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ABSTRACT

In a previous humorous note, | outlined 12 ways in which performance figures for
scientific supercomputers can be distorted. In this paper, the problem of potentially
misleading performance reporting is discussed in detail. Included are some examples
that have appeared in recent published scientific papers. This paper also includes some
proposed guidelines for reporting performance, the adoption of which would raise the
level of professionalism and reduce the level of confusion in the field of supercomput-

ing.

1 INTRODUCTION

Many readers mayv have read my previous article
“Twelve Wavs to Fool the Masses When Giving
Performance Reports on Parallel Computers™ [1}

The attention that this anicle received frankly has
been surprising [21. Evidendy it has struck a re-
sponsive chord among many professionals in the
field who share myv concerns. The following is a
very brief summary of the “Twelve Wavs™:

1. Quote only 32-bit performance results. not
O4-bit results. and compare vour 32-bit
results with others” 64-bit resulis.

Present inner kernel performance figures

I
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the editors of this journal. has chosen o leave anonymous
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this paper. we would welcome letters 1o the editor. but of
course, anonvinity would then be lost
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10.

11.

as the performance of the entire applica-
tion.

Quietly employ assembly code and other
low-level language constructs. and com-
pare vour assemblv-coded results with
others” Fortran or C implementations.
Scale up the problem size with the number
of processors, but do not clearly disclose
this fact.

Quote performance results linearly pro-
jected to a full svstem.

Compare vour results against scalar. un-
optimized. single processor cade on Cravs.
Compare with an old code on an obsolete
svstem.

Base megaflops operation counts on the
parallel implementation instead of on the
best sequential implementation.

Quote performance in terms of processor
utilizadon. parallel speedups. or mega-
flops per dollar (peak megaflops. not sus-
tained).

Mutilate the algorithm used in the parallel
implementation to match the architecture.
In other words. employ algorithms that are
numerically inellicient in order 10 exhibit
artificially high megaflops rates.

Measure parallel run times on a dedicated
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system, but measure conventional run
times in a busy environment.

12. If all else fails, show pretty pictures and
animated videos. and do not talk about
performance.

Some readers of the ““Twelve Wayvs™ have in-
quired whether the article was intended to be a
criticism of parallel supercomputer vendors or of
the technology of parallel computing in general. It
was not. This misunderstanding may have arisen
from the fact that in the copy pubﬁshed in Super-
computing Review, the word “*scientists’” in an in-
troductory paragraph was changed by the editors
to “‘vendors’ for unknown reasons. Instead. 1
wrote the article out of concern that the field of
parallel supercomputing may lose credibility un-
less scientists themselves are more circumspect in
reporting performance and in reviewing the work
of their colleagues.

The ““Twelve Wavs™ article jocularly suggests
deliberate attempts by scientists to mislead their
audiences. Clearly few. if anv. who have emploved
one of these ““techniques’ have done so with such
dark motives. But this sort of material still looks
unprofessional and. if nothing else. has resulted in
a great deal of confusion in the supercomputing

field.

2 THE PRESSURE FOR REPORTING
HIGH PERFORMANCE

Perhaps it was inevitable that this problem would
arise in the field of parallel scientific computing.
For many vears, parallel computers were almost
exclusively the province of theoretical computer
science, In the mid 1980s. commercial parallel
systems became available, but their performance
ratings were a far crv from those of commercially
available vector supercomputers at the time. In
the late 1980s, commercial parallel svstems were
finally marketed with peak performance rates that
equaled and even surpassed those of vector su-
percomputers. In response to these developments.
a number of laboratories acquired these systems.
and their scientists began to implement serious,
full-scale applications. Ine\ itably. one of the first
questions asked of these researchers was “How
does your parallel computer compare with a con-
ventional supercomputer on this application?”
Thus, since 1988 scientists programming the
parallel svstems have been under pressure to ex-

hibit performance rates comparable to or exceed-
ing those of conventional supercomputers. This
pressure has increased in the last vear or two as
these same groups of scientists have been called

upon by their respective managements to justily
the multimillion dollar price tags that serious par-
allel supercomputers now Lommand. In many
cases, aggressive long-range performance goals
have been set by high-level managers that will re-
quire rapid progress for vears to come. Looming
budget cuts at large scientific laboratories hme
added additional pressure. At the very least, re-
searchers feel obligated to highlight experience
with certain applications that are nawrally well
suited for highly parallel svstems and thus achieve
high rates. and to downplay more challenging ap-
plications that for various reasons do not vet
achieve high rates.

