; external pressure is added to tht• 
natural human tendencv of scientists to be exu­
berant about their own work, it should comp as 
little surprise that some have pre;;;ented ;;;loppy 
and potentially misleading performance material 
in papers and conference presentations. And be­
cause the reviewers of these papers arP tlwm;;elws 
in many case,; caught up in the excitement of this 
new technology. it should not be surprising that 
they have tended to be somewhat permissive with 
questionable aspects of these papers. 

Clearly the field of ;;upercomputing in general 
and parallel computing in particular does not do 
itself a favor by condonintr inflated performance 
reports. whatever the moti\·es of those im·oh-ed. In 
addition to fundamental i;;sues of ethic;; ami sci­
entific accuracy. thert> is a real possibility that our 
field could ;;;uffN a ;;erious loss of cn·dihilitv if. for 
example. certain instnnn•,.; are giH·n prnmirwnt 
media coverage. At the very least. there is the po;-;;­
sibility that laboratory managers and ewn appli­
cations scienti;;ts will sour on parallel computin:z. 
much in the same way that the expansive duims 
and promises of the anilicial intelliw·nce field in 
the early years has led to the pre;;ent widesprt><Hi 
skepticism. 

There is another reason to uphold a high levd 
of forthrightness and clarity in performance re­
porting. In order for highly parallel computt>rs to 
achieve widespread acceptance in the scit>ntific 
computing marketplace, it is essential that they 
deliver superior performance on a broad rantre of 
imponant scientific and engineering applications. 
Thus it is my opinion. shared by other,; in the 
field, that the best way to ensure that future paral­
lel scientific computers will be succe~sful is to pro-
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FIGL'HE 1 Timings of uCTBE/1 0 :lower a!ld CraY _\ -\IP upper' on a defense appli­
cation. 

Yide early feedback to manufacturers regarding 
their weaknesAes. Once the reasons for le:'ls-than­
expected performance rates on eertain problems 
are iJentified, then ,·endors can ineorporate the 
required imprm·emems, both software and hard­
ware. in the next generation. 

In this pap(•r. l "·ill present a number of exam­
ph•" of questionable performance reportinf! that 
ha,·e appeared in published papers during the 
past few years. 1 han· restrictPd this ,.;tudy only to 

articles that haYe recently appeared in refereed 
,;cientific journals and conference proceedings. I 
hm·e not included press releases. marketing litera­
ture. technical reports. n•rbal presentations. or 
papers 1 hun• read only as a reft:'ree. 

_\[y only purpo;,e in citing these example;; is to 
provide eoncrt-te instances of the pt>rformance is­
,.;ues in question. I do not wish for these eitation:o; 
to be misconstrued a;, criticisms of indiYidual sci­
entislii. laboratorie:-;. or iiUJWrcomputt:'r manufae­
lllrers. This is lwcau;;e 1 personally do not beli<'Ye 
this problem is f'Pstrieted to a handful of awhnrs, 
laboratorie;; and Yendors. but that man\· of us in 
the fit>ld llltliit share blame (see Sf:'('tion ~n. For this 
n•ason I h:.n-e decided 10 take the tmustwl step of 
not in('hHiin!! detailed refert>nces for these papers 
,.;o a;; not lO cause the authors undue emharra,.;s­
ment. These rd'ereJJ('PS are anlilahle. howeYer. to 

rt'\'it•wer,; or others with a !Pgitimate need to kuow. 
I "uf!ge,;t dwt n·aders who learn the ideJJtitie:-; of 
these authors use this information with di,.,('J'etion. 

3 PLOTS 

Plots can be effective ,-ehicles to present technical 
information, particularly in verbal presentations. 
Further. plots are in many eases all that high-leYel 
managers (such as tho;,e with authority for com­
puter acquisitions) hm·e time to digest. Cnfort u­
natdy. plots can also mislead an audience. espe­
cially if prepared carelessly or if presented without 
important qualifying information. 

Figure 1 is a reconstruction of the final perfor­
mance plot from a paper describing a defense ap­
plication [3]. The plot compares timings of the 
authors' nCLBE/1 0 code with timinf!,.; of a com­
parable code running on a Cray X-~IP/·ilb. The 
plot appears to indicate an impressi,·e perfor­
mance adYantage for the nCCBE system on all 
problem sizes except a small region at the far left. 

