
Programming in Vienna Fortran*

BARBARA CHAPMAN1, PIYUSH MEHROTRA2 , AND HANS ZIMA1

1Department of Statistics and Computer Science, University of Vienna, Brunner Strasse 72, A-1210 Vienna, Austria
21CASE, MS 132C, NASA Langley Research Center, Hampton, VA. 23665

ABSTRACT

Exploiting the full performance potential of distributed memory machines requires a
careful distribution of data across the processors. Vienna Fortran is a language exten­
sion of Fortran which provides the user with a wide range of facilities for such mapping
of data structures. In contrast to current programming practice, programs in Vienna
Fortran are written using global data references. Thus, the user has the advantages of a
shared memory programming paradigm while explicitly controlling the data distribu­
tion. In this paper, we present the language features of Vienna Fortran for FoRTRAN 77,
together with examples illustrating the use of these features.© 1992 by John Wiley & Sons, Inc.

1 INTRODUCTION

The continued demand for increased computing
power during the last decade has led to the devel­
opment of computing systems in which a large
number of processors are connected, so that their
execution capabilities may be combined to solve a
single problem.

Several distributed memory processing systems
(such as Intel's hypercube series and the nClJBE)

.. The work described in this paper is being carried out as
part of the research project "Virtual Shared Memory for Multi­
processor Systems with Distributed Memory" funded by the
Austrian Research Foundation (FWF) under the grant number
P7576-TEC and the ESPRIT project "An Automatic Parallel­
ization System for Genesis" funded by the Austrian Ministry
for Science and Research (BMWF). This research was also
supported by the National Aeronautics and Space Administra­
tion under ~ASA contract NAS1-18605 while the authors
were in residence at ICASE, Mail Stop 132C, ~ASA Langley
Research Center. Hampton, VA 23665. The authors assume
all responsibility for the contents of the paper.

Received March 1992

© 1992 by John Wiley & Sons, Inc.

Scientific Programming, Vol. 1, pp. 31-50 (1992)
CCC 1058-9244/92/010031-20$04.00

have come onto the market and are slowly gaining
user acceptance. Other systems are under devel­
opment or have been announced in recent
months. These architectures are relatively inex­
pensive to build, and are potentially scalable to
very large numbers of processors. Hence their
share of the market is likely to increase in the near
future.

The most important single difference between
these and other computer architectures is the fact
that the memory is physically distributed among
the processors; the time required to access a non­
local datum may be an order of magnitude higher
than the time taken to access locally stored data.
This has important consequences for program
performance. In particular, the management of
data, with the twin goals of both spreading the
computational workload and minimizing the de­
lays caused when a processor has to wait for non­
local data, becomes of paramount importance.

A major difficulty with the current generation of
distributed memory computing systems is that
they generally lack programming tools for software
development at a suitably high level. The user is
forced to deal with all aspects of the distribution of
data and work to the processors, and must control

31

32 CHAPMAN, MEHROTRA, AND ZIMA

the program's execution at a very low level. This
results in a programming style which can be lik­
ened to assembly programming on a sequential
machine. It is tedious, time-consuming, and error
prone. This has led to particularly slow software
development cycles and, in consequence, high
costs for software.

Thus much research activity is now concen­
trated on providing suitable programming tools for
these architectures. One focus is on the provision
of appropriate high-level language constructs to
enable users to design programs in much the same
way as they are accustomed to on a sequential
machine. Several proposals (including ours) have
been put forth in recent months for a set of lan­
guage extensions to achieve this [1-5], in particu­
lar (but not only) for Fortran, and current com­
piler research is aimed at implementing them.

Research in compiler technology has so far re­
sulted in the development of a number of proto­
type systems, such as Kali [6], SUPERB [7, 8],
and the MIMDizer [9]. In contrast to the current
programming paradigm, these systems enable
users to write code using global data references, as
on a shared memory machine, but require them to
specify the distribution of the program's data.
This data distribution is then used to guide the
process of restructuring the code into a single pro­
gram multiple data (SPMD) program for execution
on the target distributed memory multiprocessor.
The compiler analyzes the source code, translat­
ing global data references into local and nonlocal
data references based on the distributions speci­
fied by the user. The nonlocal references are satis­
fied by inserting appropriate message-passing
statements in the generated code. Finally, the
communication is optimized where possible, in
particular by combining messages and by sending
data at the earliest possible point in time.

In this paper, we present a machine-indepen­
dent language extension to FoRTR~'> 77, Vienna
Fortran, which allows the user to write programs
for distributed memory multiprocessor systems
using global addresses. The Vienna Fortran lan­
guage extension to Fortran 90 is described in a
separate paper [10]. Since the performance of an
SPMD program is profoundly influenced by the
distribution of its data, most of the extensions
proposed here are geared towards allowing the
user to explicitly control such distribution of data.
Vienna Fortran provides the flexibility and ex­
pressiveness needed to permit the specification of
parallel algorithms and to carry out the complex
task of optimization. Despite this fact, there are
relatively few language extensions. A simple algo-

rithm can be parallelized by the addition of just a
few constructs which distribute the program's
data across the machines.

This paper is organized as follows. In the next
section we describe current programming practice
on distributed memory MIMD architectures by
means of a simple example. Then the program­
ming model assumed by Vienna Fortran is intro­
duced and an overview of the language elements is
provided. This paper does not attempt to give a
systematic introduction to the whole language, but
rather describes some of the most important fea­
tures by way of simple example codes. These form
the body of the subsequent section. Section 5 out­
lines two more complex problems relevant to real
applications, discusses the features of Vienna
Fortran which may be used to implement them.
and briefly discusses some important features of
Fortran programs and how we handle them. Fi­
nally, we conclude with a discussion of related
work and the implementation status of the Vienna
Fortran Compilation System.

2 PROGRAMMING DISTRIBUTED
MEMORY SYSTEMS: THE STATE OF
THE ART

The current generation of distributed memory
multiprocessors is particularly difficult to pro­
gram: the time taken to adapt existing sequential
codes and to develop new applications is prohibi­
tive in comparison to conventional machines, in­
cluding vector supercomputers. Further, the low
level at which programs must be written is the
source of both frequent errors and of particularly
inflexible codes. Consider the brief example de­
scribed below.

The Jacobi iterative procedure may be used to
approximate the solution of a partial differential
equation discretized on a grid. At each step, it
updates the current approximation at a grid point
by computing a weighted average of the values at
the neighboring grid points. An excerpt from a Ja­
cobi relaxation code for execution on a sequential
machine is shown in Figure 1.

When this code is parallelized by hand, the
programmer must distribute the program's work
and data to the processors which will execute it.
One of the common approaches to do so makes
use of the regularity of most numerical computa­
tions. This is the so-called SPMD or data parallel
model of computation. With this method, the data
arrays in the original program are each partitioned

C SEQUENTIAL CODE

REAL UNEW(J:N,J::-l), U(l:N.J:N), F(!:N.!:N)

CALL INIT (C. F, N)

DO 40 J = 2, N-1
DO 40 I= 2, N-1

UNEW(I.J) = 0.25 * (F(I,J) + C(I-1, J) + U(l+l, J) +
& \f(I, J-1) + LT(I, J+l))

40 CONTINUE

FIGURE 1 Sequential Jacobi relaxation code.

and mapped to the processors. This is known as
distributing the arrays. The specification of the
mapping of the elements of the arrays to the set of
processors is called the data distribution of that
program. A processor is then thought of as owning
the data assigned to it; these data elements are
stored in its local memory. Now the work is dis­
tributed according to the data distribution: com­
putations which define the data elements owned
by a processor are performed by it-this is some­
times known as the owner computes paradigm.
The processors then execute essentially the same
code in parallel, each on the data stored locally.

It is, however, unlikely that the code on one
processor will run entirely without requiring data
which is stored on another processor. Accesses to
nonlocal data must be explicitly handled by the
programmer, who has to insert communication
constructs to send and receive data at the appro­
priate positions in the code. This is called message
passing. The details of message passing can be­
come surprisingly complex: buffers must be set
up, and the programmer must take care to send
data as early as possible, and in economical sizes.
Several issues arise which do not have their coun­
terpart in sequential programming. New types of
errors, such as deadlock and livelock, must be
avoided. The programmer must decide when it is
advantageous to replicate computations across
processors, rather than send data. Moreover, for
code which is explicitly parallel, debugging is a
serious problem.

A major characteristic of this style of program­
ming is that the performance of the resulting code
depends to a very large extent on the data distri­
bution selected by the programmer. The data dis­
tribution determines not only where computation
will take place. It is also the main factor in decid­
ing what communication is necessary. The total
cost incurred when nonlocal data is accessed in-

PROGRAMMING IN VIENNA FORTRAN 33

volves not only the actual time taken to send and
receive data, but also the time delay when a pro­
cessor must wait for nonlocal data, or for other
processors to reach a certain position in the code.
Kote that the performance of a program can no
longer be estimated solely by the amount of com­
putation it comprises: extra computation is not
necessarily costly, and the communication delay
inherent in a particular data distribution could be
prohibitive.

The message-passing programming style re­
quires that the communication statements be ex­
plicitly hardcoded into the program. But these
statements are based upon the chosen data distri­
bution, and as a result, the data distribution is
also implicitly hardcoded. It will generally require
a great deal of reprogramming if the user wants to
try out different data distributions.