When this external pressure is added to the
natural human tendency of scientists to be exu-
berant about their own work. it should come as
litle surprise that some have presented sloppy
and potentially misleading performance material
in papers and conference presentations. And be-
cause the reviewers of these papers are themselves
in many cases caught up in the excitement of this
new technolorr\x it should not be surprising that
thev have tended to be somewhat permissive with
queanonabie aspects of these papers.

Clearly the field of supercomputing in general
and parallel computing in particular does not do
itself a favor by condoning inflated performance
reports. whatever the motives of those involved. In
additon to fundamental issues of ethics and sci-
entific accuracy. there is a real possibility that our
field could suffer a serious loss of credibility if. for
example. certain instances are given prominent
media coverage. At the very least. there is the pos-
sibility that laboratory managers and even appli-
cations scientists will sour on parallel computing.
much in the same way that the expansive claims
and promises of the artificial intelligence field in
the early vears has led to the present widespread
skepticism.

There is another reason to uphold a high level
of forthrightness and clarity in performance re-
porting. In order for highly parallel computers to
achieve widespread acceptance in the scientific
computing marketplace. it is essental that they
deliver superior performance on a broad range of
important scientific and engineering applications.
Thus it is my opinion. shared by others in the
field, that the best way to ensure that future paral-
lel scientific computers will be successful is to pro-
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cation.

vide early feedback to manufacturers regarding
their weaknesses. Once the reasons for less-than-
expected performance rates on certain problems
are identified. then vendors can incorporate the
required improvements, both software and hard-
ware. in the next generation.

In this paper. 1 mll present a number of exam-
ples of questionable performance reporting that
have appeared in published papers during the
past few years. | have resuricted this study only 1o
articles that have recenily appeared in refereed
scientific journals and conference proceedings. |
have not included press releases. marketing litera-
ture. technical reports. verbal presentations. or
papers 1 have read only as a referee.

My only purpose in citing these examples is o
provide concrete instances of the performance is-
sues in question. 1 do not wish for these citations
1o be misconstrued as critdeisms of individual sci-
entists. laboratories. or supercomputer manufac-
turers. This is because | personally do not believe
this pmbiem is restricted 1o a hand{ul of awhors,
luboratories and vendors. but that many of us in
the field must share blame {see Section 8. For this
reason [ have decided 1o take the unusual step of
not including detailed references for these papers
=0 as not 1o cause the authors undue embarrass-
ment. however. 1o
reviewers or others with a legitimate need 1o know.,
I suggest that readers who learn the identities of
theae authors use this information with discretion.

These references are available.

Timings of nCUBE/10 Jower and Cray X-MP 1

sper on a defense appli-

3 PLOTS

Plots can be effective vehicles to present technical
information. particularly in verbal presentations.
Further. plots are in many cases all that high-level
managers (such as those with authority for com-
puter acquisitions) have time to digest. Unforwu-
nately. plots can also mislead an audience. espe-
ciallv if prepared carelessly or if presented without
important qualifving information.

Figure 1 is a reconstruction of the final perfor-
mance plot from a paper describing a defense ap-
plication [3]. The plot compares timings of the
authors’ nCUBE/10 code with timings of a com-
parable code running on a Cray X-MP/416. The
plot appears to indicate an impressive perfor-
mance advantage for the nCUBE system on all
problem sizes except a small region at the far left.

However. examination of the raw data used for
this plot. which are shown in Table 1. gives a dif-
ferent i)it_{llle First of all. except for the largest
problem size {i.e.. object count). all data poinis lie
in the small region at the far left. In other words.
most of the two curves shown are merely the linear
connections of the next-to-last data points with
the final points. Further. the Cray X-MP is actu-
ally faster than the nCUBE for all sizes except for
the largest problem size. My personal view. shared
by several colleagues who have seen this graph. is
that a logarithmic scale would have been more
appropriate for this data.
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Table 1. Raw Data for Plot in Figure 1

Total nCUBE Cray X-MP
Objects Run Time Run Time
20 8:18 0:16
40 9:11 0:26
80 11:59 0:57
160 15:07 2:11
990 21:32 19:00
G600 31:36 3:11:50"

“PDenotes estimate,

Other difficulties are encountered when the text

accompanving this graph and table is read. First .

of all. the authors concede that the runs on the
Cray X-MP/416 (a four-processor svstem) were
made on a single processor, and that ““the Cray
version of the code has not been optimized for the
X-MP.” The authors assert. however. that tuning
“would not be expected to make a substandal dif-
ference.”