Howe,·er. examination of the raw data u:-;ed for 
this plot. which are shown in Table 1. gi,·es a dif­
ferellt picture. First of all. except for the largest 
problem size (i.e .. object count). all data points lie 
iJ1 the small region at the far left. In other words. 
mo:-;t of the two curY<'S ,.;hown are merelY the linear 
connections of the next-to-last data poiHts with 
the final poims. Further. the Cmy X-.\IP is actu­
ally faster than the nCCBE for all sizes except for 
the large;,t problem ;;ize. _\ly personal yje\\·. shart:'d 
hy ;,;ewrnl eolleagut•,.; who hm·e seen this graph. is 
that a lognrithllli(' ;.;cale would ha\e been more 
appropriate for this data. 
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Table 1. Raw Data for Plot in Figure 1 

Total nCCBE CraY X-.\IP 
Objects 

20 
40 
80 

160 
990 

9600 

aDenotes estitnate. 

Run Time 

8:18 
9:11 

11:59 
15:07 
21:32 
31:36 

Run Time 

0:16 
0:26 
0:57 
2:11 

19:00 
3:11 :50" 

Other difficulties are encountered when the text 
accompanying this graph and table is read. First 
of all. the authors concede that the runs on the 
Cray X-.\IP/416 (a four-processor system) were 
madP on a single processor, and that .. the Cray 
version of the code has not been optimized for the 
X-,\IP." The authors assert. howeYer. that tuning 
"would not be expected to make a substantial dif­
ference." 

Second, for the largest problem listed. the only 
one where the Cray fails to outperform the 
nCCBE, the Cray X-:\lP timing j,; by the author,.;" 
admission an estimate. an extrapolation ba,.;ecl on 
a smaller run. In the paper, as in Figure 1. the 
Cray curve leading out to the last point i;; dashed. 
possibly intending to indicate that this is an esti­
mate, but this feature is not explained in either the 
caption or the text. Some readers interpret thi,.; 
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feature as merely an indication of the region where 
the nCCBE is faster. 

To the authors' credit, they did include the raw 
data. and they did clearly acknowledge the fact 
that the Cray code is not fully optimized and that 
the last Cray timing is extrapolated. Thus it ap­
pears that the authors were entirely professional 
in the text of their paper. But the reader is left 
to wonder what fraction of the audience that 
has seen this plot fully appreciates the details be­
hind it. 

Figure 2 is a reconstruction of another perfor­
mance plot from a paper describintr a fluid dy­
namics application [ i J. This plot compares tim­
ings of the author's codes mnning on a 6-iK C:\I-2 
with those of comparable codes nmning on a one­
proce,;sor Cray X-:\IP. The two curYes shown for 
each computer system repre;;ent a ,.;tructured and 
an unstructured grid version of the code. respec­
tiYely. As before. the plot appears w indicate a 
substamial performance ach·antage for the C\I-2 
for all problem size,.; and both types of wids. 

Once again. careful examination of the text ac­
companying thi,;; plot places these results in a dif­
ferent light. First of all. the author admits that hi:' 
C\1-2 results have been linearly extrapolated to a 
6-lK system from a smaller system. The author 
then explains that the Cray ver:"ion of the unstruc­
tured grid code is ··unvectorized. ·· 

An additional difficulty with thi,.; plot ean be 

~· .. ··: 
' .• ' 

.'I---~---_/: 
.• ' _ ..... ··:------1 
' ..... ··r-~----
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FIGURE 2 Timings of C.\I-2 (:mlid and da,;lws) and Cray X-.\IP (da,.;h-dot,; and dots' 
on a fluid dynamics application. 



.\1ISLEADI:\"G PERFORMAl\"CE REPORTING 145 

parameter (nx = 16, ny = 16, nz = 32) 
common /com/ a(nx,ny,nz), gv(nx,ny,nz), t(nx,ny,nz), d(nx,ny,nz), 

$ gr(nx,ny,nz), gi(nx,ny,nz) 
c 

do 120 kz = 1, nz 
do 110 jy = 1, ny 

do 100 ix = 1, nx 
t(ix,jy,kz) = a(ix,jy,kz) I gv(ix,jy,kz) 
d(ix,jy,kz) = gr(ix,jy,kz) I gi(ix,jy,kz) 

$ I gv (ix,jy,kz) 
100 continue 
110 continue 
120 continue 

FIGURE 3 Original Cray-2 code fragment. 

:-,een by carefully examining the two Cray cun·es. 
In the original. as in Figure 2. these are precisely 
straight lines. l\"eedless to say. it is exceedingly 
unlikely that a Cray code. scaled over nearly three 
orders magnitude in problem size, exhibits pre­
cisely linear timings. Thus one has to suspect that 
the two Cray ·'cun·es'' are simply linear extrapo­
lations from single data points. In summary. it ap­
pears that of all points on four cun·es in this plot. 
at most two points represent real timings. 