To illustrate this, we reproduce in Figure 2 the
above section of code, rewritten to run on a set of
P 2 processors using message passing code of the
kind described. We have simplified matters by as­
suming that the processors have been organized
into a two-dimensional array PROC(P,P) and that
the processor array elements may be addressed
for the purpose of exchanging data items: nor-

C PROCESSOR STRUCTURE PROC(P,P) IS ASSUMED

C CODE FOR PROCESSOR (PI,P2)

PARAMETER(P = ... , N = ...)
PARAMETER(LEN= (N+P-1)/P)

C DECLARE LOCAL ARRAYS TOGETHER WITH OVERLAP AREA
C DATA OWNED LOCALLY IS U(I:LEN,I:LEN)
C AND SIMILARLY FOR UNEW AND F

REAL U(O:LEN+l,O:LEN+l), UNEW(l:LEN.J:LEN), F(J:LEN,l:LEN)

CALL LOCALINIT(U.F,LEN)

C SEND DATA TO OTHER PROCESSORS

IF (Pl. GT .I) SEND (U(l,l:LEN)) TO PROC(PJ-J,P2)
IF (Pl. LT .P) SEND (U(LEN,l:LEN)) TO PROC(PI+l,P2)
IF (P2.GT.l) SEND (U(l:LEN,l)) TO PROC(Pl,P2-l)
IF (P2. LT .P) SEND (U(l:LEN,LEN)) TO PROC(Pl,P2+1)

C RECEIVE DATA FROM OTHER PROCESSORS, ASSIGN TO
C OVERLAP AREAS IN ARRAY U

IF (Pl. GT .I) RECEIVE U(O,l:LEN) FROM PROC(Pl-l,P2)
IF (Pl. LT .P) RECEIVE U(LEN+l,l:LEN) FROM PROC(PI+l,P2)
IF (P2. GT .I) RECEIVE U(J:LEN,O) FROM PROC(Pl,P2-l)
IF (P2. LT .P) RECEIVE U(l:LEN,LEN+I) FROM PROC(Pl.P2+1)

C COMPUTE NEW VALUES ON LOCAL DATA
DO 40 I= I. LEN

DO 40 J = I, LEN

UNEW(I,J) = 0.2-5 * (F(I,J) + U(l-1. J) + U(l+l. J) +
& U(l, J-1) + U(I, J+l))

40 CONTINUE

FIGURE 2 Jacobi relaxation code parallelized manu­
ally.

34 CHAPMAN, MEHROTRA, AND ZIMA

mally, a structure of this kind would have to he set
up by the user first, and references would have to
he converted to those provided by the environ­
ment. Further, we assume that the array sizes are
multiples of P. Optimization of communication
has been performed insomuch as messages have
been extracted from the loops and organized into
vectors for sending and receiving. When commun­
ication and computation are overlapped, as could
he done here by carefully arranging the order
in which local data is updated, the resulting code
is considerably longer.

In this version of the Jacobi relaxation, each
processor has been assigned a square suhhlock of
the original arrays. The programmer has declared
local space of the appropriate size for each array
on every processor. Array U has been declared in
such a way that space is reserved not only for the
local array elements, hut also for those which are
used in local computations, but are actually
owned by other processors. This extra space sur­
rounding the local elements is known as the over­
lap area. Values of UNEW on the local boundaries
require elements of C stored nonlocally for their
computation. These must he received, and values
from local boundaries must he sent to the proces­
sors which need them. Care is taken that the pro­
cessors whose segments of U are on the original
grid boundaries do not attempt to read from or
send to nonexistent processors.

The result of this low level style of programming
is that the user spends a great deal of time orga­
nizing the storage and communication of data. In
consequence, the time taken to produce a pro­
gram is considerably longer than for comparable
codes on shared memory machines. Moreover.
once written, the code is hard to modify or im­
prove to run in some other way, even on the same
machine. For example, if instead of dividing into
square suhhlocks, the user wanted to experiment
with blocking in only one dimension, e.g .. blocks
of rows or columns, most of the code dealing with
specification and communication would have to
he modified. We will see below how easily this
code can he parallelized in Vienna Fortran.

3 THE VIENNA FORTRAN LANGUAGE

3.1 The Programming Model

Vienna Fortran assumes that a program will he
executed by a machine with one or more proces­
sors according to the SP~D programming model
as described above. This model requires that each
participating processor execute the same pro-

gram; parallelism is obtained by applying the
computation to different parts of the data domain
simultaneously. The generated code will store the
local parts of arrays and the overlap areas locally
and use message passing, optimized where possi­
ble, to exchange data. It will also map logical pro­
cessor structures declared by the user to the phys­
ical processors which execute the program. These
transformations are, however, transparent to the
Vienna Fortran programmer.

3.2 The Language Features

The Vienna Fortran language extensions provide
the user with the following features:

1. The processors which execute the program
may he explicitly specified and referred to.
It is possible to impose one or more struc­
tures on them.

2. The distributions of arrays can he speci­
fied using annotations. These annotations
may use processor structures introduced by
the user.
(1) Intrinsic functions are provided to spec­
ify the most common distributions.
(2) Distributions may he defined indirectly
via a map array.
(3) Data may he replicated to all or a subset
of processors.
(4) The user may define new distribution
functions.

3. An array may he aligned with another ar­
ray.. providing an implicit distribution.
Alignment functions may also he defined by
the user.

4. The distribution of arrays may he changed
dynamically. However. a clear distinction is
made between arrays which are statically
distributed and those that may change at
runtime.

5. In procedures, dummy array arguments
may inherit the distribution of the actual ar­
gu~ent or he explicitly distributed, possibly
causing some data motion.

6. A forall loop permits explicitly parallel
loops to he written. Intrinsic reduction oper­
ations are provided, and others may he de­
fined by the user. Loop iterations may he
executed on a specified processor where a
particular data object is stored or as deter­
mined by the compiler.

7. Arrays in common blocks may be distrib­
uted.

8. Allocatable arrays may be used in much

the same way as in Fortran 90. Array sec­
tions are permitted as actual arguments to
procedures.

9. Assertions about relationships between ob­
i ects of the program may be inserted into the
program.

Vienna Fortran does not introduce a large
number of new constructs, but those it does have
are supplemented by a number of options and in­
trinsic functions, each of which serves a specific
purpose. They enable the user to exert additional
control over the manner in which data is mapped
or moved, or the code is executed. An overview
of the Vienna Fortran language extensions for
FoRTRA.' 77 is given below.

We use terminology and concepts from the defi­
nition of FoRTRA.' 77 (and, occasionally, Fortran
90) freely throughout.

3.3 The Language Extensions:
An Overview

Vienna Fortran includes all of the following lan­
guage extensions to FoRTRA'> 77. Many of them
will be discussed in the examples below, where
their use is further described in an informal man­
ner. For a complete and precise description of the
language, see Zima et al. [11 J . The reader is also
referred to Chapman et al. [12] for further exam­
ples of the use of these extensions and demonstra­
tion of their expressiveness.

The PROCESSORS Statement

The user may declare and name one or more pro­
cessor array~ by means of the PROCESSORS
statement. The first such array is called the pri­
mary processor array; others are declared using
the kevword RESHAPE. Thev refer to precisely
the sa~e set of processors, providing different
views of it: a correspondence is established be­
tween any two processor arrays by the column­
major ordering of array elements defined in FoR­
TRA'> 77. Expressions for the bounds of processor
arravs may contain symbolic names, whose values
are ~btai~ed from the environment at load time.
Assertions may be used to impose restrictions on
the values that can be assumed bv these variables.
This allows the program to be parameterized by
the number of processors. This statement is op­
tional in each program unit. For example:

PROCESSORS MYP3(NP1, l'\P2, NP3)
& RESHAPE MYP2(NP1, l'\P2*NP3)

PROGRAMMING IN VIENNA FORTRAN 35

Processor References

Processor arrays may be referred to in their en­
tirety by specifying the name only. Array section
notation, as introduced in Fortran 90, is used to
describe subsets of processor arrays; individual
processors may be referenced by the usual array
subscript notation. Dimensions of a processor ar­
ray may be permuted.

Processor lntrinsics

The number of processors on which the program
executes may be accessed by the intrinsic func­
tion $NP. A one-dimensional processor array,
$P(1:$NP), is always implicitly declared and may
be referred to. This is the default primary array if
there is no processor statement in a program. The
index of an executing processor in $P is retumed
by the intrinsic function $MY_PROC.

Distribution Annotations

Distribution annotations may be appended to ar­
ray declarations to specify direct and implicit dis­
tributions of the arrays to processors. Direct distri­
butions consist of the keyword DIST together with
a parenthesized distribution expression, and an
optional TO clause. The TO clause specifies the
set of processors to which the array(s) are distrib­
uted; if it is not present, the primary processor
array is selected by default. A distribution expres­
sion consists of a• list of distribution functions.
There is either one function to describe the distri­
bution of the entire array, which may have more
than one dimension, or ·each function in the list
distributes the corresponding array dimension to a
dimension of the processor array. The elision
symbol ":" is provided to indicate that an array
dimension is not distributed. If there are fewer dis­
tributed dimensions in the data array than there
are in the processor array, the array will be repli­
cated to the remaining processor dimensions.
Both intrinsic functions and user-defined func­
tions may be used to specify the distribution of an
array dimension.