Second. for the largest problem listed. the only
one where the Crav fails to outperform the
nCUBE. the Cray X-MP timing is by the authors’
admission an estimate, an extrapolation based on
a smaller run. In the paper, as in Figure 1. the
Cray curve leading out to the last point is dashed.
possibly intending to indicate that this is an esti-
mate. but this feature is not explained in either the
caption or the text. Some readers interpret this

feature as merely an indication of the region where
the nCUBE is faster.

To the authors” credit, they did include the raw
data. and they did clearly acknowledge the fact
that the Cray code is not fully optimized and that
the last Cray timing is extrapolated. Thus it ap-
pears that the authors were entirely professional
in the text of their paper. But the reader is left
to wonder what fraction of the audience that
has seen this plot fullv appreciates the details be-
hind it.

Figure 2 is a reconstruction of another perfor-
mance plot from a paper describing a fluid dy-
namics application [4]. This plot compares tim-
ings of the author’s codes running on a 64K CM-2
with those of comparable codes running on a one-
processor Cray X-MP. The two curves shown for
each computer svstem represent a structured and
an unstructured grid version of the code. respec-
tivelv. As before, the plot appears to indicate a
substantial performance advantage for the CM-2
for all problem sizes and both types of grids.

Once again. careful examination of the text ac-
companying this plot places these results in a dif-
ferent light. First of all. the author admits that his
CM-2 results have been linearly extrapolated to a
64K system from a smaller system. The author
then explains that the Cray version of the unstruc-
tured grid code is “unvectorized.”

An additional difficulty with this plot can be
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parameter (nx = 16, ny = 16, nz = 32)
common /com/ a(nx,ny,nz), gv(nx,ny,nz), t(nx,ny,nz), d(nx,ny,nz),
$ gr(nx,ny,nz), gi(nx,ny,nz)
c
do 120 kz = 1, nz
do 110 jy = 1, ny
do 100 ix = 1, nx
t(ix,jy.kz) = a(ix,jy.kz) / gv(ix,jy,kz)
d(ix,jy,kz) = gr(ix,jy,kz) / gi(ix,jy,kz)
$ / gv (ix,jy,.kz)
100 continue
110 continue
120 continue

FIGURE 3 Original Cray-2 code fragment.

seen by carefully examining the two Crav curves.
In the original. as in Figure 2. these are precisely
straight lines. Needless 10 sav. it is exceedingly
unlikely that a Crav code. scaled over nearly three
orders magnitude in problem size. exhibits pre-
ciselv linear timings. Thus one has to suspect that
the two Cray ~ " are simply linear extrapo-
lations from single data points. In summary. it ap-
pears that of all points on four curves in this plot.
at most two points represent real timings.

The author of this article does not mention the
precision of the data used in the CM-2 version.
but from his description of the CM-2 as having
32-bit floating point hardware. it appears that the
author is comparing a 32-bit CM-2 code with a
64-bit X-MP code.

‘curves

4 TUNING

The previous two examples. in addition to their
potentially misleading usage of graphic informa-
tion. show how performance comparisons are
made based on something less than comparable
tuning efforts. In some cases this mayv happen be-
cause the implementors of parallel codes are ex-
perts on a particular parallel sysiem. but they do
not have a great deal of experience programming
the other system (usually a vector system) against
which the comparison is being made.

For those of us who have significant experience
programming both Crav-class vector multiproces-
sors and the various highly parallel systems, it is
prety clear which are easier to use at this point in
time. both for initially implementing an applica-
tion and for tuning 1o obtain full performance. In-
deed. the (lllll(,ull_\ of programming and tuning

codes on highlyv parallel systems is currently an
obstacle to more widespread usage. It has been
my personal experience that even for applications
that are a challenge 10 vectorize. it is still easier to
program and tune them on a single processor of a
Cray system than on a highly parallel distributed
memory system. This assessment does not sub-
stantially change when one includes the addi-
tional effort required to utilize autotasking (multi-
processing) on Crays.

