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ABSTRACT 

Exploiting the full performance potential of distributed memory machines requires a 
careful distribution of data across the processors. Vienna Fortran is a language exten­
sion of Fortran which provides the user with a wide range of facilities for such mapping 
of data structures. In contrast to current programming practice, programs in Vienna 
Fortran are written using global data references. Thus, the user has the advantages of a 
shared memory programming paradigm while explicitly controlling the data distribu­
tion. In this paper, we present the language features of Vienna Fortran for FoRTRAN 77, 
together with examples illustrating the use of these features.© 1992 by John Wiley & Sons, Inc. 

1 INTRODUCTION 

The continued demand for increased computing 
power during the last decade has led to the devel­
opment of computing systems in which a large 
number of processors are connected, so that their 
execution capabilities may be combined to solve a 
single problem. 

Several distributed memory processing systems 
(such as Intel's hypercube series and the nClJBE) 
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have come onto the market and are slowly gaining 
user acceptance. Other systems are under devel­
opment or have been announced in recent 
months. These architectures are relatively inex­
pensive to build, and are potentially scalable to 
very large numbers of processors. Hence their 
share of the market is likely to increase in the near 
future. 

The most important single difference between 
these and other computer architectures is the fact 
that the memory is physically distributed among 
the processors; the time required to access a non­
local datum may be an order of magnitude higher 
than the time taken to access locally stored data. 
This has important consequences for program 
performance. In particular, the management of 
data, with the twin goals of both spreading the 
computational workload and minimizing the de­
lays caused when a processor has to wait for non­
local data, becomes of paramount importance. 

A major difficulty with the current generation of 
distributed memory computing systems is that 
they generally lack programming tools for software 
development at a suitably high level. The user is 
forced to deal with all aspects of the distribution of 
data and work to the processors, and must control 
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the program's execution at a very low level. This 
results in a programming style which can be lik­
ened to assembly programming on a sequential 
machine. It is tedious, time-consuming, and error 
prone. This has led to particularly slow software 
development cycles and, in consequence, high 
costs for software. 

Thus much research activity is now concen­
trated on providing suitable programming tools for 
these architectures. One focus is on the provision 
of appropriate high-level language constructs to 
enable users to design programs in much the same 
way as they are accustomed to on a sequential 
machine. Several proposals (including ours) have 
been put forth in recent months for a set of lan­
guage extensions to achieve this [ 1-5], in particu­
lar (but not only) for Fortran, and current com­
piler research is aimed at implementing them. 

Research in compiler technology has so far re­
sulted in the development of a number of proto­
type systems, such as Kali [6], SUPERB [7, 8], 
and the MIMDizer [9]. In contrast to the current 
programming paradigm, these systems enable 
users to write code using global data references, as 
on a shared memory machine, but require them to 
specify the distribution of the program's data. 
This data distribution is then used to guide the 
process of restructuring the code into a single pro­
gram multiple data (SPMD) program for execution 
on the target distributed memory multiprocessor. 
The compiler analyzes the source code, translat­
ing global data references into local and nonlocal 
data references based on the distributions speci­
fied by the user. The nonlocal references are satis­
fied by inserting appropriate message-passing 
statements in the generated code. Finally, the 
communication is optimized where possible, in 
particular by combining messages and by sending 
data at the earliest possible point in time. 

In this paper, we present a machine-indepen­
dent language extension to FoRTR~'> 77, Vienna 
Fortran, which allows the user to write programs 
for distributed memory multiprocessor systems 
using global addresses. The Vienna Fortran lan­
guage extension to Fortran 90 is described in a 
separate paper [ 10 ]. Since the performance of an 
SPMD program is profoundly influenced by the 
distribution of its data, most of the extensions 
proposed here are geared towards allowing the 
user to explicitly control such distribution of data. 
Vienna Fortran provides the flexibility and ex­
pressiveness needed to permit the specification of 
parallel algorithms and to carry out the complex 
task of optimization. Despite this fact, there are 
relatively few language extensions. A simple algo-

rithm can be parallelized by the addition of just a 
few constructs which distribute the program's 
data across the machines. 

This paper is organized as follows. In the next 
section we describe current programming practice 
on distributed memory MIMD architectures by 
means of a simple example. Then the program­
ming model assumed by Vienna Fortran is intro­
duced and an overview of the language elements is 
provided. This paper does not attempt to give a 
systematic introduction to the whole language, but 
rather describes some of the most important fea­
tures by way of simple example codes. These form 
the body of the subsequent section. Section 5 out­
lines two more complex problems relevant to real 
applications, discusses the features of Vienna 
Fortran which may be used to implement them. 
and briefly discusses some important features of 
Fortran programs and how we handle them. Fi­
nally, we conclude with a discussion of related 
work and the implementation status of the Vienna 
Fortran Compilation System. 

2 PROGRAMMING DISTRIBUTED 
MEMORY SYSTEMS: THE STATE OF 
THE ART 

The current generation of distributed memory 
multiprocessors is particularly difficult to pro­
gram: the time taken to adapt existing sequential 
codes and to develop new applications is prohibi­
tive in comparison to conventional machines, in­
cluding vector supercomputers. Further, the low 
level at which programs must be written is the 
source of both frequent errors and of particularly 
inflexible codes. Consider the brief example de­
scribed below. 

The Jacobi iterative procedure may be used to 
approximate the solution of a partial differential 
equation discretized on a grid. At each step, it 
updates the current approximation at a grid point 
by computing a weighted average of the values at 
the neighboring grid points. An excerpt from a Ja­
cobi relaxation code for execution on a sequential 
machine is shown in Figure 1. 

When this code is parallelized by hand, the 
programmer must distribute the program's work 
and data to the processors which will execute it. 
One of the common approaches to do so makes 
use of the regularity of most numerical computa­
tions. This is the so-called SPMD or data parallel 
model of computation. With this method, the data 
arrays in the original program are each partitioned 



C SEQUENTIAL CODE 

REAL UNEW(J:N,J::-l), U(l:N.J:N), F(!:N.!:N) 

CALL INIT (C. F, N) 

DO 40 J = 2, N-1 
DO 40 I= 2, N-1 

UNEW(I.J) = 0.25 * (F(I,J) + C(I-1, J) + U(l+l, J) + 
& \f(I, J-1) + LT(I, J+l)) 

40 CONTINUE 

FIGURE 1 Sequential Jacobi relaxation code. 

and mapped to the processors. This is known as 
distributing the arrays. The specification of the 
mapping of the elements of the arrays to the set of 
processors is called the data distribution of that 
program. A processor is then thought of as owning 
the data assigned to it; these data elements are 
stored in its local memory. Now the work is dis­
tributed according to the data distribution: com­
putations which define the data elements owned 
by a processor are performed by it-this is some­
times known as the owner computes paradigm. 
The processors then execute essentially the same 
code in parallel, each on the data stored locally. 

It is, however, unlikely that the code on one 
processor will run entirely without requiring data 
which is stored on another processor. Accesses to 
nonlocal data must be explicitly handled by the 
programmer, who has to insert communication 
constructs to send and receive data at the appro­
priate positions in the code. This is called message 
passing. The details of message passing can be­
come surprisingly complex: buffers must be set 
up, and the programmer must take care to send 
data as early as possible, and in economical sizes. 
Several issues arise which do not have their coun­
terpart in sequential programming. New types of 
errors, such as deadlock and livelock, must be 
avoided. The programmer must decide when it is 
advantageous to replicate computations across 
processors, rather than send data. Moreover, for 
code which is explicitly parallel, debugging is a 
serious problem. 