REAL A(L, N, M), B(M, M, M)
& DIST(BLOCK, CYCLIC, BLOCK)

REAL C(1200) DIST(MYOWNFUNC) TO $P

Another way to specify a distribution is to pre­
scribe that the same distribution function be em­
ployed as that which was used to distribute a di­
mension of another array. For example,

36 CHAPMAN, MEHROTRA, AND ZIMA

REAL D(100, 100) DIST(=A.1, =A.3) TO MYP2

will distributeD by BLOCK in both dimensions to
the processor array MYP2. "A.J" refers to dimen­
sion 1 of array A while "=A.J" extracts the distri­
bution of the first dimension of the array A. l\ ote
that both the extents of .the array dimensions be­
ing distributed and the set of processors may differ
from those of A.

Implicit distributions begin with the keyword
ALIGN and require both the target array and a
source array (so called because it is the source of
the distribution). An element of the target array is
distributed to the same processor as the specified
element of the source array, which is determined
by evaluating the expressions in the source array
description for each valid subscript of the target
array. Here, II and JJ are bound variables in the
annotation, and range in value from 1 through 80.

INTEGER IM(80, 80) ALIGN L\1(11, JJ)
& WITH D(JJ, 11+10)

As is the case with direct distributions, the user
may define functions to describe more complex
alignments.

By default, an array which is not explicitly dis­
tributed is replicated to all processors.

Distribution lntrinsics

Direct distributions may be specified by using the
elision symbol, as described above, and the
BLOCK and CYCLIC intrinsic functions. The
BLOCK function distributes an array dimension
to a processor dimension in evenly sized seg­
ments. The CYCLIC (or scatter) distribution maps
elements of a dimension of the data array in a
round-robin fashion to a dimension of the proces­
sor array. If a width is specified, then contiguous
segments of that width are distributed in a round­
robin manner.

The linear expressions which specify an align­
ment may contain, in addition to the usual arith­
metic operators"+","-", and"*", the intrin­
sic functions MAX, MIN, MOD, LBOUND,
UBOUND, and SIZE. The latter three are intrinsic
functions similar to Fortran 90, and refer to the
lower bound, upper bound, and size of an array
(dimension), respectively.

The INDIRECT distribution intrinsic function
enables the specification of a mapping array
which allows each array element to be distributed
individually to a single processor. The mapping

array must be of the same size and shape as the
array being distributed. The values of the given
array are processor numbers (in $P):

INTEGER IAPROCS(1000)

REAL A(1000) DIST(INDIRECT(IAPROCS))

Thus, for example, the value of IAPROCS(60) is
the number of the processor to which A (60) is to
be mapped. Note that IAPROCS must be defined
before it is used to specify the distribution of A,
and that each element of A can be mapped to only
one processor.

Dynamic Distributions and the
DISTRIBUTE Statement

By default, the distribution of an array is static.
Thus it does not change within the scope of the
declaration to which the distribution has been ap­
pended. The keyword DYNAMIC is provided to
declare an array distribution to be dynamic. This
permits the array to be the target of a DISTRIB­
UTE statement. A dynamically distributed array
may optionally be provided with an initial distri­
bution in the manner described above for static
distributions. A range of permissible distributions
may be specified when the array is declared by
giving the keyword RANGE and a set of explicit
distributions. If this does not appear, the array
may take on any permitted distribution with the
appropriate dimensionality during execution of
the program. Finally, the distribution of such an
array may be dynamically connected to the distri­
bution of another dynamically distributed array in
a specified fixed manner. This is expressed by
means of the CONNECT keyword. Thus, if the
latter array is redistributed, then the connected
array will automatically also be redistributed.

REAL F(200, 200) DYNAMIC,

& RANGE((BLOCK, BLOCK),
& (CYCLIC(S), BLOCK))

The distribute statement begins with the key­
word DISTRIBUTE and a list of the arrays which
are to be distributed at runtime. Following the
separator symbol "::", a direct, implicit, or indi­
rect distribution is specified using the same con­
structs as those for specifying static distributions.
It has an optional NOTRANSFER clause; if it ap­
pears, then it specifies that the arrays to which it
applies are to be distributed according to the

specification, but that old data (if there is any) is
not to be transferred. Thus only the access func­
tion is modified. For example:

DISTRIBUTE A, B :: (CYCLIC(10))
& NOTRANSFER(B)

in the above statement, both arrays A and B
are redistributed with the new distribution
CYCLIC (1 0), however for the array B only the ac­
cess function is changed, the old. value; are not
transferred to the new locations. Whenever an ar­
ray is redistributed via a distribute statement, then
any arrays connected to it are also automatically
redistributed to maintain the relationship between
their distributions.

Distribution Queries and The DCASE
Construct

The DCASE construct enables the selection of a
block of statements for execution depending on
the actual distribution of one or more arrays. It is
modeled after the CASE construct of Fortran 90.
The keywords SELECT DCASE are followed by
one or more arrays whose distribution functions
are queried. The individual cases begin with the
keyword CASE together with a distribution ex­
pression for each of the selected arrays. The dis­
tribution expressions consist of one or more distri­
bution functions (which may contain arguments
such as a length), or a "*" which matches any
distribution. The distribution of an array is
matched only if it is matched in all dimensions.
The first case which satisfies the actual distribu­
tions of the selected arrays is chosen and its state­
ments executed. No more than one case mav be
chosen. ·

SELECT DCASE (A, B)

CASE (BLOCK), (BLOCK)

CALL BLOCKSUB(A, B, N, M)

CASE (BLOCK), (CYCLIC)

CASE DEFAULT

END SELECT

The distributions of two different arrays may be
compared in a similar manner within an IF state­
ment.

PROGRAMMING IN VIENNA FORTRAN 37

Allocatable Arrays

An array may be declared with the allocatable at­
tribute by specifying the keyword ALLOCATA­
BLE as in Fortran 90. The declaration defines the
rank of the array, but not the bounds of any di­
mension. The array may be statically or dynami­
cally distributed. The ALLOCATE statement is
provided to allocate an instance of the array with
specified bounds in each dimension. This in­
stance is deallocated by means of the DEALLO­
CATE statement. An allocatable array may not be
accessed unless it is currently allocated and a dis­
tribution has been associated with it. The allocat­
able attribute should be used wherever the size of
an array is not known at compile time; the user is
thus able to distribute the array with its actual
bounds, rather than distributing the largest array
which is permitted. Further, it may remove the
need for work arrays in some situations.

Common Blocks

Common blocks in which no data is explicitly dis­
tributed have the same semantics as in FoRTH~'
77. The common block storage sequence is de­
fined for them. Individual arrays which occur in a
named common block may also be explicitly and
individually distributed just as other arrays are.
However, they may not be dynamically distrib­
uted. Once storage space has been determined for
a named common block, then it may not change
during program execution. Note that, in accor­
dance with Fortran 90, allocatable arrays may not
be in common blocks.

Procedures

Dummy array arguments may be distributed in
the same way as other arrays. If the given distribu­
tion differs from that of the actual argument, then
redistribution will take place. If the actual argu­
ment is dynamically distributed, then it may be
permanently modified in a procedure; if it is stati­
cally distributed, then the original distribution
must be restored on procedure exit. This can al­
ways be enforced by the keyword RESTORE.
While argument transmission is generally call by
reference, there are situations in which arguments
must be copied. The user can suppress this by
specifying a NOCOPY.

Dummy array arguments may also inherit the
distribution of the actual argument: this is speci­
fied by using an "*" as the distribution expres­
siOn:

38 CHAPMAN, MEHROTRA, AND ZIMA

CALL EX(A, B(1:N, 10), N, 3)

SUBROUTINE EX(X, Y, N, J)

REAL X(N, N) DIST(*)

REAL Y(N) DIST(BLOCK) TO MYP2(1 :N, J)

Array sections may be passed as arguments to
subroutines using the syntax of Fortran 90.

Intrinsic Functions

A number of intrinsic functions from Fortran 90
are very useful for writing programs distributed
memory machines. They include the functions
SIZE, LBOUND, UBOUND, COUNT, ANY, and
ALL, which may be used in Vienna Fortran pro­
grams.

The FORALL Loop

The FORALL loop enables the user to assert that
the iterations of a loop are independent and can
be executed in parallel. A precondition for the
correctness of this loop is that a value written in
one iteration is neither read nor written in any
other iteration. There is an implicit synchroniza­
tion at the beginning and end of such a loop. Pri­
vate variables are permitted within forall loops;
they are known only in the forall loop in which
they are declared and each loop iteration has its
own copy. The iterations of the loop may be as­
signed explicitly to processors if the user desires,
or they may be performed by the processor which
owns a specified datum. Only tightly nested forall
loops are permitted.

FORALL I= 1, NP1*NP2*l\P3 ON $P(NOP(I))

INTEGER K

END FORALL

A reduction statement mav be used within
forall loops to perform such operations as global
sums (cf. ADD below); the result is not available
until the end of the loop. The user may also define
reduction functions for operations which are com­
mutative and associative in the mathematical
sense. The intrinsic reduction operators provided
by Vienna Fortran are ADD, MULT, MAX, and
MIN. The following statement results in the values
of the array A being summed and the result being
placed in the variable X.

REDUCE(ADD, X, A(l))

Input/Output

Files read/written by parallel programs may be
stored in a distributed manner or on a single stor­
age device. We provide a separate set ofl/0 oper­
ations to enable individual processor access to
data stored across several devices.

4 WRITING PROGRAMS IN VIENNA
FORTRAN

In this section we introduce many of the language
extensions of Vienna Fortran by showing how they
may be used to produce parallel code for some
simple problems. We discuss several different is­
sues related to programming in general. The ideas
in this section could, in principle, be applied to
other programming languages which use similar
data structures.