Thus one has 10 be skeptical of instances in the
literature where an application has been ported
and tuned on a highly parallel computer. usually
requiring months of effort. and vet the corre-
sponding Cray code exhibits poor performance.
tvpical of a code that is not even vectorized. much
less parallelized. One example of a performance
comparison of this sort is shown in Paper C [5]. In
this paper. the performance of a code fragment is
listed as 18 megaflops on a Cray-2. but the trans-
lated code is claimed to run at 741 megaflops on
the CM-2. First of all. one can question whether
this is a {air comparison. because the Cray-2 per-
formance was for a 16 X 16 X 32 problem.
whereas the CM-2 performance was for a 64 X
64 X 64 problem. Also. as in the previous exam-
ple. it is clear that the author is comparing a 32-
bit code on the CM-2 with a 64-bit code on the
Cray-2. Further. only one processor of the four-
processor Crav-2 is being utilized.

The tuning problem in this paper is evident
when one studies the Cray-2 Fortran code frag-
ment that is the basis of this comparison. This
code fragment (with minor changes) is shown in
Fi"ure 3. The performance of this code on the
Crav-2 at NASA Ames is not as low as the author
of this article reported—evidenty the author’s
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do 1001 =1, mn
t1(1) = a1{i) / gvi(d)

100 continue

parameter (rx = 16, ny = 16, nz = 32, nn = nx * ny * nz)
common /com/ al{nn), gvi(an), ti(nn), di(an), gri(an), git(an)

di1(i) = gri(i) / (gi1(i) * gvi(i))

FIGURE 4 Tuned Cray-2 code fragment.

timing was based on an earlier version of the Cray-
2 compiler. But it is not hard to see that without
special compiler trickery, the performance of this
code will be quite poor. because the inner loop
vector length is only 16.

Figure 4 contains an equivalent fragment of
code, but with the three dimensions of the various
arrays collapsed to a single dimension. This tuned
code runs on the NASA Ames Cray-2 at 160
megaflops. It is impossible to know how fast this
tuned code would have run when the author wrote
his article, but it is certain that it would have run
much faster than 18 megaflops. It is regrettable
that such material appeared in a published con-
ference proceedings. Fortunately, however, the
above-mentioned code fragment and perfor-
mance comparison was omitted when the paper
was subsequently republished as a journal article.

Another apparent example of this tyvpe of po-
tentially misleading material can be seen in Paper
D [6]. This paper compares the performance of a
physics application running on several systems,
including a 16K CM-2 and a Cray X-MP/14. A
substantial effort was made to tune the CM-2
code, including calls to low-level PARIS routines.
The resuliing CM-2 implementation runs at 126
megaflops, mush faster than the 3.1 megaflops
achieved on the Cray. The author explains that
the reason for the poor performance on the Cray
X-MP is that two key phases of this calculation
*“do not vectorize.”

However, the reader is struck by the fact that
both the Cray and the CM-2 can be thought of as
SIMD processors. A code that has been imple-
mented efficiently on a CM-2 should be directly
translatable to an efficient vectorizable code on
the Cray. Lubeck et al. [7] provides an excellent
demonstration of this principle, where three appli-
cations that had been programmed and tuned on
the CM-2 were ported back to the Cray Y-MP with
high performance.

Thus the reader of Paper D [6] is left to wonder
why, if the CM-2 code for this application runs so

well, did the author not trv 1o adapt the CM-2
code to the X-MP? Because one of the author’s
CM-2 codes was written entirely in CM Fortran
{t.e., Fortran-90 with directives). whyv did the au-
thor not try simply running this same code on the
X-MP? After all. the Cray Fortran compiler now
accepts many of the Fortran-90 array constructs.

5 PROJECTIONS AND EXTRAPOLATIONS

The practice of citing estimated and extrapolated
performance results is, unfortunately. fairly wide-
spread in the field. This may in part be an unin-
tended consequence of limited research budgets
at many research labs, where scientists often have
to settle for scaled-down versions of highly parallel
systems. As a result, researchers frequently cite
performance results that are merely linear projec-
tions frorn much smaller systems. often without
the slightest justification.

The practice of linearly extrapolating one’s per-
formance results to a larger system is doubly per-
plexing because the question of whether various
computer designs and applications will ““scale’ is
in fact an important topic of current research. It
seems that many scientists using parallel com-
puters are willing to assume as an established fact
one of the most fundamental questions in the
field!