A major characteristic of this style of program­
ming is that the performance of the resulting code 
depends to a very large extent on the data distri­
bution selected by the programmer. The data dis­
tribution determines not only where computation 
will take place. It is also the main factor in decid­
ing what communication is necessary. The total 
cost incurred when nonlocal data is accessed in-
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volves not only the actual time taken to send and 
receive data, but also the time delay when a pro­
cessor must wait for nonlocal data, or for other 
processors to reach a certain position in the code. 
Kote that the performance of a program can no 
longer be estimated solely by the amount of com­
putation it comprises: extra computation is not 
necessarily costly, and the communication delay 
inherent in a particular data distribution could be 
prohibitive. 

The message-passing programming style re­
quires that the communication statements be ex­
plicitly hardcoded into the program. But these 
statements are based upon the chosen data distri­
bution, and as a result, the data distribution is 
also implicitly hardcoded. It will generally require 
a great deal of reprogramming if the user wants to 
try out different data distributions. 

To illustrate this, we reproduce in Figure 2 the 
above section of code, rewritten to run on a set of 
P 2 processors using message passing code of the 
kind described. We have simplified matters by as­
suming that the processors have been organized 
into a two-dimensional array PROC(P,P) and that 
the processor array elements may be addressed 
for the purpose of exchanging data items: nor-

C PROCESSOR STRUCTURE PROC(P,P) IS ASSUMED 

C CODE FOR PROCESSOR (PI,P2) 

PARAMETER( P = ... , N = ... ) 
PARAMETER( LEN= (N+P-1)/P) 

C DECLARE LOCAL ARRAYS TOGETHER WITH OVERLAP AREA 
C DATA OWNED LOCALLY IS U(I:LEN,I:LEN) 
C AND SIMILARLY FOR UNEW AND F 

REAL U(O:LEN+l,O:LEN+l), UNEW(l:LEN.J:LEN), F(J:LEN,l:LEN) 

CALL LOCALINIT(U.F,LEN) 

C SEND DATA TO OTHER PROCESSORS 

IF (Pl. GT .I) SEND (U(l,l:LEN)) TO PROC(PJ-J,P2) 
IF (Pl. LT .P) SEND (U(LEN,l:LEN)) TO PROC(PI+l,P2) 
IF (P2.GT.l) SEND (U(l:LEN,l)) TO PROC(Pl,P2-l) 
IF (P2. LT .P) SEND (U(l:LEN,LEN)) TO PROC(Pl,P2+1) 

C RECEIVE DATA FROM OTHER PROCESSORS, ASSIGN TO 
C OVERLAP AREAS IN ARRAY U 

IF (Pl. GT .I) RECEIVE U(O,l:LEN) FROM PROC(Pl-l,P2) 
IF (Pl. LT .P) RECEIVE U(LEN+l,l:LEN) FROM PROC(PI+l,P2) 
IF (P2. GT .I) RECEIVE U(J:LEN,O) FROM PROC(Pl,P2-l) 
IF (P2. LT .P) RECEIVE U(l:LEN,LEN+I) FROM PROC(Pl.P2+1) 

C COMPUTE NEW VALUES ON LOCAL DATA 
DO 40 I= I. LEN 

DO 40 J = I, LEN 

UNEW(I,J) = 0.2-5 * (F(I,J) + U(l-1. J) + U(l+l. J) + 
& U(l, J-1) + U(I, J+l)) 

40 CONTINUE 

FIGURE 2 Jacobi relaxation code parallelized manu­
ally. 
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mally, a structure of this kind would have to he set 
up by the user first, and references would have to 
he converted to those provided by the environ­
ment. Further, we assume that the array sizes are 
multiples of P. Optimization of communication 
has been performed insomuch as messages have 
been extracted from the loops and organized into 
vectors for sending and receiving. When commun­
ication and computation are overlapped, as could 
he done here by carefully arranging the order 
in which local data is updated, the resulting code 
is considerably longer. 

In this version of the Jacobi relaxation, each 
processor has been assigned a square suhhlock of 
the original arrays. The programmer has declared 
local space of the appropriate size for each array 
on every processor. Array U has been declared in 
such a way that space is reserved not only for the 
local array elements, hut also for those which are 
used in local computations, but are actually 
owned by other processors. This extra space sur­
rounding the local elements is known as the over­
lap area. Values of UNEW on the local boundaries 
require elements of C stored nonlocally for their 
computation. These must he received, and values 
from local boundaries must he sent to the proces­
sors which need them. Care is taken that the pro­
cessors whose segments of U are on the original 
grid boundaries do not attempt to read from or 
send to nonexistent processors. 

The result of this low level style of programming 
is that the user spends a great deal of time orga­
nizing the storage and communication of data. In 
consequence, the time taken to produce a pro­
gram is considerably longer than for comparable 
codes on shared memory machines. Moreover. 
once written, the code is hard to modify or im­
prove to run in some other way, even on the same 
machine. For example, if instead of dividing into 
square suhhlocks, the user wanted to experiment 
with blocking in only one dimension, e.g .. blocks 
of rows or columns, most of the code dealing with 
specification and communication would have to 
he modified. We will see below how easily this 
code can he parallelized in Vienna Fortran. 

3 THE VIENNA FORTRAN LANGUAGE 

3.1 The Programming Model 

Vienna Fortran assumes that a program will he 
executed by a machine with one or more proces­
sors according to the SP~D programming model 
as described above. This model requires that each 
participating processor execute the same pro-

gram; parallelism is obtained by applying the 
computation to different parts of the data domain 
simultaneously. The generated code will store the 
local parts of arrays and the overlap areas locally 
and use message passing, optimized where possi­
ble, to exchange data. It will also map logical pro­
cessor structures declared by the user to the phys­
ical processors which execute the program. These 
transformations are, however, transparent to the 
Vienna Fortran programmer. 

3.2 The Language Features 

The Vienna Fortran language extensions provide 
the user with the following features: 

1. The processors which execute the program 
may he explicitly specified and referred to. 
It is possible to impose one or more struc­
tures on them. 

2. The distributions of arrays can he speci­
fied using annotations. These annotations 
may use processor structures introduced by 
the user. 
(1) Intrinsic functions are provided to spec­
ify the most common distributions. 
(2) Distributions may he defined indirectly 
via a map array. 
(3) Data may he replicated to all or a subset 
of processors. 
(4) The user may define new distribution 
functions. 

3. An array may he aligned with another ar­
ray.. providing an implicit distribution. 
Alignment functions may also he defined by 
the user. 

4. The distribution of arrays may he changed 
dynamically. However. a clear distinction is 
made between arrays which are statically 
distributed and those that may change at 
runtime. 

5. In procedures, dummy array arguments 
may inherit the distribution of the actual ar­
gu~ent or he explicitly distributed, possibly 
causing some data motion. 

6. A forall loop permits explicitly parallel 
loops to he written. Intrinsic reduction oper­
ations are provided, and others may he de­
fined by the user. Loop iterations may he 
executed on a specified processor where a 
particular data object is stored or as deter­
mined by the compiler. 

7. Arrays in common blocks may be distrib­
uted. 

8. Allocatable arrays may be used in much 



the same way as in Fortran 90. Array sec­
tions are permitted as actual arguments to 
procedures. 

9. Assertions about relationships between ob­
i ects of the program may be inserted into the 
program. 

Vienna Fortran does not introduce a large 
number of new constructs, but those it does have 
are supplemented by a number of options and in­
trinsic functions, each of which serves a specific 
purpose. They enable the user to exert additional 
control over the manner in which data is mapped 
or moved, or the code is executed. An overview 
of the Vienna Fortran language extensions for 
FoRTRA.' 77 is given below. 

We use terminology and concepts from the defi­
nition of FoRTRA.' 77 (and, occasionally, Fortran 
90) freely throughout. 