The author of this article does not mention the 
precision of the data used in the C:\I-2 version. 
but from his description of the C\I-2 as having 
:32-bit floatinl! point hardware. it appears that the 
author is comparing a :32-bit C:\1-2 code with a 
6-i-bit .X.<\1P code. 

4 TUNING 

The previous two examples, in addition to tlwir 
potentially misleading usage of graphic informa­
tion. show how performance comparisons are 
made based on something less than comparable 
tuning efforts. In some cases this may happen be­
cause the implementors of parallel codes are ex­
pe11S on a particular parallel system. but the~· do 
not have a great deal of experience programming 
the other system (usually a vector system) against 
which the comparison is being made. 

For those of us who have significant experience 
programming both Cray-class ,·ector multiproces­
sors and the ,·arious highly parallel systems. it is 
j1l"etty clear which are easier to use at this point in 
time. both for initially implementing an applica­
tion and for tuning to obtain full performance. In­
deed, the difficulty of programming and tuning 

codes on highly IJai·allel systems is currently an 
obstacle to more widespread usage. It has been 
my personal experience that even for applications 
that are a challenge to \·ectorize. it is still easier to 

program and tune them on a single processor of a 
Cray system than on a highly parallel distributed 
memon' S\'Stem. This assessment does not sub­
stantially change when one includes the addi­
tional effort required to utilize autotasking (multi­
processing) on Crays. 

Thus one has to be skeptical of instances in the 
literature where an application has been ported 
and tuned on a highly parallel computer. usually 
requiring months of effort. and yet the corre­
sponding Cray code exhibits poor performance, 
typical of a code that is not even vectorized. much 
less parallelized. One example of a performance 
comparison of this sort is shown in Paper C [ 5]. In 
this paper. the performance of a code fragment is 
listed as 18 megaflops on a Cray-2. but the trans­
lated code is claimed to run at 7-± 1 megaflops on 
the C:\1-2. First of alL one can question whether 
this is a fair comparison, because the Cray-2 per­
formance was for a 16 X 16 X :32 problem. 
whereas the C:\1-2 performance was for a 6-± X 

6-± X 6-i problem. Al;;o, as in the pre,·ious exam­
ple. it is clear that the author is comparing a :32-
bit code on the C:\1-2 with a 6-±-bit code on the 
Cray-2. Further. only one processor of the four­
procp;;sor Cray-2 is being utilized. 

The tunin/-(' problem in this paper is evident 
when one studies the Cray-2 Fortran code frag­
ment that is the basis of this comparison. This 
code fragment (with minor changes) is shown in 
Figure :3. The performance of this code on the 
Crav-2 at l'\ASA Ames is not as low as the author 
of this article reported-e,·idently the author's 
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parameter (nx = 16, ny = 16, nz = 32, nn = nx * ny * nz) 
common /com/ a1(nn), gvl(nn), t1(nn), dl(nn), gr1(nn), gi1(nn) 

c 
do 100 i = 1, nn 

tl(i) = a1(i) I gv1(i) 
d1(i) = gr1(i) I (gi1(i) * gvl(i)) 

100 continue 

FIGURE 4 Tuned Cray-2 code fragment. 

timing was based on an earlier version of the Cray-
2 compiler. But it is not hard to see that without 
special compiler trickery, the performance of this 
code will be quite poor, because the inner loop 
vector length is only 16. 

Figure 4 contains an equivalent fragment of 
code, but with the three dimensions of the various 
arrays collapsed to a single dimension. This tuned 
code runs on the NASA Ames Cray-2 at 160 
megaflops. It is impossible to know how fast this 
tuned code would have run when the author wrote 
his article, but it is certain that it would have run 
much faster than 18 megaflops. It is regrettable 
that such material appeared in a published con­
ference proceedings. Fortunately, however, the 
above-mentioned code fragment and perfor­
mance comparison was omitted when the paper 
was subsequently republished as a journal article. 

Another apparent example of this type of po­
tentially misleading material can be seen in Paper 
D [ 6]. This paper compares the performance of a 
physics application running on several systems, 
including a 16K C:M-2 and a Cray X-MP/14. A 
substantial effort was made to tune the C.:\1-2 
code, including calls to low-level PARIS routines. 
The resulting C.:\1-2 implementation runs at 126 
megaflops, mush faster than the 3.1 megaflops 
achieved on the Cray. The author explains that 
the reason for the poor performance on the Cray 
X-:\IP is that two key phases of this calculation 
"do not vectorize." 