4.1 Distributing Data to Processors

In Section 2 above, we saw how a Jacobi relaxa­
tion might be parallelized manually, under certain
simplifying assumptions. We present two versions
of this same code in Vienna Fortran. The first ver­
sion tends to run faster on machines with a high
communication latency, whereas the second ver­
sion will often be preferred for its overall commun­
ication behavior.

All that has been added to the sequential code
to produce the first parallel Jacobi relaxation,
shown in Figure 3, is an annotation which tells the
compiler to distribute the second dimension of all
three arrays by block to all processors: the com­
piler will generate code to place the data accord-

C PARALLEL CODE VERSION 1

REAL UNEW(1:N,1:N), U(1:N,1:N), F(1:N,1:N) DIST (:, BLOCK)

CALL !NIT (t'. F, N)

DO 40 J = 2, 1'<-1
DO 40 I= 2, N-1

UNEW(LJ) = 0.25 * (F(I,J) + U(l-1. J) + U(l+1, J) +
& U(l. J-1) + li(I. J+l))

40 CONTINUE

FIGURE 3 Jacobi relaxation code in Vienna Fortran.

ingly. It is also responsible for inserting the neces­
sary communication.

Note that no reference has been made to the
processors executing the program in this example.
Thus the data is mapped implicitly to a one­
dimensional processor array consisting of the pro­
cessors available at runtime. The elision symbol
was used to ensure that only one dimension of the
arrays is distributed.

An altemative implementation of the Jacobi re­
laxation requires that the arrays be mapped to a
two-dimensional processor grid. It begins with the
following declarations:

C Jacobi relaxation code in Vienna Fortran:
version 2

ASSERT(NP .GE. 4)

PROCESSORS P(NP, NP)

REAL UNEW(1 :N, 1 :N), U(1 :N, 1 :N), F(1 :N, 1 :N)
& DIST(BLOCK, BLOCK)

The rest of the code is the same as shown in
Figure 3. This Vienna Fortran program first de­
clares a square processor array, whose size will be
determined at load time. The programmer re­
quires at least four processors in each dimension
and expresses this by making an appropriate as­
sertion. The array declaration includes an anno­
tation to distribute the arrays by block in both
dimensions: this maps them in square blocks to
the processors. The code has been written so as to
be independent of the number of processors it will
execute on, and does not need to be recompiled
each time it runs on a different configuration.
(But, if it is to be run on a fixed number of proces­
sors every time, then a processor array may natu­
rally be declared with fixed bounds-it is likely to
result in faster code). This is the data distribution
used in the manually parallelized version of the
code and the compiler must distribute the data
and organize the communication to produce the
code similar to that shown in Figure 2.

This version of the code will thus result in com­
piled code which is markedly different from the
first version and may exhibit different behavior at
runtime. When the first version is executed, the
data are distributed in blocks of columns to the
processors. To compute local values of UNEW, a
processor will require a vector of values from the
two neighboring processors. The second version
distributes data in squares. As a result, a proces-

PROGRAMMING IN VIENNA FORTRAN 39

sor will require values from four neighboring pro­
cessors to compute its local values. In general, the
second version requires fewer data items to be
sent and received, however the number of mes­
sages per iteration increases from two to four.
Thus, the actual performance of the codes will be
dependent not only on the message transfer costs
of the underlying hardware but also on the start­
up time per message. It is an easy matter to imple­
ment both versions in Vienna Fortran and com­
pare their performance.

Other Ways to Distribute Arrays

We have already seen the intrinsic functions pro­
vided by Vienna Fortran to specify the most com­
mon kinds of distributions: BLOCK and CYCLIC
map a dimension of an array to a dimension of a
processor array. The following are further exam­
ples of Vienna Fortran array declarations anno­
tated by a distribution:

PROCESSORS P2(NP, MP)

REAL XX(1000, 100)
& DIST(CYCLIC(50), BLOCK)

REAL YY(10000) DIST(BLOCK) TO $P

INTEGER KK(500, 50, 5)
& DIST(BLOCK, CYCLIC,:) TO P2/2, 1/

Arrays XX and KK are distributed to P2, how­
ever, the dimensions have been permuted in the
second case, so that the first dimension of KK is
distributed by block to the second dimension of
P2, and the second dimension of KK is scatter
distributed to the first dimension of P2. YY is dis­
tributed to $P, which has NP*MP elements in this
case. Remember that the standard ordering of ar­
ray elements defined in FORTR~'\" 77 may be ap­
plied to processor arrays, so that there is a well­
defined relationship between the elements of $P
and those of P2.

Implicit distribution, or alignment might be
used, for example, to parallelize the following ker­
nel.

The elements of arrays X and Yare aligned with
the elements of array ZX in the example above: for
each I from 1 through N, X (I) is mapped to the
processor that owns element ZX(I + 10). The$
symbol is merely a placeholder, indicating that
multiple arrays are being aligned. Note that the
scalar variables are replicated.

40 CHAPMAN, MEHROTRA, AND ZIMA

&

&

PARAMETER (N = . . .)

REAL ZX(N + 12) DIST(BLOCK)

REAL X(N), Y(N) ALIGN $(1) WITH

REAL Q, R, T

DO 11 K = 1, N

ZX(I + 10)

X(K) = Q + Y(K)* (R*ZX(K + 10)
+ T* ZX(K + 11))

11 CONTINUE

In practice, alignments can be used whenever
there is a fixed relationship between two arrays
that is of a very specific nature. In other situations
it will generally suffice, or be more appropriate, to
specify that data items are to be distributed "in
the same way." In the above, for example, the
distribution of X and Y could have been expressed
by giving them the same distribution function as
ZX:

REAL X(N), Y(~) DIST(=ZX)

This distributes X and Y by block, with the ap­
propriate block sizes. In this case, X and Y would
be distributed evenly by block across the proces­
sors. Since they have fewer elements than ZX, the
length of their blocks may be slightly smaller than
the length of the blocks of ZX. When they are
aligned with ZX as above, then the lengths of the
first blocks of X and Y will be identical to those of
ZX. However, the last processor will contain fewer
elements of these arrays. For example, if N = 100
and the data is distributed to four processors, then
the second distribution would distribute 25 ele­
ments of X and Y to each processor, whereas the
alignment with ZX would result in the mapping of
28 elements of X and Y to the first three proces­
sors, and only 16 elements to the last of them.
Thus the elements of X and Y are not spread
evenly over the processors. It will depend very
much on the nature of our computation which of
these distributions performs better.

Note that if we choose to distribute X and Yin
the same way as ZX, we could actually distribute
them all by one single declaration in this case. But
that would not be true in a subroutine when, say,
ZX is a dummy argument whose distribution is not
known. Both alignment and the referral to the dis­
tribution of other arrays are important in subrou­
tines where information on the distribution of
dummy arguments is incomplete.

Rather more complex distributions and align­
ments are required in many real applications.
Many of them, such as arbitrary rectilinear block
distributions, are useful to the programmer and
can be efficiently implemented. We will see an ex­
ample of a user-defined distribution function in
Section 5.

4.2 Using Subroutines in Vienna Fortran

We discuss the main issues which arise when sub­
routines* are invoked with distributed arguments
by, again, looking at a very simple example. This
permits us to ignore the computational problem
and concentrate on the situations a programmer
will need to be able to deal with.

It is common practice to write subroutines for
such operations as matrix multiplication, which
are used frequently. In this section we consider
how this is done in Vienna Fortran.

When a distribution annotation is appended to
a declaration in Vienna Fortran, then that distri­
bution has the same scope as the declaration it­
self. In a subroutine, both local arrays and
dummy array arguments may be given an explicit
distribution when they are declared. As we will see
below, this makes the mechanism of appending
distribution annotations to array declarations a
very powerful tool, enabling a controlled redistrib­
ution of data.

One version of a subroutine to multiply matri­
ces in Vienna Fortran is as follows:

SUBROUTINE MATMUL(A, B, C, N, M, L)

REAL A(N, M), B(M, L), C(N, L) DIST(*)

DO 30 I= 1, N

DO 30 J = 1, L

C(l, J) = 0.0

DO 30 K = 1, M

C(l, J) = C(l, J) + A(l, K)*B(K, J)

30 CONTINUE

RETURN

END

In this routine we employ the additional
method for specifying distributions which can be

* We will not examine functions separately; they can be
written similarly.

used for dummy array arguments only. If a "*" is
used to specify the distribution, then the dummy
argument inherits the distribution of the actual ar­
ray. This means that each time the above routine
is called, the actual arguments may be distributed
differently to the processors. lnterprocedural dis­
tribution analysis will often reveal the distribution
functions which reach the subroutine, and the
compiler is then able to generate code based on
that information. This is a flexible way to write
subroutines. But an unfortunate consequence of
using inherited distributions is that the compiler
may not always have precise (or, if it is separately
compiled, any) information on the actual distribu­
tions which may reach the dummy arguments. In
cases where this analysis fails, there is a way of
providing extra help. If the user knows that only a
few distributions will occur, then this information
may be provided in a RANGE clause which is ap­
pended to the distribution. For example, the spec­
ification:

REAL A(N, M) DIST(*),

& RANGE((BLOCK, BLOCK),
& (BLOCK, CYCL/C(100)))

declares that only the distributions (BLOCK,
BLOCK) and (BLOCK, CYCL/C(100)) are al­
lowed for the dummy argument A.