3.3 The Language Extensions: 
An Overview 

Vienna Fortran includes all of the following lan­
guage extensions to FoRTRA'> 77. Many of them 
will be discussed in the examples below, where 
their use is further described in an informal man­
ner. For a complete and precise description of the 
language, see Zima et al. [ 11 J . The reader is also 
referred to Chapman et al. [12] for further exam­
ples of the use of these extensions and demonstra­
tion of their expressiveness. 

The PROCESSORS Statement 

The user may declare and name one or more pro­
cessor array~ by means of the PROCESSORS 
statement. The first such array is called the pri­
mary processor array; others are declared using 
the kevword RESHAPE. Thev refer to precisely 
the sa~e set of processors, providing different 
views of it: a correspondence is established be­
tween any two processor arrays by the column­
major ordering of array elements defined in FoR­
TRA'> 77. Expressions for the bounds of processor 
arravs may contain symbolic names, whose values 
are ~btai~ed from the environment at load time. 
Assertions may be used to impose restrictions on 
the values that can be assumed bv these variables. 
This allows the program to be parameterized by 
the number of processors. This statement is op­
tional in each program unit. For example: 

PROCESSORS MYP3(NP1, l'\P2, NP3) 
& RESHAPE MYP2(NP1, l'\P2*NP3) 
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Processor References 

Processor arrays may be referred to in their en­
tirety by specifying the name only. Array section 
notation, as introduced in Fortran 90, is used to 
describe subsets of processor arrays; individual 
processors may be referenced by the usual array 
subscript notation. Dimensions of a processor ar­
ray may be permuted. 

Processor lntrinsics 

The number of processors on which the program 
executes may be accessed by the intrinsic func­
tion $NP. A one-dimensional processor array, 
$P(1:$NP), is always implicitly declared and may 
be referred to. This is the default primary array if 
there is no processor statement in a program. The 
index of an executing processor in $P is retumed 
by the intrinsic function $MY_PROC. 

Distribution Annotations 

Distribution annotations may be appended to ar­
ray declarations to specify direct and implicit dis­
tributions of the arrays to processors. Direct distri­
butions consist of the keyword DIST together with 
a parenthesized distribution expression, and an 
optional TO clause. The TO clause specifies the 
set of processors to which the array(s) are distrib­
uted; if it is not present, the primary processor 
array is selected by default. A distribution expres­
sion consists of a• list of distribution functions. 
There is either one function to describe the distri­
bution of the entire array, which may have more 
than one dimension, or ·each function in the list 
distributes the corresponding array dimension to a 
dimension of the processor array. The elision 
symbol ":" is provided to indicate that an array 
dimension is not distributed. If there are fewer dis­
tributed dimensions in the data array than there 
are in the processor array, the array will be repli­
cated to the remaining processor dimensions. 
Both intrinsic functions and user-defined func­
tions may be used to specify the distribution of an 
array dimension. 

REAL A(L, N, M), B(M, M, M) 
& DIST(BLOCK, CYCLIC, BLOCK) 

REAL C(1200) DIST(MYOWNFUNC) TO $P 

Another way to specify a distribution is to pre­
scribe that the same distribution function be em­
ployed as that which was used to distribute a di­
mension of another array. For example, 
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REAL D(100, 100) DIST(=A.1, =A.3) TO MYP2 

will distributeD by BLOCK in both dimensions to 
the processor array MYP2. "A.J" refers to dimen­
sion 1 of array A while "=A.J" extracts the distri­
bution of the first dimension of the array A. l\ ote 
that both the extents of .the array dimensions be­
ing distributed and the set of processors may differ 
from those of A. 

Implicit distributions begin with the keyword 
ALIGN and require both the target array and a 
source array (so called because it is the source of 
the distribution). An element of the target array is 
distributed to the same processor as the specified 
element of the source array, which is determined 
by evaluating the expressions in the source array 
description for each valid subscript of the target 
array. Here, II and JJ are bound variables in the 
annotation, and range in value from 1 through 80. 

INTEGER IM(80, 80) ALIGN L\1(11, JJ) 
& WITH D(JJ, 11+10) 

As is the case with direct distributions, the user 
may define functions to describe more complex 
alignments. 

By default, an array which is not explicitly dis­
tributed is replicated to all processors. 

Distribution lntrinsics 

Direct distributions may be specified by using the 
elision symbol, as described above, and the 
BLOCK and CYCLIC intrinsic functions. The 
BLOCK function distributes an array dimension 
to a processor dimension in evenly sized seg­
ments. The CYCLIC (or scatter) distribution maps 
elements of a dimension of the data array in a 
round-robin fashion to a dimension of the proces­
sor array. If a width is specified, then contiguous 
segments of that width are distributed in a round­
robin manner. 

The linear expressions which specify an align­
ment may contain, in addition to the usual arith­
metic operators"+","-", and"*", the intrin­
sic functions MAX, MIN, MOD, LBOUND, 
UBOUND, and SIZE. The latter three are intrinsic 
functions similar to Fortran 90, and refer to the 
lower bound, upper bound, and size of an array 
(dimension), respectively. 

The INDIRECT distribution intrinsic function 
enables the specification of a mapping array 
which allows each array element to be distributed 
individually to a single processor. The mapping 

array must be of the same size and shape as the 
array being distributed. The values of the given 
array are processor numbers (in $P): 

INTEGER IAPROCS(1000) 

REAL A(1000) DIST(INDIRECT(IAPROCS)) 

Thus, for example, the value of IAPROCS(60) is 
the number of the processor to which A (60) is to 
be mapped. Note that IAPROCS must be defined 
before it is used to specify the distribution of A, 
and that each element of A can be mapped to only 
one processor. 

Dynamic Distributions and the 
DISTRIBUTE Statement 

By default, the distribution of an array is static. 
Thus it does not change within the scope of the 
declaration to which the distribution has been ap­
pended. The keyword DYNAMIC is provided to 
declare an array distribution to be dynamic. This 
permits the array to be the target of a DISTRIB­
UTE statement. A dynamically distributed array 
may optionally be provided with an initial distri­
bution in the manner described above for static 
distributions. A range of permissible distributions 
may be specified when the array is declared by 
giving the keyword RANGE and a set of explicit 
distributions. If this does not appear, the array 
may take on any permitted distribution with the 
appropriate dimensionality during execution of 
the program. Finally, the distribution of such an 
array may be dynamically connected to the distri­
bution of another dynamically distributed array in 
a specified fixed manner. This is expressed by 
means of the CONNECT keyword. Thus, if the 
latter array is redistributed, then the connected 
array will automatically also be redistributed. 

REAL F(200, 200) DYNAMIC, 

& RANGE((BLOCK, BLOCK), 
& (CYCLIC(S), BLOCK)) 

The distribute statement begins with the key­
word DISTRIBUTE and a list of the arrays which 
are to be distributed at runtime. Following the 
separator symbol "::", a direct, implicit, or indi­
rect distribution is specified using the same con­
structs as those for specifying static distributions. 
It has an optional NOTRANSFER clause; if it ap­
pears, then it specifies that the arrays to which it 
applies are to be distributed according to the 



specification, but that old data (if there is any) is 
not to be transferred. Thus only the access func­
tion is modified. For example: 

DISTRIBUTE A, B :: (CYCLIC(10)) 
& NOTRANSFER(B) 

in the above statement, both arrays A and B 
are redistributed with the new distribution 
CYCLIC (1 0), however for the array B only the ac­
cess function is changed, the old. value; are not 
transferred to the new locations. Whenever an ar­
ray is redistributed via a distribute statement, then 
any arrays connected to it are also automatically 
redistributed to maintain the relationship between 
their distributions. 