However, the reader is struck by the fact that 
both the Cray and the C.:\1-2 can be thought of as 
SIYID processors. A code that has been imple­
mented efficiently on a C.:\1-2 should be directly 
translatable to an efficient vectorizable code on 
the Cray. Lubeck et al. [7] provides an excellent 
demonstration of this principle, where three appli­
cations that had been programmed and tuned on 
the CYI-2 were ported back to the Cray Y -)1P with 
high performance. 

Thus the reader of Paper D [ 6] is left to wonder 
why, if the C.M-2 code for this application runs so 

well, did the author not try to adapt the C:\I-2 
code to the X-.:\1P? Because one of the author's 
CM-2 codes was written entireh· in C~I Fortran 
(i.e., Fortran-90 with directives). why did the au­
thor not try simply running this same code on the 
X-.:\IP? After alL the Cray Fortran compiler now 
accepts many of the F ortran-90 array constntets. 

5 PROJECTIONS AND EXTRAPOLATIONS 

The practice of citing estimated and extrapolated 
performance results is. unfortunately. fairly wide­
spread in the field. This may in part be an unin­
tended consequence of limited research budgets 
at many research labs, where scientists often have 
to settle for scaled-down versions of highly parallel 
systems. As a result, researcher;; frequently cite 
performance results that are merely linear projec­
tions from much smaller svstems. often without 
the slightest justification. 

The practice of linearly extrapolating one's per­
formance results to a larger system is doubly per­
plexing because the question of whether various 
computer designs and applications will '·scale·' is 
in fact an important topic of current research. It 
seems that many scientists using parallel com­
puters are willing to assume as an established fact 
one of the most fundamental questions in the 
field! 

~'e have already seen one instance of citin~ ex­
trapolated results. Another example is cited in Pa­
per G [8]. where the authors compare their de­
fense application running on an nCT.JBE-2 with 
comparable codes running on a Cray Y -.:\IP and a 
CM-2. Three tables of timings are included in this 
paper. Fortunately, all of the nCCBE-2 timings in 
the three tables are real timings. But out of a total 
of 33 figures listed for theY -MP and C\-I-2, more 
than half (17) are merely projections or estimates. 
There does not appear to be any attempt to mis­
lead the reader, because the authors indicate 
which figures in each table are projections by 



means of asterisks. 1\"onetheless, one is left to 
wonder about how reliable these comparisons are, 
and whether they will always be quoted with the 
appropriate disclaimer. 

In most cases authors clearly disclose estimates 
and projections, but not always. In Paper E [9], 
the author gives performance results for his fluid 
dynamics code in a table at the end of the article. 
Timings are included for an 8K C.\I-2, a 16K C.\I-
2, and a 64K C:\I-2. Curiously, the timings for the 
64K system have parentheses around them, but 
nowhere in the text does the author state the 
meaning of these parentheses. However, by noting 
that this column of numbers is identical to the 
16K numbers, shifted down by one. one has to 
conclude that the 64K numbers are merelv linear 
projections from the 16K results. 

Some authors have taken the practice of citing 
projections one step further. In Paper F [10] the 
author states in his abstract that his code runs ·'at 
the speed of a single processor of a Cray-2 on 1 I 4 
of a C~I-2." Some 13 pages later, the author cites 
a timing on a Com·ex C210 and then states ·'ex­
perience indicates that for a wide range of prob­
lems, a C21 0 is about 1 I 4 the speed of a single 
processor Cray-2." l\o further mention is made of 
the Cra\·-2. 

It is well known that for both the Convex C21 0 
and the Cray-2, timings and megaflops rates can 
,-ary dramatically depending on the level of vec­
torization, inner loop vector lengths, compute-to­
memory reference ratios, compiler features, and 
other factors. Thus any blanket performance ratio 
such as 114 is rather dubious. But the most trou­
bling item here is the fact that the author, in the 
abstract of his paper. implies a performance com­
parison with a Cray-2. even though he evidently 
has newr run his code on a Crav-2. 

6 COUNTING FLOPS 

A common practice in the field of scientific com­
puting is to cite performance rates in terms of 
millions of floating-point operations per second 
(megaflops). For various reasons, some in the field 
have suggested that the practice of citing 
megaflops rates be abandoned. However, I am of 
the opinion that although direct timing compari­
sons are always preferred, megaflops rates may be 
cited if calculated and reported consistently. 