We have already seen one instance of citing ex-
trapolated results. Another example is cited in Pa-
per G [8], where the authors compare their de-
fense application running on an nCUBE-2 with
comparable codes running on a Cray Y-MP and a
CM-2. Three tables of timings are included in this
paper. Fortunately, all of the nCUBE-2 timings in
the three tables are real timings. But out of a total
of 33 figures listed for the Y-MP and CM-2, more
than half (17) are merely projections or estimates.
There does not appear to be any attempt to mis-
lead the reader, because the authors indicate
which figures in each table are projections by



means of asterisks. Nonetheless, one is left to
wonder about how reliable these comparisons are,
and whether they will always be quoted with the
appropriate disclaimer.

In most cases authors clearly disclose estimates
and projections, but not always. In Paper E [9],
the author gives performance results for his fluid
dynamics code in a table at the end of the article.
Timings are included for an 8K CM-2, a 16K CM-
2, and a 64K CM-2. Curiously, the timings for the
64K system have parentheses around them, but
nowhere in the text does the author siate the
meaning of these parentheses. However. by noting
that this column of numbers is identical to the
16K numbers, shifted down by one. one has to
conclude that the 64K numbers are merely linear
projections from the 16K results.

Some authors have taken the practice of ciling
projections one step further. In Paper F [10] the
author states in his abstract that his code runs “*at
the speed of a single processor of a Crav-2 on 1/4
of a CM-2.”” Some 13 pages later, the author cites
a timing on a Convex C210 and then states “‘ex-
perience indicates that for a wide range of prob-
lems, a C210 is about 1/4 the speed of a single
processor Crav-2."" No further mention is made of
the Crav-2.

It is well known that for both the Convex C210
and the Cray-2, timings and megaflops rates can
vary dramatically depending on the level of vec-
torization. inner loop vector lengths, compute-to-
memory reference ratios, compiler features. and
other factors. Thus any blanket performance ratio
such as 1/4 is rather dubious. But the most trou-
bling item here is the fact that the author, in the
abstract of his paper. implies a performance com-
parison with a Cray-2. even though he evidenty
has never run his code on a Cray-2.

6 COUNTING FLOPS

A common practice in the field of scientific com-
puting is to cite performance rates in terms of
millions of floating-point operations per second
(megaflops). For various reasons, some in the field
have suggested that the practice of citing
megaflops rates be abandoned. However, I am of
the opinion that although direct timing compari-
sons are always preferred. megaflops rates may be
cited if calculated and reported consistently.
Megaflops figures may of course be misleading,
particularly on parallel computers. This confusion
derives from the method used to determine the
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number of floating-point operations ({lops) per-
formed. Many authors count the number of flops
actually performed in their parallel implementa-
tions, a number usually obtained by analyzing the
parallel source code. Megaflops figures computed
in this manner mav be used, for example, to indi-
cate the extent to which the peak processing
power of the computer system is being utilized.

However, parallel implementations almost al-
ways perform significantly more flops than serial
implementations. For example, some calculations
are merely repeated in each processor. Using the
actual number of flops performed on a parallel
computer thus results in megaflops rates that are
inflated when compared to rates obtained from
corresponding serial or vector computer imple-
mentations.

Another difficulty with basing megaflops rates
on the actual parallel flop count is that this prac-
tice tacitly encourages scientists to employ numer-
ically inefficient algorithms in their applications,
algorithms often chosen mainly for the conven-
ience of the particular architecture being used. It
is easy to understand how such choices can be
made, because it is widely accepted in the field
that algorithmic changes are often necessary when
porting a code to a parallel computer. But when
this practice is carried too far. both the audience
and the scientist may be misled.

Because of the potential for misleading com-
parisons of megaflops figures. it is clear that a sin-
gle standard flop count should be used when com-
paring rates for a given application. In my view,
the most sensible flop count for this purpose is the
minimal flop count—the value based on an effi-
cient implementation of the best practical serial
algorithms. In this way, one is free to use an im-
plementation with a higher flop count on a partic-
ular architecture if desired, but no extra credit is
given for these extra operations when megaflops
rates are computed. This standard also acts as a
deterrent to the usage of numerically inefficient
algorithms.