Distribution Queries and The DCASE 
Construct 

The DCASE construct enables the selection of a 
block of statements for execution depending on 
the actual distribution of one or more arrays. It is 
modeled after the CASE construct of Fortran 90. 
The keywords SELECT DCASE are followed by 
one or more arrays whose distribution functions 
are queried. The individual cases begin with the 
keyword CASE together with a distribution ex­
pression for each of the selected arrays. The dis­
tribution expressions consist of one or more distri­
bution functions (which may contain arguments 
such as a length), or a "*" which matches any 
distribution. The distribution of an array is 
matched only if it is matched in all dimensions. 
The first case which satisfies the actual distribu­
tions of the selected arrays is chosen and its state­
ments executed. No more than one case mav be 
chosen. · 

SELECT DCASE (A, B) 

CASE (BLOCK), (BLOCK) 

CALL BLOCKSUB(A, B, N, M) 

CASE (BLOCK), (CYCLIC) 

CASE DEFAULT 

END SELECT 

The distributions of two different arrays may be 
compared in a similar manner within an IF state­
ment. 
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Allocatable Arrays 

An array may be declared with the allocatable at­
tribute by specifying the keyword ALLOCATA­
BLE as in Fortran 90. The declaration defines the 
rank of the array, but not the bounds of any di­
mension. The array may be statically or dynami­
cally distributed. The ALLOCATE statement is 
provided to allocate an instance of the array with 
specified bounds in each dimension. This in­
stance is deallocated by means of the DEALLO­
CATE statement. An allocatable array may not be 
accessed unless it is currently allocated and a dis­
tribution has been associated with it. The allocat­
able attribute should be used wherever the size of 
an array is not known at compile time; the user is 
thus able to distribute the array with its actual 
bounds, rather than distributing the largest array 
which is permitted. Further, it may remove the 
need for work arrays in some situations. 

Common Blocks 

Common blocks in which no data is explicitly dis­
tributed have the same semantics as in FoRTH~' 
77. The common block storage sequence is de­
fined for them. Individual arrays which occur in a 
named common block may also be explicitly and 
individually distributed just as other arrays are. 
However, they may not be dynamically distrib­
uted. Once storage space has been determined for 
a named common block, then it may not change 
during program execution. Note that, in accor­
dance with Fortran 90, allocatable arrays may not 
be in common blocks. 

Procedures 

Dummy array arguments may be distributed in 
the same way as other arrays. If the given distribu­
tion differs from that of the actual argument, then 
redistribution will take place. If the actual argu­
ment is dynamically distributed, then it may be 
permanently modified in a procedure; if it is stati­
cally distributed, then the original distribution 
must be restored on procedure exit. This can al­
ways be enforced by the keyword RESTORE. 
While argument transmission is generally call by 
reference, there are situations in which arguments 
must be copied. The user can suppress this by 
specifying a NOCOPY. 

Dummy array arguments may also inherit the 
distribution of the actual argument: this is speci­
fied by using an "*" as the distribution expres­
siOn: 
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CALL EX(A, B(1:N, 10), N, 3) 

SUBROUTINE EX(X, Y, N, J) 

REAL X(N, N) DIST(*) 

REAL Y(N) DIST(BLOCK) TO MYP2(1 :N, J) 

Array sections may be passed as arguments to 
subroutines using the syntax of Fortran 90. 

Intrinsic Functions 

A number of intrinsic functions from Fortran 90 
are very useful for writing programs distributed 
memory machines. They include the functions 
SIZE, LBOUND, UBOUND, COUNT, ANY, and 
ALL, which may be used in Vienna Fortran pro­
grams. 

The FORALL Loop 

The FORALL loop enables the user to assert that 
the iterations of a loop are independent and can 
be executed in parallel. A precondition for the 
correctness of this loop is that a value written in 
one iteration is neither read nor written in any 
other iteration. There is an implicit synchroniza­
tion at the beginning and end of such a loop. Pri­
vate variables are permitted within forall loops; 
they are known only in the forall loop in which 
they are declared and each loop iteration has its 
own copy. The iterations of the loop may be as­
signed explicitly to processors if the user desires, 
or they may be performed by the processor which 
owns a specified datum. Only tightly nested forall 
loops are permitted. 

FORALL I= 1, NP1*NP2*l\P3 ON $P(NOP(I)) 

INTEGER K 

END FORALL 

A reduction statement mav be used within 
forall loops to perform such operations as global 
sums (cf. ADD below); the result is not available 
until the end of the loop. The user may also define 
reduction functions for operations which are com­
mutative and associative in the mathematical 
sense. The intrinsic reduction operators provided 
by Vienna Fortran are ADD, MULT, MAX, and 
MIN. The following statement results in the values 
of the array A being summed and the result being 
placed in the variable X. 

REDUCE(ADD, X, A(l)) 

Input/Output 

Files read/written by parallel programs may be 
stored in a distributed manner or on a single stor­
age device. We provide a separate set ofl/0 oper­
ations to enable individual processor access to 
data stored across several devices. 

4 WRITING PROGRAMS IN VIENNA 
FORTRAN 

In this section we introduce many of the language 
extensions of Vienna Fortran by showing how they 
may be used to produce parallel code for some 
simple problems. We discuss several different is­
sues related to programming in general. The ideas 
in this section could, in principle, be applied to 
other programming languages which use similar 
data structures. 

4.1 Distributing Data to Processors 

In Section 2 above, we saw how a Jacobi relaxa­
tion might be parallelized manually, under certain 
simplifying assumptions. We present two versions 
of this same code in Vienna Fortran. The first ver­
sion tends to run faster on machines with a high 
communication latency, whereas the second ver­
sion will often be preferred for its overall commun­
ication behavior. 

All that has been added to the sequential code 
to produce the first parallel Jacobi relaxation, 
shown in Figure 3, is an annotation which tells the 
compiler to distribute the second dimension of all 
three arrays by block to all processors: the com­
piler will generate code to place the data accord-

C PARALLEL CODE VERSION 1 

REAL UNEW(1:N,1:N), U(1:N,1:N), F(1:N,1:N) DIST (:, BLOCK) 

CALL !NIT (t'. F, N) 

DO 40 J = 2, 1'<-1 
DO 40 I= 2, N-1 

UNEW(LJ) = 0.25 * (F(I,J) + U(l-1. J) + U(l+1, J) + 
& U(l. J-1) + li(I. J+l)) 

40 CONTINUE 

FIGURE 3 Jacobi relaxation code in Vienna Fortran. 



ingly. It is also responsible for inserting the neces­
sary communication. 

Note that no reference has been made to the 
processors executing the program in this example. 
Thus the data is mapped implicitly to a one­
dimensional processor array consisting of the pro­
cessors available at runtime. The elision symbol 
was used to ensure that only one dimension of the 
arrays is distributed. 

An altemative implementation of the Jacobi re­
laxation requires that the arrays be mapped to a 
two-dimensional processor grid. It begins with the 
following declarations: 

C Jacobi relaxation code in Vienna Fortran: 
version 2 

ASSERT(NP .GE. 4) 

PROCESSORS P(NP, NP) 

REAL UNEW(1 :N, 1 :N), U(1 :N, 1 :N), F(1 :N, 1 :N) 
& DIST(BLOCK, BLOCK) 

The rest of the code is the same as shown in 
Figure 3. This Vienna Fortran program first de­
clares a square processor array, whose size will be 
determined at load time. The programmer re­
quires at least four processors in each dimension 
and expresses this by making an appropriate as­
sertion. The array declaration includes an anno­
tation to distribute the arrays by block in both 
dimensions: this maps them in square blocks to 
the processors. The code has been written so as to 
be independent of the number of processors it will 
execute on, and does not need to be recompiled 
each time it runs on a different configuration. 
(But, if it is to be run on a fixed number of proces­
sors every time, then a processor array may natu­
rally be declared with fixed bounds-it is likely to 
result in faster code). This is the data distribution 
used in the manually parallelized version of the 
code and the compiler must distribute the data 
and organize the communication to produce the 
code similar to that shown in Figure 2. 