~Iegaflops figures may of course be misleading, 
particularly on parallel computers. This confusion 
derives from the method used to determine the 
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number of floating-point operations (flops) per­
formed. ~fany authors count the number of flops 
actually performed in their parallel implementa­
tions, a number usually obtained by analyzing the 
parallel source code . .\Iegaflops figures computed 
in this manner may be used, for example, to indi­
cate the extent to which the peak processing 
power of the computer system is being utilized. 

However, parallel implementations almost al­
ways perform significantly more flops than serial 
implementations. For example, some calculations 
are merely repeated in each processor. Csing the 
actual number uf flops performed on a parallel 
computer thus results in megaflops rates that are 
inflated when compared to rates obtained from 
corresponding serial or vector computer imple­
mentations. 

Another difficulty with basing megaflops rates 
on the actual parallel flop count is that this prac­
tice tacitly encourages scientists to employ numer­
ically inefficient algorithms in their applications, 
algorithms often chosen mainly for the com·en­
ience of the particular architecture being used. It 
is easv to understand how such choices can be 
made, because it is widely accepted in the field 
that algorithmic changes are often necessary when 
porting a code to a parallel computer. But when 
this practice is carried too far, both the audience 
and the scientist mav be misled. 

Because of the potential for misleading com­
parisons of megaflops figures, it is clear that a sin­
gle standard flop count should be used when com­
paring rates for a given application. In my view, 
the most sensible flop count for this purpose is the 
minimal flop count-the value based on an effi­
cient implementation of the best practical serial 
algorithms. In this way, one is free to use an im­
plementation with a higher flop count on a partic­
ular architecture if desired, but no extra credit is 
given for these extra operations when megaflops 
rates are computed. This standard also acts as a 
deterrent to the usage of numerically inefficient 
algorithms. 

I have seen definite instances of inflated flop 
counts in papers I have read and in technical pre­
sentations I have attended, but it has been diffi­
cult to find clear-cut examples in published litera­
ture that are understandable to a general 
audience. Rather than cite examples of this type, I 
wish to cite instead some legitimate published 
results that emphasize the distinction between 
"parallel" megaflops rates (i.e., megaflops rates 
based on the actual number of flops performed on 
the parallel system) and what I will term '·BPSA 
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Table 2. Parallel Megaflops Rates Versus BPSA Megaflops Rates 

Solver Floating-Point 
Algorithm Operations 

Jacobi 3.82 X 1012 
Gauss-Seidel 1.21 X 1012 

Least Squares 2.59 X 10 11 

Multi grid 2.13X10q 

megaflops" (i.e., megaflops rates based on the 
flop count of the "best practical serial algo­
rithms"). 

The first paper contains an interesting compar­
ison of several different numerical schemes that 
can be used to solve a convection-diffusion prob­
lem [11 ]. Based on the authors' data. I have com­
puted both parallel megaflops rates and BPSA 
megaflops rates for four of these schemes. These 
figures are shown in Table 2. The BPSA mega­
flops rates are based on the flop count of the 
multigrid algorithm. 

When one looks at the column of parallel 
megaflops figures. it appears that the Jacobi 
scheme is the fastest, ·with a performance rate of 
1,800 megaflops. The other schemes are slower, 
and the multigrid scheme, at only 318 megaflops. 
is the slowest of all. However, when one examine:; 
the BPSA megaflops column, then a verv different 
picture emerges: the Jacobi scheme is the worst. 
and the multigrid scheme is the best. Thus al­
though the parallel megaflops figures may provide 
some useful information. it is clear that the BPSA 
megaflops figures are more meaningful when 
comparing computational performance. 

Gustafson et aL [ 12] emphasize this same 
poinL where the authors of the Slalom benchmark 
describe Bjorstad and Boman's discovery. These 
two scientists found that a preconditioned conju­
gate gradient method could be used to produce 
the required solution of the Slalom benchmark in 
much fewer flops than the scheme previously 
used, albeit at a lower megaflops rate on many 
svstems. 

Admittedly, it may be a challenge to determine 
the minimal (i.e .. BPSA) flop count for a given 
problem. However. at the least a scientist should 
be expected to analyze the source code of an efti­
cient implementation on a serial or vector com­
puter. Those with access to a .1\EC SX system or to 
a Cray X-l\IP/Y -)1P system can take advantage of 
the hardware performance monitot·s present on 
these computers to obtain accurate flop counts. 
However, one must still be careful to ensure that 

CPU Time Parallel BPSA 
(Sec) ~legaflops ~legaflops 

2.12i 1,800 1.00 
883 1.365 2.-tl 
185 1.-+00 11.51 

6.7 318 :318.00 

the code being measured by the hardware perfor­
mance monitor employs the best available algo­
rithms and is well optimized. 