Further, the efficiency of the computation
within the subroutine may depend very heavily on
the actual distributions of the arguments, thus
yielding good performance in some cases and very
poor performance in others.

An alternative implementation might distribute
the dummy array arguments explicitly. We may
write, for example:

SUBROUTINE MATMUL(A, B, C, N, M, L)

REAL A(N, M), C(N, L) DIST(BLOCK,:) TO $P

REAL B(M, L)

DO 30 I= 1, N

Now this subroutine also has three dummy ar­
gument arrays, two of which, A and C, are distrib­
uted by block in the first dimension to all available
processors whereas the third, B, is replicated. The
dummy arguments are explicitly distributed in or­
der to eliminate communication during the com­
putation of the result. However, the actual argu­
ments may not have the same distribution as the

PROGRAMMING IN VIENNA FORTRAN 41

dummy arguments with which they are associ­
ated. When their distributions differ, they must be
redistributed on entry to the subroutine to match
the specified distribution. In general, their original
distribution must also be restored on exit from the
subroutine. Thus the efficient implementation of
the computation within the subroutine has a
price: the redistribution of actual arguments may
sometimes be very costly.

We have seen the apparent difficulty in resolv­
ing two legitimate demands of a general purpose
subroutine: that it handle a variety of different ar­
guments, which may be differently distributed, on
the one hand, and that it handle them efficiently
on the other hand. Redistribution may be costly,
yet we may want to implement the routine in a way
that is handled optimally on the target machine.
Vienna Fortran provides a construct which may
be used in this situation: the DCASE construct,
which is modeled along the lines of the CASE con­
struct in Fortran 90. It enables the selection of a
block of statements according to the actual distri­
bution of one or more arrays.

The third subroutine for matrix multiplication
begins as follows:

45

SUBROUTINE MMUL(A, B, C, N, M, L)

REAL A(N, M), B(M, L), C(N, L) DIST(*)

INTEGER LEN, LSUB

SELECT DCASE (C, A):

CASE(BLOCK, :), (BLOCK, :)

IF (M*L .LE. MAXSIZE) THEN

CALL MATMUL(A, B, C, N, YI, L)

ELSE LEN = L I $NP

DO 45 J = 1, $NP

CALL MATMUL 1
(A, B, C, N, M, L, LEN, J)

CONTINUE

END IF

CASE(BLOCK, BLOCK), (BLOCK,*)

CASE DEFAULT

END SELECT

In the above, the matrix operation is handled in
a specific way depending on how the actual argu-

42 CHAPMAN, MEHROTRA, AND ZIMA

ment arrays are distributed. In this way, we can
insert appropriate code or call further subroutines
as required. The compiler has precise information
on the distribution functions of the selected arrays
for the block of statements within the cases. Only
one of the case alternatives is executed; if none of
the other specifications match, then the default (if
present) is selected. Here, the cases are examined
in the order in which they occur textually. The first
distribution expression is compared with the ac­
tual distribution of C, and the second with that of
A. If C is distributed by block in the first dim en­
sion and not at all in the second, and A likewise,
then the first case is selected and its code exe­
cuted. Otherwise, the distribution of C is then
compared with the next case: if it is distributed by
block in both dimensions, then if A is distributed
by block in the first dimension, this case is se­
lected. An "*" matches any distribution whatso­
ever.

5 APPLICATIONS IN VIENNA FORTRAN

In this section we look at the structure of two fre­
quent kinds of codes that are used to handle a
variety of applications. The first of them shows
how a particular numerical method might be ex­
pressed in Vienna Fortran; the second code shows
how one could approach problems which cannot
be efficiently distributed at compile time. We then
briefly discuss some issues which arise with cer­
tain Fortran constructs and programming styles.

5. 1 ADI Iteration

One well known and effective method for solving
partial differential equations in two or more di­
mensions is known as alternating direction im­
plicit (ADI). 13 It is widely used in computational
fluid dynamics, and other areas of computational
physics. The name ADI derives from the fact that
"implicit" equations, usually tridiagonal systems,
are solved in both the x and y directions at each
step. In terms of data structure access, one step of
the algorithm can be described as follows: an op­
eration (a tridiagonal solve here) is performed in­
dependently on each x-line of the array and the
same operation is then performed, again indepen­
dently, on each y-line of the array.

We present two versions of a step of the ADI
algorithm here. The first version is shown in Fig­
ure 4. Here, the current solution, U, the right
hand sides, F, and the temporary array, V, are all

PARAMETER(NX = 100, NY= 100)

REAL U(NX, NY), F(NX, NY), V(NX, NY) DIST (:, BLOC!\)

CALL RESID(V, U, F, NX, NY)

C Sweep over x-lines
DO 10 J =I, NY

CALL TR!DlAG(V(:, J), NX)
10 CONTINUE

CALL YSWEEP(V,NX,NY)

DO 30 J = I, NY
DO 30 l =I, NX

U(I, J) = V(l, J)
30 CONTINUE

SUBROUTINE YSWEEP (Y,NX,NY)
REAL V(NX,NY) DIST (BLOC!\, :)

C Sweep over y-lines
DO 20 I= I, NX

CALL TRIDIAG(V(I, :), :-.IY)
20 CONTINUE

FIGURE 4 An ADI iteration: Version 1.

distributed by blocks of columns to the implicit
one-dimensional array of processors, $P.

In this version, the sweep over the columns
(representing x-lines) is performed by the first
loop while the sweep over the rows (represent­
ing y-lines) is performed via a call to the routine
YS WEEP. In each case, the subroutine sequential
TRIDIAG (not shown here) is given a right hand
side and overwrites it with the solution of a con­
stant coefficient tridiagonal system.

The array V is redistributed when subroutine
YSWEEP is invoked; thus it is distributed in blocks
of columns when the first loop is executed, and is
distributed in blocks of rows when the second loop
is performed. This makes it possible to use a se­
quential tridiagonal solver in each of these since
neither x-lines in the first loop nor the y-lines in
the second loop cross processor boundaries. Note
that the redistribution of Vis a ''transpose'' of the
array with respect to the set of processors and re­
quires each processor to exchange data with each
of the other processors. The communication here
is contained implicitly in the subroutine call and
the tridiagonal solvers themselves do not require
interprocessor communication.

Since the distribution of a statically distributed
array has to be restored on return to the calling
unit, the array Vis redistributed at subroutine exit
to be distributed by columns. Hence, the assign­
ment of the values of V to U in the last loop does
not cause any communication.

We had presented another version of this algo­
rithm in our earlier paper [12]: we reproduce the

PARAMETER(NX = 100, NY= 100)

REAL U(NX, NY), F(NX, NY) DIST (:, BLOCK)
REAL V(NX, NY) DYNAMIC, RANGE((:, BLOCl1}, (BLOC!\,:)),

& DIST (:, BLOCh}

CALL RESID(V, U, F, NX, NY)

C Sweep over x-lines
DO 10 J =I, NY

CALL TRIDIAG(V(:, J), NX)
10 CONTINUE

DISTRIBUTE V :: (BLOC!\, :)

C Sweep over y-lines
DO 10 I= I, NX

CALL TRIDIAG(V(J, :), NY)
10 CONTINUE

DO 30 J =I, NY
DO 30 I= I, NX

U(I, J) = V(J, J)
30 CONTINUE

FIGURE 5 An ADI iteration: Version 2.

code here in Figure 5. In this second version, we
do not call a subroutine to enforce a redistribution
of V. Instead, V is declared to have a dynamic
distribution, and is initially distributed by block in
the second dimension. The range attribute speci­
fies that the only distributions allowed for V are
blocks of rows or columns. Thus, the situation for
the first loop remains the same, that is, the
columns do not cross processor boundaries and
hence the sequential tridiagonal solver can be em­
ployed. After the first loop we explicitly redis­
tribute the array V to be blocked by rows via a
DISTRIBUTE statement. Now, the second loop
ranges over the rows of V again using the sequen­
tial tridiagonal solver. In this code, the final as­
signment of the array V to the array U will also
induce communication similar to the "transpose"
at the subroutine boundary above since U and V
are distributed in different dimensions. Thus in
the first case we performed the communication
implicitly, by passing the array to a subroutine
where the dummy argument has an explicit distri­
bution, and in the second case we executed a
statement to do the same work.

There are many ways in which the ADI algo­
rithm may be formulated. For example, another
formulation would declare array V with a static
distribution and not redistribute it at all. A parallel
tridiagonal solver would then be called in the sec­
ond loop; the communication would take place
within the solver. Similarly, one could declare a
two-dimensional processor structure and distrib­
ute the arrays by block in both dimensions: a par­
allel tridiagonal solver would then be used for both
the x- and the y-lines.

PROGRAMMING IN VIENNA FORTRAN 43

All versions of this algorithm are equally easy to
express in Vienna Fortran: which of these per­
forms the best may be dependent on various fac­
tors including message startup and transfer times
of the underlying architectures. The point is that it
is a trivial matter to change the distributions, or to
substitute the calls to the sequential tridiagonal
solver used here by calls to a parallel tridiagonal
solver and thus experiment with the different ver­
sions. In marked contrast, such changes will typi­
cally induce weeks of reprogramming in a mes­
sage-passing language.

5.2 Irregular Distributions

There are a number of scientific codes where an
efficient distribution of some of the major data
structures is not possible at compile time. The dis­
tribution of an array may depend, for example, on
the values of another array-or even on its own
values, as in the example given below. Examples
of such codes include, but are not limited to, par­
ticle-in-cell methods, sparse linear algebra, and
PDE solvers using unstructured and/ or adaptive
meshes.