This version of the code will thus result in com­
piled code which is markedly different from the 
first version and may exhibit different behavior at 
runtime. When the first version is executed, the 
data are distributed in blocks of columns to the 
processors. To compute local values of UNEW, a 
processor will require a vector of values from the 
two neighboring processors. The second version 
distributes data in squares. As a result, a proces-
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sor will require values from four neighboring pro­
cessors to compute its local values. In general, the 
second version requires fewer data items to be 
sent and received, however the number of mes­
sages per iteration increases from two to four. 
Thus, the actual performance of the codes will be 
dependent not only on the message transfer costs 
of the underlying hardware but also on the start­
up time per message. It is an easy matter to imple­
ment both versions in Vienna Fortran and com­
pare their performance. 

Other Ways to Distribute Arrays 

We have already seen the intrinsic functions pro­
vided by Vienna Fortran to specify the most com­
mon kinds of distributions: BLOCK and CYCLIC 
map a dimension of an array to a dimension of a 
processor array. The following are further exam­
ples of Vienna Fortran array declarations anno­
tated by a distribution: 

PROCESSORS P2(NP, MP) 

REAL XX(1000, 100) 
& DIST(CYCLIC(50), BLOCK) 

REAL YY(10000) DIST(BLOCK) TO $P 

INTEGER KK(500, 50, 5) 
& DIST(BLOCK, CYCLIC,:) TO P2/2, 1/ 

Arrays XX and KK are distributed to P2, how­
ever, the dimensions have been permuted in the 
second case, so that the first dimension of KK is 
distributed by block to the second dimension of 
P2, and the second dimension of KK is scatter 
distributed to the first dimension of P2. YY is dis­
tributed to $P, which has NP*MP elements in this 
case. Remember that the standard ordering of ar­
ray elements defined in FORTR~'\" 77 may be ap­
plied to processor arrays, so that there is a well­
defined relationship between the elements of $P 
and those of P2. 

Implicit distribution, or alignment might be 
used, for example, to parallelize the following ker­
nel. 

The elements of arrays X and Yare aligned with 
the elements of array ZX in the example above: for 
each I from 1 through N, X (I) is mapped to the 
processor that owns element ZX(I + 10). The$ 
symbol is merely a placeholder, indicating that 
multiple arrays are being aligned. Note that the 
scalar variables are replicated. 
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& 

& 

PARAMETER (N = . . . ) 

REAL ZX(N + 12) DIST(BLOCK) 

REAL X(N), Y(N) ALIGN $(1) WITH 

REAL Q, R, T 

DO 11 K = 1, N 

ZX(I + 10) 

X(K) = Q + Y(K)* (R*ZX(K + 10) 
+ T* ZX(K + 11)) 

11 CONTINUE 

In practice, alignments can be used whenever 
there is a fixed relationship between two arrays 
that is of a very specific nature. In other situations 
it will generally suffice, or be more appropriate, to 
specify that data items are to be distributed "in 
the same way." In the above, for example, the 
distribution of X and Y could have been expressed 
by giving them the same distribution function as 
ZX: 

REAL X(N), Y(~) DIST(=ZX) 

This distributes X and Y by block, with the ap­
propriate block sizes. In this case, X and Y would 
be distributed evenly by block across the proces­
sors. Since they have fewer elements than ZX, the 
length of their blocks may be slightly smaller than 
the length of the blocks of ZX. When they are 
aligned with ZX as above, then the lengths of the 
first blocks of X and Y will be identical to those of 
ZX. However, the last processor will contain fewer 
elements of these arrays. For example, if N = 100 
and the data is distributed to four processors, then 
the second distribution would distribute 25 ele­
ments of X and Y to each processor, whereas the 
alignment with ZX would result in the mapping of 
28 elements of X and Y to the first three proces­
sors, and only 16 elements to the last of them. 
Thus the elements of X and Y are not spread 
evenly over the processors. It will depend very 
much on the nature of our computation which of 
these distributions performs better. 

Note that if we choose to distribute X and Yin 
the same way as ZX, we could actually distribute 
them all by one single declaration in this case. But 
that would not be true in a subroutine when, say, 
ZX is a dummy argument whose distribution is not 
known. Both alignment and the referral to the dis­
tribution of other arrays are important in subrou­
tines where information on the distribution of 
dummy arguments is incomplete. 

Rather more complex distributions and align­
ments are required in many real applications. 
Many of them, such as arbitrary rectilinear block 
distributions, are useful to the programmer and 
can be efficiently implemented. We will see an ex­
ample of a user-defined distribution function in 
Section 5. 

4.2 Using Subroutines in Vienna Fortran 

We discuss the main issues which arise when sub­
routines* are invoked with distributed arguments 
by, again, looking at a very simple example. This 
permits us to ignore the computational problem 
and concentrate on the situations a programmer 
will need to be able to deal with. 

It is common practice to write subroutines for 
such operations as matrix multiplication, which 
are used frequently. In this section we consider 
how this is done in Vienna Fortran. 

When a distribution annotation is appended to 
a declaration in Vienna Fortran, then that distri­
bution has the same scope as the declaration it­
self. In a subroutine, both local arrays and 
dummy array arguments may be given an explicit 
distribution when they are declared. As we will see 
below, this makes the mechanism of appending 
distribution annotations to array declarations a 
very powerful tool, enabling a controlled redistrib­
ution of data. 

One version of a subroutine to multiply matri­
ces in Vienna Fortran is as follows: 

SUBROUTINE MATMUL(A, B, C, N, M, L) 

REAL A(N, M), B(M, L), C(N, L) DIST(*) 

DO 30 I= 1, N 

DO 30 J = 1, L 

C(l, J) = 0.0 

DO 30 K = 1, M 

C(l, J) = C(l, J) + A(l, K)*B(K, J) 

30 CONTINUE 

RETURN 

END 

In this routine we employ the additional 
method for specifying distributions which can be 

* We will not examine functions separately; they can be 
written similarly. 



used for dummy array arguments only. If a "*" is 
used to specify the distribution, then the dummy 
argument inherits the distribution of the actual ar­
ray. This means that each time the above routine 
is called, the actual arguments may be distributed 
differently to the processors. lnterprocedural dis­
tribution analysis will often reveal the distribution 
functions which reach the subroutine, and the 
compiler is then able to generate code based on 
that information. This is a flexible way to write 
subroutines. But an unfortunate consequence of 
using inherited distributions is that the compiler 
may not always have precise (or, if it is separately 
compiled, any) information on the actual distribu­
tions which may reach the dummy arguments. In 
cases where this analysis fails, there is a way of 
providing extra help. If the user knows that only a 
few distributions will occur, then this information 
may be provided in a RANGE clause which is ap­
pended to the distribution. For example, the spec­
ification: 

REAL A(N, M) DIST(*), 

& RANGE((BLOCK, BLOCK), 
& (BLOCK, CYCL/C(100))) 

declares that only the distributions (BLOCK, 
BLOCK) and (BLOCK, CYCL/C(100)) are al­
lowed for the dummy argument A. 

Further, the efficiency of the computation 
within the subroutine may depend very heavily on 
the actual distributions of the arguments, thus 
yielding good performance in some cases and very 
poor performance in others. 