Along this line. perhaps those of us performing 
research in the area of numerical linear algebra 
should at some point reconsider the usage of clas­
sical formulas for flop counts in favor of flop 
counts based on implementations that employ 
Strassen 's algorithms [ 13]. Strassen' s algorithm is 
a scheme to multiply matrices that requires fewer 
floating-point operations than the conventional 
scheme. It has been demonstrated that Strassen's 
algorithm is now practical and in fact produces 
real speedups for matrices "ith dimensions larger 
than about 128 [1:3]. Further. Strassen's alg-o­
rithm can be employed to accelerate a variety of 
linear algebra calculations [H. 15] by substitut­
ing a Strassen-based matrix multiply routine for 
the conventional mauix multiply routine in a 
L\PACK [ 16: implementation. If a Stra:o;,.;en­
based flop count were adopted for computing the 
megaflops rate in the solution of a 16.000 X 

16,000 linear system. the resulting rate would 
have to be cut by roughly one third from dw usual 
reckoning. 

In this vein. I must confess to citing pott>ntia!ly 
misleading rwrfomumcP figurP" [ 1-+ 1. The,:;e arti­
cles include one processor Cray-2 and Y-)[p pcr­
formancP rates for some Stra,;st>n matrix routine,;. 
Foil owing establi,;hed custom. my coauthors ami I 
computed megaflops ratt>s bast'd on the cla,.;,;ical 
flop count for matrix multiplication !2n:3 ). Be­
cause the Strassen routint's ean produce the ma­
trix product in fewer llofls. it could be argued that 
these megaflops figures are inllated. 

7 OTHER ISSUES 

~Iany authors report "speedup" figures for their 
parallel applications. Such figures indicate the de­
gree to which the given application .. scales" on a 
particular architecture. However. here also there 
is potential for the audience to be misled. espe-



eially when speedup figures are Lased on inflated 
single processor timings. 

For example. users of the Intel iPSC and other 
message-passing systems often base speedup fig­
ures on a single node timing of the multiple node 
version of the program (for example. see Paper H 
( 1 '7' ). \~-hen running on a single node. the multi­
ple node program needlessly synchronizes with it­
self and passes messages to itself. These ""nH:-s­

sages ,. are handled quite rapidly. becau;:;e the 
operating system recognizes thtH theiie are local 
transmissions . ."\ont'theless. a ,-ignificant arnoum 
of overhead is still required. and it is not unu,;ual 
for the single node run time to increase by :20% 
\\·ith the addition of message-passing code. There 
is a similar potential for distortion when citing 
spet"dup llgui-eS for Cray multiprocessor n•ctnr 
.'iystems. Clf'arly spet>dup ligures ,.;hould be based 
instead on the timing of a well-optimized. purely 
,..ingle proce;:;sor program (i.e .. a program without 
unneces;:;ary multiproce;:;sor constnlcb \. 

Some authors pre;:;ent ·'scaled ,;peedup .. iif[­
ures. first introduced hy Gustaf;:;on et a!. [181. 
where the problem size is scaled up with the Hum­

ber of procPssors. Sueh fip:ures may be informa­
tiYe. bm it i:-; e,;sential that authors who <JllOte ,;uch 
figures clearly disdo,;e the fact that they haw 
scaled their problem size to match the prnce,.;sor 
count. h is also important that author,:; proYide 
detail,; of exactly how this scalinp: wa,.; done. 

Another a,.;pect of performance reponinf!: that 
needs ro be carefully analyzed i,;, how the amhor,­
measure 11111 time . .\lost of the scientists I hme 
queried about this issue ft>el that elapsed wall 
dock time is the most reliable measun· of run 
time. and that if po;:;sihle it ,.;hnuld be mea:"ured in 
a dedicated t'll\ iwnment. By eoiJtra,.;t. CPC time 
ligures. such as tho,;e frequemly quoted by u,.;ers 
of Cray sy,.,tem~. may mask f'xtra elap~ed time rt>­
<Juired for input and output. Abo. it is known that 
on the C.\1- 2. .. C.\1 Busy Time .. and · ·C.\1 Elapsed 
Time .. are quite different for some codes. t.'Yen 
with no l/0 and no other users ;;baring the parti­
tion (19. :20]. 