Here, we look at an abstraction of a two-dimen­
sional unstructured mesh Euler solver. The mesh
is represented by triangles and the flow variables
are stored at the vertices of the mesh. We repro­
duce only one part of the 'computation, which
consists of accumulating at each node the contri­
bution from each of the edges incident upon it.
The computation is implemented as a loop over
the edges: the contribution of each edge is sub­
tracted from the value at one node and added to
the value at the other node.

Figure 6 shows one way in which this computa­
tion may be specified in Vienna Fortran. The
mesh is represented by the array EDGE, where
EDGE(/, 1) and EDGE(/, 2) are the node numbers
at the two ends of the /th edge. The arrays X andY
represent the values at each of the NNODE nodes.

Consider the distribution of the data across the
(implicit) one-dimensional array of processors.
Since the mesh must be distributed at runtime, in
order to balance the computational load across
the processors, each of the arrays has to be dy­
namically distributed.

The array X, representing a data value at each
node, is declared to be dynamically distributed
with an initial block distribution. Further below,
this array is explicitly distributed via the indirect
distribution mechanism provided by Vienna For­
tran. The indirection is based on the mapping ar-

44 CHAPMAN, MEHROTRA, AND ZIMA

PARAMETER (NNODE = ...)
PARAMETER (NEDGE = ...)

REAL X(NNODE) DYNAMIC, DIST (BLOCK)
REAL Y(NNODE) DYNAMIC, CONNECT (=X)
INTEGER MAP(NNODE) DIST(BLOCJ,j
REAL EDGE(NEDGE,2) DYNAMIC, DIST (BLOC/\}

CALL PARTITION(MAP, EDGE)

DISTRIBUTE X :: (INDIRECT(MAP)) NOTRANSFER (Y)
DISTRIBUTE EDGE :: (FDJST(MAP, EDGE, NEDGE, NNODE)

FORALL I= I, NEDGE ON OWNER(EDGE(I,I))
INTEGER Nl, N2
REAL DELTAX

Nl =EDGE(!,!)
N2 = EDGE(I,2)

DELTAX = F(X(NI), X(N2))

REDUCE(Ann, Y(NI),- DELTAX)
REDUCE(ADD, Y(N2), DELTAX)

END FORALL

END

DFUNCTION FDIST(MAP, EDGE, N, M)
TARGET A(N,*)
REAL MAP(M) DIST(*)
INTEGER EDGE(N,2) DIST(*)

DO 10 I= 1, N
A(I,:) DIST TO $P(MAP(EDGE(I,l)))

10 CONTINUE
END

FIGURE 6 Code for unstructured mesh.

ray MAP, whose values are dependent on the
structure of the mesh and are defined in the user
specified routine PARTITION (the code for PAR­
TITION has not been shown here). The value of
the Ith element of the array MAP, which must be
declared with the same size as X, is the number of
the processor in $P to which the Ith element of the
array X is distributed.

Y is also declared with the keyword DYNAMIC
and is assigned the same distribution as X; its dis­
tribution is, however, connected with that of X by
the CONNECT attribute. This means that when X
is redistributed, Y is automatically redistributed
with exactly the same distribution function. The
DISTRIBUTE statement for array X specifies the
NOTRANSFER attribute for array Y. This means
that when the two arrays are redistributed, only
the values of X are to be transferred to the new
locations; the old values of Yare not moved.

The array EDGE is also declared with a dy­
namic distribution and is initially distributed by
block. Given the structure of the computation, it
would be useful to distribute EDGE in such a way
that the values at one or both of its nodes are on
the same processor. We have chosen to distribute

the elements of EDGE to the processor which
owns the values for the first of its nodes. Such a
distribution cannot be described by the intrinsic
functions, so it is specified by the user-defined
distribution function (DFUNCTION) FDIST in
Figure 6.

DFUNCTIONs are similar to regular Fortran
functions, but have a special implicit argument
declared with the keyword TARGET. It represents
the array that is being distributed. Here, the distri­
bution function FDIST takes as arguments the ar­
rays MAP and EDGE and the special argument A.
The function body then specifies that the /th row
of the array A is to be distributed to the processor
whose number is given by MAP(EDGE(I, 1)).
Thus, when the distribution function FDIST is ac­
cessed in the distribute statement, the special ar­
gument A is associated with the array being dis­
tributed, i.e., EDGE, so that EDGE is distributed
as required.

The computation is specified using a FORALL
loop, with an ON clause to specify where each
iteration is to be performed. Thus the iterations of
the loop, over the edges in this case, can be exe­
cuted in parallel. In Figure 6, the ON clause speci­
fies that the Ith iteration should be performed on
the processor that owns the (I, 1)th element of
EDGE. Nonlocal values which are read can be
gathered before the execution commences.

The variables N1, N2, and DELTAX declared
within the FORALL loop are private variables.
Thus assignments to these variables do not cause
flow dependencies between iterations of the loop.
For each edge, the X values at the two incident
nodes are read and used to compute the contribu­
tion DELTAX for the edge. This contribution is
then accumulated into the values of Y for the two
nodes.

Since multiple iterations will accumulate Y val­
ues at each node, different iterations write to the
same array elements, which is not permitted
within a FORALL. So that this situation does not
prevent parallel execution, Vienna Fortran pro­
vides special reduction statements which allow ac­
rumnlations across the iterations of a FORALL
loop. The reduction operator ADD is used here to
accumulate the contribution of the edge to the val­
ues at the nodes on which it is incident. The
results cannot be accessed within the FORALL
loop, and hence the accumulations can be easily
performed by the system after all iterations are
completed. This code makes use of the reduction
operator ADD.

The most important feature of this code as far

as its compilation is concerned is that the values of
X and Yare accessed via the edges, hence a level of
indirection is involved. We distributed the arrays
in such a way that the values at the first node of an
edge are always local to a loop iteration, but the
values at the second node may not be. The data
distribution of each of the arrays is determined at
runtime; thus the compiler cannot detect which
references are local and which are not. In such
situations, runtime techniques such as those de­
veloped in other projects [6, 14] are needed to
generate and exploit the communication pattern.

5.3 Some Fortran Issues

There are several important features of Fortran
codes which have not been dealt with in the sec­
tions above. We discuss just a few of them.

Common Blocks

Common blocks are used in FoRTRA:" 77 to enable
different program units to define and reference the
same data without using arguments, and to share
storage units. In Vienna Fortran, the user may re­
tain full FORTRA.'\' 77 semantics for a common
block by not explicitly distributing any of the ob­
jects within it at any place in the program. In this
case, there is conceptually one copy of the com­
mon block, and conventional storage association
holds for it. Note that, in accordance with the
rules of Fortran 90, allocatable arrays may not be
in common blocks. Vienna Fortran also permits
explicit distribution of arrays within named com­
mon blocks. However, their distribution may not
be dynamic. If distributions are given at more than
one place in the program for objects in common
blocks with the same name, then they must be
identical except for the names of the objects. The
common block storage sequence holds for those
parts of a common block which are not explicitly
distributed-we refer to these as replicated sec­
tions below. For example:

PROGRAM MAIN

COMMON /COM1/ X, Y(12), B(12,30), A,
& AZ,AX

C NONE OF THESE ITEMS ARE DECLARED

The above common block does not contain any
data explicitly distributed by the user. As a conse­
quence, these data may be used in common
blocks with the same name in the usual FoRTRA:"

PROGRAMMING IN VIENNA FORTRAN 45

77 manner. In contrast, several objects in the fol­
lowing common block are explicitly distributed:

PROGRAM MAIN

REAL A(12) DIST(BLOCK)

REAL B(4, 5) DIST(CYCLIC, :)

COMMON/COM2/CC,DD,EE,FF,GG,HH,A,B

Arrays A and B are distributed explicitly and
thus determine the distribution of these two stor­
age areas in the common block. The variables in
the common block before them comprise a repli­
cated section of the common block and they will
be stored contiguously. In a subroutine of the
same program, a common block with the same
name may be declared with:

REAL S(4, 3) DIST(*)

REAL T(2, 5, 2) DIST(*)

C THIS IS PERMITTED

COMMON /COM2/ R(6), S(4, 3), T(2, 5, 2)

The array R is not declared separately in the
subprogram; it will be associated with the six vari­
ables of the replicated section above. The arrays S
and T are declared such that they inherit their
distributions from the distributed common ob­
jects, named A and B above, respectively, with
which they are associated by storage.

However, the following declaration of COM2 in
a subroutine is not permitted:

REAL E(6) DIST(BLOCK)

REAL Z(2, 5, 2) DIST(:, CYCLIC, :)

C THIS IS NOT PERMITTED

COMMON /COM2/ E, X(8), Y(4), Z

Here, the replicated section of COM2 has been
associated with an explicitly distributed object.
Secondly, an attempt has been made to associ­
ate both arrays X and Y with the first distributed
common object. Finally, the second distributed
common object of COM2 is redistributed by
the explicit distribution of array Z. All three ma­
nipulations are not permitted.

Equivalence Association

Some restrictions should be placed on the use of
the Fortran EQUIVALENCE statement when data

46 CHAPMAN, MEHROTRA, AND ZIMA

objects are distributed. In Vienna Fortran, we do
not permit an implicit distribution by equivalenc­
ing. Further, no distributed array may be associ­
ated by equivalence with any other distributed ob­
ject. Thus equivalence association is permitted
between replicated data only.