I have seen definite instances of inflated flop
counts in papers I have read and in technical pre-
sentations | have attended, but it has been diffi-
cult to find clear-cut examples in published litera-
ture that are understandable to a general
audience. Rather than cite examples of this tvpe, ]
wish to cite instead some legitimate published
results that emphasize the distinction between
“parallel’”” megaflops rates (i.e., megaflops rates
based on the actual number of flops performed on
the parallel system) and what I will term ““BPSA
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Table 2. Parallel Megaflops Rates Versus BPSA Megaflops Rates

Solver Floating-Point  CPU Time  Parallel BPsSA
Algorithm Operations (Sec) Megaflops  Megaflops
Jacobi 3.82 x 10" 2.124 1.800 1.00
Gauss-Seidel 1.21 x 102 885 1.365 2.41
Least Squares  2.39 x 10! 185 1.400 11.51
Multigrid 2.13 x 10° 6.7 318 318.00

megaflops™ (i.e., megaflops rates based on the
flop count of the “*best practical serial algo-
rithms’’).

The first paper contains an interesting compar-
ison of several different numerical scheme‘a that
can be used to solve a convection-diffusion prob-
lem [11]. Based on the authors’ data. I have com-
puted both parallel megaflops rates and BPSA
megaflops rates for four of these schemes. These
figures are shown in Table 2. The BPSA mega-
flops rates are based on the flop count of the
multigrid algorithm.

When one looks at the column of parallel
megaflops figures. it appears that the Jacobi
scheme is the fastest, with a performance rate of
1,800 megaflops. The other schemes are slower.
and the multigrid scheme. at only 318 megaflops.
is the slowest of all. However, when one examines
the BPSA megaflops column, then a very different
picture emerges: the Jacobi scheme is the worst.
and the muluofnd scheme is the best. Thus al-
though the parallel megaflops figures may provide
some useful information, it is clear that the BPSA
megaflops figures are more meaningful when
comparing computational performance.

Gustafson et al. [12] emphasize this same
point, where the authors of the Slalom benchmark
describe Bjorstad and Boman’s discovery. These
two scientists found that a preconditioned conju-
gate gradient method could be used to produce
the required solution of the Slalom benchmark in
much fewer flops than the scheme previously
used, albeit at a lower megaflops rate on many
systems.

Admittedly, it may be a challenge to determine
the minimal (i.e., BPSA) flop count for a given
problem. However, at the least a scientist should
be expected to analvze the source code of an effi-
cient implementation on a serial or vector com-
puter. Those with access to a NEC 5X system or to
a Uray X-MP/Y-MP system can take advantage of
the hardware performance monitors present on
these computers to obtain accurate flop counts,
However, one must still be careful to ensure that

the code being measured by the hardware perfor-
mance monitor employs the best available algo-
rithms and is well optimized.

Along this line. perhaps those of us performing
resear(:h in the area of numerical linear algebra
should at some point reconsider the usage of “clas-
sical formulas for flop counts in favor of flop
counts based on implementations that employ
Strassen’s algorithms [13]. Strassen’s algorithm is
a scheme to multiply matrices that requires fewer
floating-point operations than the conventional
scheme. It has been demonstrated that Strassen’s
algorithm is now practical and in fact produces
real speedups for matrices with dimensions larger
than about 128 [13]. Further. Strassen’s algo-
rithm can be emploved to accelerate a variety of
linear algebra calculations [14. 15] by substitut-
ing a Strassen-based matrix muliiply routine for
the conventional matrix muliply routine in a
LAPACK [16] implementation. If a Strassen-
based flop count were adopted for computing the
megaflops rate in the solution of a 16,000 X
16.000 linear svstem. the resuling rate would
have to be cut by roughly one third from the usual
reckoning.

In this vein. I must confess to citing potentially
misleading performance figures [14]. These arti-
cles m(:lude One processor (;I'd} -2 and Y-MP per-
formance rates for some Strassen matrix routines,
Following established custom. my coauthors and 1
computed megaflops rates based on the classical
flop count for matrix mubliiplication (2n3). Be-
cause the Strassen routines can produce the ma-
trix product in fewer flops. it could be argued that
these megaflops figures are inflated.

7 OTHER ISSUES

Many authors report ““speedup” figures for their
parallel applications. Such figures indicate the de-
gree to which the given applicaton “scales” on a
particular architecture, However. here also there
is potential for the audience to be misled. espe-



cially when speedup figures are based on inflated
single processor tmings.