One linal aspect of performance reporting i;:; the 
,;ouree of untold confusion i11 the supercomputillf! 
field: are the re;:;ult~ fo1· :3:2-hit or 6-t-bit floating­
point arithmetic? Becau,;e on nwrn· sYstem;;. :3:2-
bit computational perfonnnnce ra.te~ are nearh· 
twice as high as 6-t-bit rate,;. there is a temptation 
for author,; to quote only .3:2-IJit result,;. to fail to 
disclose that rates are for :32-bit data. and to com­
pare their :3:2-hit re:"ults with others· 6+bit 
results. 1t i;;; clear that ::3:2-bit I 6-i- bit confusion is 
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widespread in performance reporting, because we 
have already seen several examples. 

In my \iew, quoting 32-bit perfonnance rates is 
permissible so long as ( 1) this data type is clearly 
disclosed and (2) a brief statement is included ex­
plaining why this precision is sufficient. Along this 
line, it should be kept in mind that with new com­
puter systems it is now possible to attempt much 
larger problems than beforf'. As a result, numeri­
cal issues that previously were not ,;ignificant now 
are significant. and some programmers are dis­
covering to their dismay that higher precision is 
necessary to obtain meaninp:ful results. 

I ,;u,;pect that in the majority of case,; where the 
authors do not clearly state the data type. the 
results are indeed for :32-bit data. One example of 
this is Paper I [21 i. where in an otherwise excel­
lent 1 0-page paper. the authors never ,;tate 
whether their impre;;;,.;j,·e performance rates are for 
.:32-bit or 6-i-bit calculations. at lea,;t not in anv 
place where a reader would normally look for sud~ 
information. That their results are indeed for :32-
bit data can hmwver be deduced by a careful 
reading of their :"ection on memory bandwidth. 
where we read that operands are four bytes long. 

8 RESPONSIBILITY 

It is most likelv true that none of the authors cited 
above deliberate!\- intended w mi;:;lead their audi­
ences. After all. in most cases the potentially mis­
leading a:"pects of the,;e papers ~wre evident only 
because of detailed information included in the 
text of the paper. It is also likely that in at least 
some cases. the authors' performance claim,; 
mip:ht Le largely upheld if the full facts were 
known. :'\onetbeless. the overridinf! impression of 
th6e examples is that whatewr the moti\·es and 
actual facts may he. the material as pre;.;ented 
generally giYes the appearance of inflating the au­
thors' performance re,;ults in eompari,;on to other 
systems. Such material certainly has the potential 
to mislead an audience. And. at the very least. one 
can aqrue that these papers rt>prt"st>nt sloppy sci­
ence. 

\\'ho is to blame? .\"'I stated in Section 2. it is 
not my opinion that the hlame lies soldy with the 
indiYidual authors .. -\ny scienti,;t can write a paper 
that is not thoroughly ;:;ound-it is the duty of his 
or her colleague,.; and professional orl!anization::; 
to ensure that questionable aspech of the paper 
are corrected before publication or public presen­
union. For example. in the aboYe cited example,;. 
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these results were almost certainly presented to 
colleagues at the respective institutions. and in 
most cases the manuscript,; were read by col­
leagues before the authors submitted them for 
outside publication. :\lore significantly. these 
manuscripts were in all but four cases formally 
refereed by fellow professionals in the field. The 
four conference papers that were not formally ref­
ereed were informally refereed by committee 
members of major conferences. who are generally 
prominent scientists in the supercomputer field. 
Thus whatever "blame'' is to be assigned must be 
shared rather widely. Furthermore. how can these 
authors be accused of violating the .. mles·· when 
we have never established anv standards for re­
porting performance? 

9 PROPOSED GUIDELINES 

Clearly this field needs a detailed set of guidelint>s 
for reporting supercomputer performance, guide­
lines that are formally adopted and widely dissem­
inated to authors and reviewers. Yirtuallv everv 
field of science has found it necessarY at some 
point to establish rigorous standards for the re­
porting of experimental results. and ours should 
be no exception. To that end. I propose the fol­
lowing. These guidelines focus on computational 
performance. because that is the topic of this pa­
per and apparently the most frequent arena of 
confusion. However. it is hoped that the spirit of 
these guidelines will be followed by researchers 
reporting performance in other areas of super­
computers, such as in mas;; storage and local area 
nenvorks. 

1. lf results are presented for a well-known 
bt>nchmark. comparative figures should be 
truly comparable. and the mles for t~w par­
ticular benchmark should be followed. For 
example. Linpack 1000 results should not 
be compared against Linpack 100 re,;ults. 

2. Only actual performance ratPs should be 
prt>sented. not projections or f'xtrapola­
tions. For examplt>, perfornumce rate,; 
should not be extrapolated to a full ,;y,.;tpm 
from a s~:alt>d-down system. Comparing ex­
trapolated figures with actual performance 
figures. such a,; by including both in the 
same table. i,.; particularly inapproprintt>. 