Work Arrays

FORTRA-'\' 77 does not permit dynamic storage allo­
cation. It is thus common programming practice
to declare arrays with a maximum size and use
them with some other, smaller, size during the
computation. Further, a large work array is often
declared, parts of which are then used as individ­
ual arrays with the size and shape required by the
computation. So that arrays may be declared as
they are used, Vienna Fortran includes the con­
cept of allocatable arrays as defined in Fortran
90. An individual array with unknown size may be
declared with the ALLOCATABLE attribute.
Once its bounds are known, it can be allocated
using the ALLOCATE statement. An allocatable
array may also be annotated with distribution ex­
pressions to specify the distribution of the array.
This distribution expression can be completely
evaluated only after the allocation of the array.
For example:

REAL A(:) ALLOCATABLE DIST(BLOCK)

READ(*,*) LEN

ALLOCATE (A(LEN))

Here we have declared A to be a one-dimen­
sional allocatable array. Thus the distribution ex­
pression (BLOCK in this case) will be evaluated
for A with length LEN, and the LEN elements of A
distributed evenly across the processors. Without
allocatable arrays, A would have to be declared
with some maximum size (greater than LEN) and
distributed by BLOCK with respect to this maxi­
mum size. Since only the first LEN elements of A
are to be used, some of the processors might not
have any of the elements of A which are actually
used in the computation. By using allocatable ar­
rays, we make sure that all processors are involved
in the computation.

As noted above, many Fortran applications are
characterized by the fact that runtime data deter­
mines the size of the underlying data objects. In
many applications, the actual number of objects
involved is also unknown at compile time or may

vary during computation. Such situations require
the work array to be distributed dynamically,
since the actual distribution of the objects may be
dependent on runtime data. Such an array is de­
clared with the ALLOCATABLE and DYNAMIC
attributes. One strategy for distributing such a
work array is to distribute each of these objects
independently to all processors, by BLOCK for ex­
ample. Another strategy would be to distribute
each of these objects to a subset of processors.
This kind of distribution must be handled by a
user-defined distribution function in Vienna For­
tran.

6 RELATED WORK

We discuss some of the related research in both
language development for parallel machines and
compilation techniques briefly below.

A number of parallel programming languages
have been proposed, both for use on specific ma­
chines and as general languages supporting some
measure of portability (e.g., OCCAM) [15]. Lan­
guages for coordinating individual threads of a
parallel program, such as LINDA [16] and
STRAND [1 7], have been introduced to enable
functional parallelism. Most manufacturers have
extended sequential languages, such as Fortran
and C, with library routines to manage processes
and communication. In most explicitly parallel
languages, the user performs many of the tasks
which a compiler is expected to handle for a Vi­
enna Fortran program.

The concept of defining processor arrays and
distributing data to them was first introduced in
the programming language BLAZE [18] in the
context of shared memory systems with nonuni­
form access times. This research was continued in
the Kali programming language [19] for distrib­
uted memory machines, which requires that the
user specify data distributions in much the same
way that Vienna Fortran does. It permits both
standard and user-defined distributions; a forall
statement allows explicit user specification of par­
allel loops. The design of Kali has greatly influ­
enced the development of Vienna Fortran.

Other languages have taken a similar ap­
proach: the language DINO [20, 21], for example,
requires the user to specify a distribution of data
to an environment, several of which may be
mapped to one processor. The programmer does
not specify communication explicitly, but must
mark nonlocal accesses. In Booster [22, 23], data

distributions are specified separately from the al­
gorithm in an annotation module; a distinction is
made between work and data partitions.

More recently, the Yale Extensions that are
currently being developed specify the distribution
of arrays in three stages: alignment, partition, and
a physical map [1]. Because all these stages are
modeled as bijective functions between index do­
mains, data replication is not possible. By restrict­
ing the scope of layout directives to phases, a
block structure is imposed on Fortran 90.

The programming language Fortran D [4] , un­
der development at Rice University, proposes a
Fortran language extension in which the program­
mer specifies the distribution of data by aligning
each array to a virtual array, known as a decom­
position, and then specifying a distribution of the
decomposition to a virtual machine. These are ex­
ecutable statements, and array distributions are
dynamic only. While the general use of alignment
enables simple specification of some of the rela­
tionships between items of program data, we be­
lieve that it is often simpler and more natural to
specify a direct mapping. We further believe that
many problems will require more complete control
over the way in which data elements are mapped
to processors at runtime. Fortran 90D [24], pro­
posed by researchers at Syracuse University, is
based upon CM Fortran [25].

Digital Equipment Corporation has proposed
language extensions2 for data distribution confor­
mant with both FORTRA'\ 77 and Fortran 90.
These include directives for statically aligning
data with decompositions. They are specified
when the array is declared. The user may explic­
itly distribute dummy array arguments; if the dis­
tribution differs from that of the actual argument,
redistribution occurs. The original distribution is
restored at subroutine exit. It is assumed that the
compiler will implement a default distribution for
those arrays which are not explicitly distributed by
the user. A forall statement is provided.

Cray Research Inc. has announced a set of lan­
guage extensions to Cray Fortran (c£77) [3] which
enable the user to specify the distribution of data
and work. They provide intrinsics for data distri­
bution and permit redistribution at subroutine
bounds. Further, they permit the user to structure
the executing processors by giving them a shape
and weighting the dimensions. Several methods
for distributing iterations of loops are provided.

The Cray programming model assumes that
initial execution is sequential and the user speci­
fies the start and end of parallel execution explic-

PROGRAMMING IN VIENNA FORTRAN 47

itly. Many of the features of shared memory paral­
.lel languages have been retained: these include
critical sections, events, and locks. New instruc­
tions for node 110 are provided. In addition, there
are a number of intrinsic functions to access parts
of arrays local to a processor, and reduction and
parallel prefix operations are included.

The implementation of Vienna Fortran and
similar languages requires a particularly sophisti­
cated compilation system, which not only per­
forms standard program analysis but also, in
particular, analyzes the program's data depen­
dences [26]. In general, a number of code trans­
formations must be performed if the target code is
to be efficient. The compiler must, in particular,
insert all messages-optimizing their size and
their position wherever possible.

The compilation system SUPERB (University of
Vienna) [8] takes, in addition to a sequential For­
tran program, a specification of the desired data
distribution and converts the code to an equiva­
lent program to run on a distributed memory ma­
chine, inserting the communication required and
optimizing it where possible. The user is able to
specify arbitrary block distributions. It can handle
much of the functionality of Vienna Fortran with
respect to static arrays.

The Kali compiler [6] was the first system to
support both regular and irregular computations,
using an inspector/ executor strategy to handle in­
directly distributed data. It produces code which
is independent of the number of processors.

The MIMDizer [9] and ASPAR [27] (within the
Express system) are two commercial systems
which support the task of generating parallel code.
The MIMDizer incorporates a good deal of pro­
gram analysis, and permits the user to interac­
tively select block and cyclic distributions for array
dimensions. ASPAR performs relatively little anal­
ysis, and instead employs pattern-matching tech­
niques to detect common stencils in the code,
from which communications are generated.

Pandore [28] takes a C program annotated
with a user-declared virtual machine and data
distributions to produce code containing explicit
communication. Compilers for several functional
languages annotated with data distributions (ld
Nouveau [29], Crystal [30]) have also been devel­
oped which are targeted to distributed memory
machines.

Others [31-33] compile languages based on
SIMD semantics. These attempt to minimize the
interprocessor synchronizations inherent in SIMD
execution. The AL compiler [34], targeted to one-

48 CHAPMAN, MEHROTRA, AND ZIMA

dimensional systolic arrays, distributes only one
dimension of the arrays. Based on the one-dimen­
sional distribution, this compiler allocates the iter­
ations to the cells of the systolic array in a way that
minimizes the intercell communications.

The P ARTI primitives, a set of runtime library
routines have been developed to handle irregular
computations [14, 35 J. These primitives have
been integrated into the Vienna Fortran Compila­
tion System and are also being implemented in the
context of the Fortran D Programming environ­
ment being developed at Rice University. Similar
strategies to preprocess DO loops at runtime to
extract the communication pattem have also been
developed within the context of the Kali language
[6, 36 J. Explicit runtime generation of messages is
also performed by other researchers [29, 30, 32];
however, these do not save the extracted com­
munication pattem to avoid recalculation.

71MPLEMENTATION STATUS

The Vienna Fortran Compilation System is cur­
rently being developed at the University of Vienna.
It is based upon previous work performed by
several groups, but, in particular, upon the ex­
perience gained with the 2arallelization system
SUPERB [8 J. It currently generates code for the
Intel iPSC/860, the GENESIS architecture, and
SUPRENUM.

The implementation of a substantial subset of
Vienna Fortran has already been completed. This
includes:

1. Static array distributions
2. Arbitrary rectilinear block distributions
3. Inherited distributions for dummy array ar­

guments
4. F orall loops

Special consideration has been given to opti­
mizing the generated code. In particular, the fol­
lowing analysis and optimization methods have
been implemented:

1. lnterprocedural communication analysis
2. Communication optimization: matching ac­

cess pattems to aggregate communication
routines, elimination of redundant com­
munication, and fusion of communication
statements

3. lnterprocedural dynamic distribution anal­
ysis

4. lnterprocedural distribution propagation

5. Procedure cloning
6. Optimization of parallel loop scheduling
7. Optimization of irregular access pattems,

based on the PART! routines [151

The current compilation system is a full imple­
mentation of FoRTRA'\ 77. Among other things, it
permits the user to distribute work arrays, sections
of which may be individually distributed; it also
handles equivalencing. It performs extensive data
dependence analysis and interprocedural analysis
to determine the correctness of all transformations
applied to the program code.