An alternative implementation might distribute 
the dummy array arguments explicitly. We may 
write, for example: 

SUBROUTINE MATMUL(A, B, C, N, M, L) 

REAL A(N, M), C(N, L) DIST(BLOCK,:) TO $P 

REAL B(M, L) 

DO 30 I= 1, N 

Now this subroutine also has three dummy ar­
gument arrays, two of which, A and C, are distrib­
uted by block in the first dimension to all available 
processors whereas the third, B, is replicated. The 
dummy arguments are explicitly distributed in or­
der to eliminate communication during the com­
putation of the result. However, the actual argu­
ments may not have the same distribution as the 
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dummy arguments with which they are associ­
ated. When their distributions differ, they must be 
redistributed on entry to the subroutine to match 
the specified distribution. In general, their original 
distribution must also be restored on exit from the 
subroutine. Thus the efficient implementation of 
the computation within the subroutine has a 
price: the redistribution of actual arguments may 
sometimes be very costly. 

We have seen the apparent difficulty in resolv­
ing two legitimate demands of a general purpose 
subroutine: that it handle a variety of different ar­
guments, which may be differently distributed, on 
the one hand, and that it handle them efficiently 
on the other hand. Redistribution may be costly, 
yet we may want to implement the routine in a way 
that is handled optimally on the target machine. 
Vienna Fortran provides a construct which may 
be used in this situation: the DCASE construct, 
which is modeled along the lines of the CASE con­
struct in Fortran 90. It enables the selection of a 
block of statements according to the actual distri­
bution of one or more arrays. 

The third subroutine for matrix multiplication 
begins as follows: 

45 

SUBROUTINE MMUL(A, B, C, N, M, L) 

REAL A(N, M), B(M, L), C(N, L) DIST(*) 

INTEGER LEN, LSUB 

SELECT DCASE (C, A): 

CASE(BLOCK, :), (BLOCK, :) 

IF (M*L .LE. MAXSIZE) THEN 

CALL MATMUL(A, B, C, N, YI, L) 

ELSE LEN = L I $NP 

DO 45 J = 1, $NP 

CALL MATMUL 1 
(A, B, C, N, M, L, LEN, J) 

CONTINUE 

END IF 

CASE(BLOCK, BLOCK), (BLOCK,*) 

CASE DEFAULT 

END SELECT 

In the above, the matrix operation is handled in 
a specific way depending on how the actual argu-
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ment arrays are distributed. In this way, we can 
insert appropriate code or call further subroutines 
as required. The compiler has precise information 
on the distribution functions of the selected arrays 
for the block of statements within the cases. Only 
one of the case alternatives is executed; if none of 
the other specifications match, then the default (if 
present) is selected. Here, the cases are examined 
in the order in which they occur textually. The first 
distribution expression is compared with the ac­
tual distribution of C, and the second with that of 
A. If C is distributed by block in the first dim en­
sion and not at all in the second, and A likewise, 
then the first case is selected and its code exe­
cuted. Otherwise, the distribution of C is then 
compared with the next case: if it is distributed by 
block in both dimensions, then if A is distributed 
by block in the first dimension, this case is se­
lected. An "*" matches any distribution whatso­
ever. 

5 APPLICATIONS IN VIENNA FORTRAN 

In this section we look at the structure of two fre­
quent kinds of codes that are used to handle a 
variety of applications. The first of them shows 
how a particular numerical method might be ex­
pressed in Vienna Fortran; the second code shows 
how one could approach problems which cannot 
be efficiently distributed at compile time. We then 
briefly discuss some issues which arise with cer­
tain Fortran constructs and programming styles. 

5. 1 ADI Iteration 

One well known and effective method for solving 
partial differential equations in two or more di­
mensions is known as alternating direction im­
plicit (ADI). 13 It is widely used in computational 
fluid dynamics, and other areas of computational 
physics. The name ADI derives from the fact that 
"implicit" equations, usually tridiagonal systems, 
are solved in both the x and y directions at each 
step. In terms of data structure access, one step of 
the algorithm can be described as follows: an op­
eration (a tridiagonal solve here) is performed in­
dependently on each x-line of the array and the 
same operation is then performed, again indepen­
dently, on each y-line of the array. 

We present two versions of a step of the ADI 
algorithm here. The first version is shown in Fig­
ure 4. Here, the current solution, U, the right 
hand sides, F, and the temporary array, V, are all 

PARAMETER(NX = 100, NY= 100) 

REAL U(NX, NY), F(NX, NY), V(NX, NY) DIST ( :, BLOC!\) 

CALL RESID( V, U, F, NX, NY) 

C Sweep over x-lines 
DO 10 J =I, NY 

CALL TR!DlAG( V(:, J), NX) 
10 CONTINUE 

CALL YSWEEP(V,NX,NY) 

DO 30 J = I, NY 
DO 30 l =I, NX 

U(I, J) = V(l, J) 
30 CONTINUE 

SUBROUTINE YSWEEP (Y,NX,NY) 
REAL V(NX,NY) DIST ( BLOC!\, : ) 

C Sweep over y-lines 
DO 20 I= I, NX 

CALL TRIDIAG( V(I, :), :-.IY) 
20 CONTINUE 

FIGURE 4 An ADI iteration: Version 1. 

distributed by blocks of columns to the implicit 
one-dimensional array of processors, $P. 

In this version, the sweep over the columns 
(representing x-lines) is performed by the first 
loop while the sweep over the rows (represent­
ing y-lines) is performed via a call to the routine 
YS WEEP. In each case, the subroutine sequential 
TRIDIAG (not shown here) is given a right hand 
side and overwrites it with the solution of a con­
stant coefficient tridiagonal system. 

The array V is redistributed when subroutine 
YSWEEP is invoked; thus it is distributed in blocks 
of columns when the first loop is executed, and is 
distributed in blocks of rows when the second loop 
is performed. This makes it possible to use a se­
quential tridiagonal solver in each of these since 
neither x-lines in the first loop nor the y-lines in 
the second loop cross processor boundaries. Note 
that the redistribution of Vis a ''transpose'' of the 
array with respect to the set of processors and re­
quires each processor to exchange data with each 
of the other processors. The communication here 
is contained implicitly in the subroutine call and 
the tridiagonal solvers themselves do not require 
interprocessor communication. 

Since the distribution of a statically distributed 
array has to be restored on return to the calling 
unit, the array Vis redistributed at subroutine exit 
to be distributed by columns. Hence, the assign­
ment of the values of V to U in the last loop does 
not cause any communication. 

We had presented another version of this algo­
rithm in our earlier paper [ 12]: we reproduce the 



PARAMETER(NX = 100, NY= 100) 

REAL U(NX, NY), F(NX, NY) DIST (:, BLOCK) 
REAL V(NX, NY) DYNAMIC, RANGE((:, BLOCl1}, (BLOC!\,:)), 

& DIST (:, BLOCh} 

CALL RESID( V, U, F, NX, NY) 

C Sweep over x-lines 
DO 10 J =I, NY 

CALL TRIDIAG( V(:, J), NX) 
10 CONTINUE 

DISTRIBUTE V :: ( BLOC!\, : ) 

C Sweep over y-lines 
DO 10 I= I, NX 

CALL TRIDIAG( V(J, :), NY) 
10 CONTINUE 

DO 30 J =I, NY 
DO 30 I= I, NX 

U(I, J) = V(J, J) 
30 CONTINUE 

FIGURE 5 An ADI iteration: Version 2. 

code here in Figure 5. In this second version, we 
do not call a subroutine to enforce a redistribution 
of V. Instead, V is declared to have a dynamic 
distribution, and is initially distributed by block in 
the second dimension. The range attribute speci­
fies that the only distributions allowed for V are 
blocks of rows or columns. Thus, the situation for 
the first loop remains the same, that is, the 
columns do not cross processor boundaries and 
hence the sequential tridiagonal solver can be em­
ployed. After the first loop we explicitly redis­
tribute the array V to be blocked by rows via a 
DISTRIBUTE statement. Now, the second loop 
ranges over the rows of V again using the sequen­
tial tridiagonal solver. In this code, the final as­
signment of the array V to the array U will also 
induce communication similar to the "transpose" 
at the subroutine boundary above since U and V 
are distributed in different dimensions. Thus in 
the first case we performed the communication 
implicitly, by passing the array to a subroutine 
where the dummy argument has an explicit distri­
bution, and in the second case we executed a 
statement to do the same work. 