3. Comparath·e perf(mnanee figurPS should be 
ba,;ed on comparable len .. ls of lUning. For 
example. resulrs tunPd with m<mths of effort 

on one svstem should not be dirt'cth· com-. . 
pared with re,;ults on a well-known vector 
system where no attempt has been made to 
even fullY vectorize the code. 

4. Direct comparisons of run tinws are pre­
ferred to comparisons of megaflops rates or 
the like. \\-henever po,.;sible. timings ~hould 
bt> tme elapsed time-of-day measurements 
(this might not bP possible in some .. pro­
duction'' en..-ironments). 

::>. ~legaflops figures should not be presented 
for any comparative purpo,.;e unless they are 
computed from consi,.;tent flop count~. pref­
erably flop counts ba,.;eo on efficient imple­
mentations of the best practical serial algo­
rithms. One intent here is to discoura!!e the 
usaf!e of numerically ind'ticient algorithms. 
which may exhibit a11ificially high perfor­
mance rates on a particular parallel s\·stem. 

6. If speedup figures are presented. the sin!!le 
processor rate should be based on a rt'ason­
ably well tuned program without multi­
processing constructs. If the problem ,;ize is 
scaled up with the number of processors. 
then the results should be clearh· cited a,; 
"',;caled spet>dup' · figures. and detail,; 
should be givPn explaining how the problem 
was scaled up in size. 

..., .\ny ancillan· information that would ,;itrnifi­
cantly affPct the interpretation of the perfor­
mance results should be fullv disclosed. For 
example. if the results are for 32-bit ratlwr 
than for 6-t-bit data. or if assembh--le..-<>1 
coding was employed. or if only onP proces­
sor of a conventional system is !wing u,;ed 
for cornpari,;oii. these facts should lw 
dearlv .'·ilated. 

8. Due to the natural prominenct' of ah,;tract,;. 
figurt's. and tablt-'s. srwcial care :'!wuld lw 
takt>n to <-'Iblll"i' that theiit' items are not mis­
leadinp:. en·n if presented alorw. For exam­
ple. if significant pt-'rformancP claims are 
made in tht> abstraet of the r~<IJWr. any im­
portant qualifying information should ab<J 
he included iu the abstract. 

9. \\"he never pos.~il>le. the folln" in!! should l)t~ 

included in the tPxt of the paper: the hard­
wan•. ,.;oftware. and sv,.;tPm t'nvirnnment: 
tlw langua;;:P. altrorit hm,.;. tlw datat YP""· 
and prnp:ramminf! tPchnique,.; employPd: 
t!w natUrP and PXtellt of tuning fWrfnrnwd: 
and tlw lm,.;iii for timings. flop I"Ot!Ilt,;. and 
speedup lif!ll!"I-'S. Tlw goal lwn• i,~ to t'llHhle 
other sci1·nti,.;r,; to accurately reprodncc> tlw 
1wrformnuce re,.;ults pre:-;emed in tlw p<qwr. 



1 am not presentillf! thPse f!lliddinPs as manda­
tory. inflt'xib1e requirements. Clearly in a fast­
mminf! field such as our:'.. it would be unwi"e to do 
so. l-lowen•r. if a paper or pre"entation doe;-; 
pre,.,t->nt re;-;ults that "if!nificantly deYiate from 
tht'se f!Uidt->lines. I :'.Uf!f!t'St that the author has an 
o!Jlif!ation to dearly state and justify these deYia­
tions. 

10 CONCLUSIONS 

The examplPs 1 han' ciwd aiJfJ\·e art> somewhat 
isolated in the litPrature. and I see no eYidence 
dwt tlw prol>lt•m of inflated JWrformance report­
in!! is out of control. Howt·\·er. clearlY tho"e of us 

' . 
in tht- parallel supercomputini! field would be wi"e 
to aJTPst any tP mlency in this direction before "·e 
are fan'd with a "if!nilicant credibility problem. _.\,; 
wa,.; lllel1tioned ahoYe. ~cienti;;ts in man\· other 
di"ci pline,.; lun e found it nece,.,sary to adopt rif!or­
ou,.; standards for reportinf! experinwntal result,;. 
and ours ,-,)wuld ),e no exception. It is my hop<> 
that thi,.; article. with the propost>d guidelines in 
.SPction 9. will ~timulate a\\·an•nes" and dialogup 

on the Hlbject and \Yill eYentually lead to consen­
:ous and formal :otandanls in the field. 
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