Implementation of further features of Vienna
Fortran, in particular the dynamic distributions, is
under way. There is still an amount of research to
be done in this area, including methods for the
efficient handling of user-defined distribution and
alignment functions.

8 CONCLUSIONS

In view of the increasing importance of distributed
memory parallel computing systems, it is vital that
the task of writing new programs and converting
existing (sequential) code to these machines be
greatly simplified. An approach which may sub­
stantially reduce the cost of developing codes is to
provide a set of language extensions for existing
sequential languages (in particular, Fortran and
C) that are not bound to any specific existing sys­
tem but can be used across a wide range of archi­
tectures. These extensions should be as simple as
possible, but they should also be broad enough to
permit the expression of a wide variety of algo­
rithms at a high level. In particular, since the data
distribution has a critical impact on the perfor­
mance of the program at runtime, tight program­
mer control of the mapping of data to the system's
processors must be possible.

We believe that Vienna Fortran is a significant
step on the path towards a standard in this area.

The authors would like to thank Peter Brezany, An­
dreas Schwald, Mark Furtney, Irene Qualters, Joel
Saltz, John Van Rosendale, and the Fortran D group at
Rice University for their helpful comments and discus­
sions.

REFERENCES

[1] M. Chen and J. Li, "Optimizing Fortran 90 Pro­
grams for Data Motion on Massively Parallel Sys-

terns." Technical Report YALE/DCS/TR-882,
Yale University, Jan. 1992.

[2] D. Loveman, "High Performance Fortran: Pro­
posal," High Performance Fortran Forum, Hous­
ton, TX, January 1992.

[3] D. Pase, "MPP Fortran Programming Model,"
High Performance Fortran Forum, Houston, TX,
January 1992.

[4] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel,
U. Kremer, C. Tseng, and M. Wu, "Fortran D
Language Specification," Department of Com­
puter Science Rice COMP TR90079, Rice Uni­
versity, March 1991.

[5] G. Steele, "Proposals for Amending High Perfor­
mance Fortran," High Performance Fortran Fo­
rum, Houston, TX, January 1992.

[6] C. Koelbel and P. Mehrotra, "Compiling global
name-space parallel loops for distributed execu­
tion, IEEE Trans. Parallel and Distributed Syst.,
vol. 2(4), pp. 440-451, 1991.

[7] H. M. Gemdt, "Automatic parallelization for dis­
tributed-memory multiprocessing systems," PhD
thesis, University of Bonn, December 1989.

[8] H. Zima, H. Bast, and M. Gemdt, "Superb: A
Tool for Semi-Automatic MIMD/SIMD Parallel­
ization," Parallel Comput., vol. 6, pp. 1-18,
1988.

[9] MIMDizer User's Guide, Version 7.02, Pacific Si­
erra Research Corporation, Placerville, CA,
1991.

[10] S. Benkner, B. Chapman, and H. Zima, "Vienna
Fortran 90," Proceedings of the SHPCC Confer­
ence, 1992, to appear.

l11 J H. Zima, P. Brezany, B. Chapman, P. Mehrotra,
and A. Schwald, "Vienna Fortran-a Language
Specification," !CASE Internal Report 21,
!CASE, Hampton, VA, 1992.

[12] B. Chapman, P. Mehrotra, and H. Zima, Lan­
guages, Compilers, and Run-time Environments
for Distributed Memory Machines. New York:
Elsevier, pp. 39-62.

[13] G. I. Marchuk, Methods of Numerical Mathemat­
ics. New York: Springer-Verlag, 1975.

[14] J. Saltz, H. Berryman, andJ. Wu, "Runtime com­
pilation for multiprocessors" (to appear: Concur­
rency, Practice and Experience, 1991). !CASE
Report 90-59, !CASE, 1990.

[15] D. Fountain, A Tutorial Introduction to Occam
Programming. Colorado Springs, CO: lnmos,
1986.

[16] S. Ahuja, N. Carriero, and D. Gelemter, "Linda
and friends," IEEE Computer, vol. 19, pp. 26-
34, 1986.

[17] I. Foster and S. Taylor, Strand: New Concepts in
Parallel Programming. Englewood Cliffs, NJ:
Prentice-Hall, 1990.

[18] C. Koelbel, P. Mehrotra, and J. Van Rosendale,
"Semi-automatic process partitioning for parallel

PROGRAMMING IN VIENNA FORTRAN 49

computation, Int. J. Parallel Programming, vol.
16,pp. 365-382,1987.

[19] P. Mehrotra and J. Van Rosendale, Advances in
Languages and Compilers for Parallel Process­
ing. Cambridge, MA: Pitman/MIT Press, 1991,
pp. 364-384.

[20] :\1. Rosing, R. W. Schnabel, and R. P. Weaver,
"Expressing Complex Parallel Algorithms in
DI~O," Proceedings of the 4th Conference on
Hypercubes, Concurrent Computers, and Appli­
cations. Los Altos, CA: Golden Gate Enterprises,
1989, pp. 553-560.

[21] M. Rosing, R. W. Schnabel, and R. P. Weaver,
"The DINO Parallel Programming Language,"
Technical Report CU-CS-457-90, University of
Colorado, Boulder, CO, April 1990.

[22] E. Paalvast and H. Sips, "A high-level language
for the description of parallel algorithms," Pro­
ceedings of Parallel Computing 89, Leyden, The
Netherlands, North-Holland, August 1989, pp.
467-472.

[23] E. Paalvast, A. van Gemund, and H. Sips, "A
Method of Parallel Program Generation With an
Application to Booster Language," Proceedings
of the 4th International Conference on Super­
computing, Amsterdam, June 1990. New York:
ACM Press, 1990, pp. 457-469.

[24] M. Wu and G. Fox, "Fortran 90D Compiler for
Distributed Memory MIMD Parallel Computers,"
Technical Report SCCS-88b, Syracuse Univer­
sity, New York, 1991.

[25] CM Fortran Reference Manual, Version 5.2.
Cambridge, MA: Thinking Machines Corpora­
tion, 1989.

[26] H. Zima and B. Chapman, Supercompilers for
Parallel and Vector Computers, ACM Press Fron­
tier Series. Reading, MA: Addison-Wesley, 1990.

[27] K. lkudome, G. Fox, A. Kolawa, and J. Flower,
"An Automatic and Symbolic Parallelization Sys­
tem for Distributed Memory Parallel Computers,"
Proceedings of the Fifth Distributed Memory
Computing Conference, Charleston, SC, April
1990. Los Alamitos, CA: IEEE Computer Society
Press, 1990, pp. 1105-1114.

[28] F. Andre, J.-L. Pazat, and H. Thomas, "PAN­
DORE: A System to Manage Data Distribution,"
International Conference on Supercomputing,
June 1990, pp. 380-388.

[29] A. Rogers and K. Pingali, "Process Decomposi­
tion Through Locality of Reference," Conference
on Programming Language Design and Imple­
mentation, ACM SIGPLAN, June 1989. New
York: ACM Press, 1989, pp. 69-80.

[30] J. Li and M. Chen, "Generating Explicit Com­
munication From Shared-Memory Program Ref­
erences," Proceedings of Supercomputing '90,
New York, NY, November 1990. New York: ACM
Press, 1990, pp. 865-876.

[31] P. Hatcher, A. Lapadula, R. Jones, M. Quinn,

50 CHAPMAN, MEHROTRA, AND ZIMA

and J. Anderson, "A Production Qualitv C* Com­
piler for Hypercube Machines," 3rd .4.CM SIC­
PLAN Symposium on Principles Practice of Par­
allel Programming, April 1991 . .\lew York: ACM
Press, 1991, pp. 73-82.

[32] A. L. Cheung and A. P. Reeves, "The Paragon
Multicomputer Environment: A First Implemen­
tation," Technical Report EE-CEG-89-9, Cornell
University, Ithaca, NY, July 1989.

[33] A. P. Reeves, "Paragon: A Programming Para­
digm for Multicomputer Systems," Technical Re­
port EE-CEG-89-3, Cornell University, Ithaca,
NY, January 1989.

[34] P. S. Tseng, "A Systolic Array Programming Lan­
guage," Proceedings of the Fifth Distributed
Memory Computing Conference, April 1990. Los

Alamitos, CA: IEEE Computer Society Press,
1990, pp. 1125-1130.

[35] J. Saltz, K. Crowley, R. Mirchandaney, and H.
Berryman, "Run-time scheduling and execution
of loops on message passing machines,"]. Paral­
lel and Distributed Comput., vol. 8(2), pp. 303-
312, 1990.

[36] C. Koelbel, P. Mehrotra, and J. Van Rosendale,
"Supporting Shared Data Structures on Distrib­
uted Memory Architectures, 2nd ACM SIGPLAN
Symposium on Principles Practice of Parallel
Programming, March 1990. 1\iew York: ACM
Press, 1990, pp. 177-186.

[37] C.-A. Thole, "PACT-Parallel Architecture
Compiler Target," GEI\iESIS Working Paper
B4.T14, SUPRENCM GmbH, Bonn, Germany,
September 1 990.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