There are many ways in which the ADI algo­
rithm may be formulated. For example, another 
formulation would declare array V with a static 
distribution and not redistribute it at all. A parallel 
tridiagonal solver would then be called in the sec­
ond loop; the communication would take place 
within the solver. Similarly, one could declare a 
two-dimensional processor structure and distrib­
ute the arrays by block in both dimensions: a par­
allel tridiagonal solver would then be used for both 
the x- and the y-lines. 
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All versions of this algorithm are equally easy to 
express in Vienna Fortran: which of these per­
forms the best may be dependent on various fac­
tors including message startup and transfer times 
of the underlying architectures. The point is that it 
is a trivial matter to change the distributions, or to 
substitute the calls to the sequential tridiagonal 
solver used here by calls to a parallel tridiagonal 
solver and thus experiment with the different ver­
sions. In marked contrast, such changes will typi­
cally induce weeks of reprogramming in a mes­
sage-passing language. 

5.2 Irregular Distributions 

There are a number of scientific codes where an 
efficient distribution of some of the major data 
structures is not possible at compile time. The dis­
tribution of an array may depend, for example, on 
the values of another array-or even on its own 
values, as in the example given below. Examples 
of such codes include, but are not limited to, par­
ticle-in-cell methods, sparse linear algebra, and 
PDE solvers using unstructured and/ or adaptive 
meshes. 

Here, we look at an abstraction of a two-dimen­
sional unstructured mesh Euler solver. The mesh 
is represented by triangles and the flow variables 
are stored at the vertices of the mesh. We repro­
duce only one part of the 'computation, which 
consists of accumulating at each node the contri­
bution from each of the edges incident upon it. 
The computation is implemented as a loop over 
the edges: the contribution of each edge is sub­
tracted from the value at one node and added to 
the value at the other node. 

Figure 6 shows one way in which this computa­
tion may be specified in Vienna Fortran. The 
mesh is represented by the array EDGE, where 
EDGE(/, 1) and EDGE(/, 2) are the node numbers 
at the two ends of the /th edge. The arrays X andY 
represent the values at each of the NNODE nodes. 

Consider the distribution of the data across the 
(implicit) one-dimensional array of processors. 
Since the mesh must be distributed at runtime, in 
order to balance the computational load across 
the processors, each of the arrays has to be dy­
namically distributed. 

The array X, representing a data value at each 
node, is declared to be dynamically distributed 
with an initial block distribution. Further below, 
this array is explicitly distributed via the indirect 
distribution mechanism provided by Vienna For­
tran. The indirection is based on the mapping ar-
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PARAMETER (NNODE = ... ) 
PARAMETER (NEDGE = ... ) 

REAL X(NNODE) DYNAMIC, DIST ( BLOCK) 
REAL Y(NNODE) DYNAMIC, CONNECT (=X) 
INTEGER MAP(NNODE) DIST( BLOCJ,j 
REAL EDGE(NEDGE,2) DYNAMIC, DIST ( BLOC/\} 

CALL PARTITION( MAP, EDGE ) 

DISTRIBUTE X :: ( INDIRECT( MAP)) NOTRANSFER (Y) 
DISTRIBUTE EDGE :: ( FDJST(MAP, EDGE, NEDGE, NNODE) 

FORALL I= I, NEDGE ON OWNER( EDGE(I,I)) 
INTEGER Nl, N2 
REAL DELTAX 

Nl =EDGE(!,!) 
N2 = EDGE(I,2) 

DELTAX = F(X(NI), X(N2)) 

REDUCE( Ann, Y(NI),- DELTAX) 
REDUCE( ADD, Y(N2), DELTAX) 

END FORALL 

END 

DFUNCTION FDIST(MAP, EDGE, N, M) 
TARGET A(N,*) 
REAL MAP(M) DIST(*) 
INTEGER EDGE(N,2) DIST(*) 

DO 10 I= 1, N 
A(I,:) DIST TO $P(MAP(EDGE(I,l))) 

10 CONTINUE 
END 

FIGURE 6 Code for unstructured mesh. 

ray MAP, whose values are dependent on the 
structure of the mesh and are defined in the user 
specified routine PARTITION (the code for PAR­
TITION has not been shown here). The value of 
the Ith element of the array MAP, which must be 
declared with the same size as X, is the number of 
the processor in $P to which the Ith element of the 
array X is distributed. 

Y is also declared with the keyword DYNAMIC 
and is assigned the same distribution as X; its dis­
tribution is, however, connected with that of X by 
the CONNECT attribute. This means that when X 
is redistributed, Y is automatically redistributed 
with exactly the same distribution function. The 
DISTRIBUTE statement for array X specifies the 
NOTRANSFER attribute for array Y. This means 
that when the two arrays are redistributed, only 
the values of X are to be transferred to the new 
locations; the old values of Yare not moved. 

The array EDGE is also declared with a dy­
namic distribution and is initially distributed by 
block. Given the structure of the computation, it 
would be useful to distribute EDGE in such a way 
that the values at one or both of its nodes are on 
the same processor. We have chosen to distribute 

the elements of EDGE to the processor which 
owns the values for the first of its nodes. Such a 
distribution cannot be described by the intrinsic 
functions, so it is specified by the user-defined 
distribution function (DFUNCTION) FDIST in 
Figure 6. 

DFUNCTIONs are similar to regular Fortran 
functions, but have a special implicit argument 
declared with the keyword TARGET. It represents 
the array that is being distributed. Here, the distri­
bution function FDIST takes as arguments the ar­
rays MAP and EDGE and the special argument A. 
The function body then specifies that the /th row 
of the array A is to be distributed to the processor 
whose number is given by MAP(EDGE(I, 1)). 
Thus, when the distribution function FDIST is ac­
cessed in the distribute statement, the special ar­
gument A is associated with the array being dis­
tributed, i.e., EDGE, so that EDGE is distributed 
as required. 

The computation is specified using a FORALL 
loop, with an ON clause to specify where each 
iteration is to be performed. Thus the iterations of 
the loop, over the edges in this case, can be exe­
cuted in parallel. In Figure 6, the ON clause speci­
fies that the Ith iteration should be performed on 
the processor that owns the (I, 1 )th element of 
EDGE. Nonlocal values which are read can be 
gathered before the execution commences. 

The variables N1, N2, and DELTAX declared 
within the FORALL loop are private variables. 
Thus assignments to these variables do not cause 
flow dependencies between iterations of the loop. 
For each edge, the X values at the two incident 
nodes are read and used to compute the contribu­
tion DELTAX for the edge. This contribution is 
then accumulated into the values of Y for the two 
nodes. 

Since multiple iterations will accumulate Y val­
ues at each node, different iterations write to the 
same array elements, which is not permitted 
within a FORALL. So that this situation does not 
prevent parallel execution, Vienna Fortran pro­
vides special reduction statements which allow ac­
rumnlations across the iterations of a FORALL 
loop. The reduction operator ADD is used here to 
accumulate the contribution of the edge to the val­
ues at the nodes on which it is incident. The 
results cannot be accessed within the FORALL 
loop, and hence the accumulations can be easily 
performed by the system after all iterations are 
completed. This code makes use of the reduction 
operator ADD. 