For example. users of the Intel iPSC and other
message-passing systems often base speedup fig-
ures on a single node timing of the muliuple node
version of the program (for example. see Paper H
[17}). When running on a single node, the multi-
ple node program needlessly svnchmnizeq with it-
xelf and passes messages 1o itself. These “mes-
sages” are handled quite rapidly. because the
operating svstem recognizes that these are local
transmissions. Nonetheless, a significant amount
of overhead is stll required. and it is not unusual
for the single node run time to increase by 20%
with the addition of message-passing code. There
is a similar potential for distortion when citing
speedup figures for Crav multiprocessor vector
systems. Clearly speedup figures should be based
instead on the timing of a well-optimized. purely
single processor program {i.e.. a program without
unnecessary multiprocessor consuructs ).

Some authors present “scaled speedup’” fig-
ures. first introduced by Gustafson et al. [181.
where the problem size is scaled up with the num-
her of processors. Such ligures may be informa-
tive. butitis essential that authors who quote such
figures clearly disclose the fact that they have
scaled their problem size to match the processor
count. It is also important that authors provide
details of exactly how this scaling was done.

Another aspect of performance reporting that
needs to be carefully analyzed is how the authors
measure run time. Most of the scientists 1 have
queried about this issue feel that elapsed wall
clock time is the most reliable measure of run
time. and thatif possible it should be measured in
a dedicated environment. By contrast. CPU dme
figures. such as those {requently quoted by users
of Cray svstems. mayv mask extra elapsed time re-
quired for input and output. Also. it is known thar
on the CM-2, ~-CM Busy Time™™ and ~"CM Elapsed
Time’™ are quite different for some codes. even
with no 170 and no other users sharing the paru-
ton [19. 20},

One final aspect of performance reporting is the
source of untold confusion in the supercomputing
field: are the results for 32-bit or 64-bit floating-
point arithmetic? Because on many systems. 32-
bit computational performance rates are nearly
twice as high as 64-bit rates. there is a tempration
for authors 1o quote only 32-bit results, 10 fail 10
disclose that rates are for 32-bit data. and to com-
pare their 32-bit results with others” 64-bit
results. It is clear that 32-bit/64-bit confusion is
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widespread in performance reporting, because we
have already seen several examples.

In my view, quoting 32-bit performance rates is
permissible so long as (1) this data type is clearly
disclosed and (2) a brief statement is included ex-
plaining why this precision is sufficient. Along this
line, it should be kept in mind that with new com-
puter svstems it is now possible 1o attempt much
larger problems than before. As a result, numeri-
cal issues that previously were not significant now
are significant. and some programmers are dis-
covering to their dismayv that higher precision is
necessary to obtain meaningful results.

I suspect that in the majority of cases where the
authors do not clearly state the data wpe. the
results are indeed for 32-bit data. One example of
this is Paper I [211. where in an otherwise excel-
lent 10-page paper. the authors never state
whether their impressive performance rates are for
32-bit or 64-bit caleulations. at least not in any
place where a reader would normally look for such
information. That their results are indeed for 32-
bit data can however be deduced by a careful
reading of their section on memory bandwidth.
where we read that operands are four bytes long.

8 RESPONSIBILITY

It is most likely 1rue that none of the authors cited
above deliberately intended 1o mislead their audi-
ences. After all. in most cases the potentially mis-
leading aspects of these papers were evident only
because of detailed information included in the
text of the paper. It is also likely that in at least
some cases. the authors” performance claims
might be largely upheld if the [ull facts were
known. Nonetheless. the overriding impression of
these examples is that whatever the motives and
actual facts may be. the material as presented
generally gives the appearance of inflating the au-
thorr, p(.xformance results in comparison to other
svstems. Such material eertainly has the potential
to mislead an audience. And. at the very least. one
can argue that these papers represent sloppy sei-
ence.

Who is 1o blame? As | stated in Section 2. it is
not my opinion that the blame lies solely with the
individual authors. Any scientist can write a paper
that is not thoroughly sound—it is the duty of his
or her colleagues and professional organizations
to ensure that questionable aspects of the paper
are corrected before publication or publie presen-
tation. For example. in the above cited examples.
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these results were almost certainly presented to
colleagues at the respective institutions, and in
most cases the manuscripts were read by col-
leagues before the authors submitted them for
outside publication. More significanty. these
manuscripts were in all but fnur cases formally

refereed by fellow professionals in the field. The
four conference papers that were not formally ref-
ereed were informally refereed by committee
members of major conferences, who are generally
prominent scientists in the supercomputer field.
Thus whatever “*blame’” is to be assigned must be
shared rather widely. Furthermore. how can these
authors be accused of violating the “rules’ when
we have never established any standards for re-
porting performance?

9 PROPOSED GUIDELINES

Clearly this field needs a detailed set of guidelines
for reporting supercomputer performance, guide-
lines that are formally adopted and widely dissem-
inated to authors and reviewers. Virtually every
field of science has found it necessary at some
point to establish rigorous standards for the re-
porting of experimental results. and ours should
be no exception. To that end. I propose the fol-
lowing. These guidelines focus on computational
performance. because that is the topic of this pa-
per and apparentlv the most frequent arena of
confusion. However. it is hoped that the spirit of
these guidelines will be followed by researchers
reporting performance in other areas of super-
computers, such as in mass storage and local area
nerworks.

1. If results are presented for a well-known
benchmark. comparative figures should be
truly comparable. and the mles for the par-
ticular benchmark should be followed. For
example. Linpack 1000 results should not
be compared against Linpack 100 results,

2. Only actual performance rates should be
presented. not projections or extrapola-
tions. For example, performance rates
should not be exirapolated o a full system
from a scaled-down svstem. Comparing ex-
trapolated figures with actual performance
figures. such as by including both in the
same table. is particularly inappropriate.

3. Comparative performance figures should be
based on comparable levels of wning. For
example. results tuned with months of effort

on one system should not be directly com-
pared with results on a well-known vector
syvstem where no attempt has heen made to
even fully vectorize the code.

Direct comparisons of run times are pre-
ferred to comparisons of megaflops rates or
the like. Whenever possible. timings should
be true elapsed time-of-day measurements
(this might not be possible in some ““pro-
duction” environments).

Megaflops figures should not be presented
for any comparative purpose unless they are
computed from consistent flop counts. prel-
erably flop counts based on eflicient imple-
mentations of the best practical serial algo-
rithms. One intent here is to discourage the
usage of numerically inefficient algorithms.
which may exhibit artificially high perfor-
mance rates on a particular parallel system.
If speedup figures are presented. the single
processor rate should be based on a reason-
ably well tuned program withour multi-
processing constructs. If the problem size is
scaled up with the number of processors,
then the results should be clearly cited as
“scaled speedup”™ fgures. and details
should be given explaining how the problem
was scaled up in size.

Any ancillarv information that would signiti-
cantly affect the interpretation of the perfor-
mance results should be fully disclosed. For
example. if the results are for 32-bit rather
than for 64-bit data. or if assembly-level
coding was emploved. orif only one proces-
sor of a conventional system is being used
for comparison. these facts should be
clearly stated.

Due to the natural prominence of abstracts.
figures. and tables. special care should be
taken o ensure that these items are not mis-
leading. even if presented alone. For exam-
ple. if signilicant performance claims are
made in the abstract of the paper. any im-
portant qualifving information should also
be included in the abstract.

Whenever possible. the following should be
included in the text of the paper: the hard-
ware. software. and svstem environment:
the language. algorithms. the dataiypes.
and  programming techniques emploved:
the nature and extent of tuning pertormed:
and the basis [or tmings. flop counts. and
speedup figures. The goal here is to enable
other scientists to accurately reproduce the
performance results presented in the paper.



I am not presenting these guidelines as manda-
torv. inflexible requirements. Clearly in a fast-
moving field such as ours. it would be unwise 1o do
so. However. if a paper or presentation does
present results that significanly  deviate from
these guidelines. I suggest that the author has an
obligation o clearly state and justifyv these devia-
tons,

10 CONCLUSIONS

The examples | have cited above are somewhat
isolated in the literature. and | see no evidence
that the problem of inflated performance report-
ing is out of conwrol. However. clearly those of us
in the parallel supercomputing field would be wise
1o arrest any tendency in this direction before we
are faced with a significant credibility problem. As
was mentioned above. scientists in manv other
disciplines have found it necessary o adopt rigor-
ous standards for reporting experimental results.
and ours should be no exception. It is my hope
that this article. with the proposed guidelines in
Section 9. will stimulate awareness and dialogue
on the subject and will eventually lead to consen-
sus and formal standards in the field.
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