The most important feature of this code as far 



as its compilation is concerned is that the values of 
X and Yare accessed via the edges, hence a level of 
indirection is involved. We distributed the arrays 
in such a way that the values at the first node of an 
edge are always local to a loop iteration, but the 
values at the second node may not be. The data 
distribution of each of the arrays is determined at 
runtime; thus the compiler cannot detect which 
references are local and which are not. In such 
situations, runtime techniques such as those de­
veloped in other projects [ 6, 14] are needed to 
generate and exploit the communication pattern. 

5.3 Some Fortran Issues 

There are several important features of Fortran 
codes which have not been dealt with in the sec­
tions above. We discuss just a few of them. 

Common Blocks 

Common blocks are used in FoRTRA:" 77 to enable 
different program units to define and reference the 
same data without using arguments, and to share 
storage units. In Vienna Fortran, the user may re­
tain full FORTRA.'\' 77 semantics for a common 
block by not explicitly distributing any of the ob­
jects within it at any place in the program. In this 
case, there is conceptually one copy of the com­
mon block, and conventional storage association 
holds for it. Note that, in accordance with the 
rules of Fortran 90, allocatable arrays may not be 
in common blocks. Vienna Fortran also permits 
explicit distribution of arrays within named com­
mon blocks. However, their distribution may not 
be dynamic. If distributions are given at more than 
one place in the program for objects in common 
blocks with the same name, then they must be 
identical except for the names of the objects. The 
common block storage sequence holds for those 
parts of a common block which are not explicitly 
distributed-we refer to these as replicated sec­
tions below. For example: 

PROGRAM MAIN 

COMMON /COM1/ X, Y(12), B(12,30), A, 
& AZ,AX 

C NONE OF THESE ITEMS ARE DECLARED 

The above common block does not contain any 
data explicitly distributed by the user. As a conse­
quence, these data may be used in common 
blocks with the same name in the usual FoRTRA:" 
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77 manner. In contrast, several objects in the fol­
lowing common block are explicitly distributed: 

PROGRAM MAIN 

REAL A(12) DIST(BLOCK) 

REAL B(4, 5) DIST(CYCLIC, :) 

COMMON/COM2/CC,DD,EE,FF,GG,HH,A,B 

Arrays A and B are distributed explicitly and 
thus determine the distribution of these two stor­
age areas in the common block. The variables in 
the common block before them comprise a repli­
cated section of the common block and they will 
be stored contiguously. In a subroutine of the 
same program, a common block with the same 
name may be declared with: 

REAL S(4, 3) DIST(*) 

REAL T(2, 5, 2) DIST(*) 

C THIS IS PERMITTED 

COMMON /COM2/ R(6), S(4, 3), T(2, 5, 2) 

The array R is not declared separately in the 
subprogram; it will be associated with the six vari­
ables of the replicated section above. The arrays S 
and T are declared such that they inherit their 
distributions from the distributed common ob­
jects, named A and B above, respectively, with 
which they are associated by storage. 

However, the following declaration of COM2 in 
a subroutine is not permitted: 

REAL E(6) DIST(BLOCK) 

REAL Z(2, 5, 2) DIST(:, CYCLIC, :) 

C THIS IS NOT PERMITTED 

COMMON /COM2/ E, X(8), Y(4), Z 

Here, the replicated section of COM2 has been 
associated with an explicitly distributed object. 
Secondly, an attempt has been made to associ­
ate both arrays X and Y with the first distributed 
common object. Finally, the second distributed 
common object of COM2 is redistributed by 
the explicit distribution of array Z. All three ma­
nipulations are not permitted. 

Equivalence Association 

Some restrictions should be placed on the use of 
the Fortran EQUIVALENCE statement when data 
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objects are distributed. In Vienna Fortran, we do 
not permit an implicit distribution by equivalenc­
ing. Further, no distributed array may be associ­
ated by equivalence with any other distributed ob­
ject. Thus equivalence association is permitted 
between replicated data only. 

Work Arrays 

FORTRA-'\' 77 does not permit dynamic storage allo­
cation. It is thus common programming practice 
to declare arrays with a maximum size and use 
them with some other, smaller, size during the 
computation. Further, a large work array is often 
declared, parts of which are then used as individ­
ual arrays with the size and shape required by the 
computation. So that arrays may be declared as 
they are used, Vienna Fortran includes the con­
cept of allocatable arrays as defined in Fortran 
90. An individual array with unknown size may be 
declared with the ALLOCATABLE attribute. 
Once its bounds are known, it can be allocated 
using the ALLOCATE statement. An allocatable 
array may also be annotated with distribution ex­
pressions to specify the distribution of the array. 
This distribution expression can be completely 
evaluated only after the allocation of the array. 
For example: 

REAL A(:) ALLOCATABLE DIST(BLOCK) 

READ(*,*) LEN 

ALLOCATE (A(LEN)) 

Here we have declared A to be a one-dimen­
sional allocatable array. Thus the distribution ex­
pression (BLOCK in this case) will be evaluated 
for A with length LEN, and the LEN elements of A 
distributed evenly across the processors. Without 
allocatable arrays, A would have to be declared 
with some maximum size (greater than LEN) and 
distributed by BLOCK with respect to this maxi­
mum size. Since only the first LEN elements of A 
are to be used, some of the processors might not 
have any of the elements of A which are actually 
used in the computation. By using allocatable ar­
rays, we make sure that all processors are involved 
in the computation. 

As noted above, many Fortran applications are 
characterized by the fact that runtime data deter­
mines the size of the underlying data objects. In 
many applications, the actual number of objects 
involved is also unknown at compile time or may 

vary during computation. Such situations require 
the work array to be distributed dynamically, 
since the actual distribution of the objects may be 
dependent on runtime data. Such an array is de­
clared with the ALLOCATABLE and DYNAMIC 
attributes. One strategy for distributing such a 
work array is to distribute each of these objects 
independently to all processors, by BLOCK for ex­
ample. Another strategy would be to distribute 
each of these objects to a subset of processors. 
This kind of distribution must be handled by a 
user-defined distribution function in Vienna For­
tran. 

6 RELATED WORK 

We discuss some of the related research in both 
language development for parallel machines and 
compilation techniques briefly below. 

A number of parallel programming languages 
have been proposed, both for use on specific ma­
chines and as general languages supporting some 
measure of portability (e.g., OCCAM) [15]. Lan­
guages for coordinating individual threads of a 
parallel program, such as LINDA [16] and 
STRAND [ 1 7], have been introduced to enable 
functional parallelism. Most manufacturers have 
extended sequential languages, such as Fortran 
and C, with library routines to manage processes 
and communication. In most explicitly parallel 
languages, the user performs many of the tasks 
which a compiler is expected to handle for a Vi­
enna Fortran program. 

The concept of defining processor arrays and 
distributing data to them was first introduced in 
the programming language BLAZE [18] in the 
context of shared memory systems with nonuni­
form access times. This research was continued in 
the Kali programming language [19] for distrib­
uted memory machines, which requires that the 
user specify data distributions in much the same 
way that Vienna Fortran does. It permits both 
standard and user-defined distributions; a forall 
statement allows explicit user specification of par­
allel loops. The design of Kali has greatly influ­
enced the development of Vienna Fortran. 

Other languages have taken a similar ap­
proach: the language DINO [20, 21], for example, 
requires the user to specify a distribution of data 
to an environment, several of which may be 
mapped to one processor. The programmer does 
not specify communication explicitly, but must 
mark nonlocal accesses. In Booster [22, 23], data 



distributions are specified separately from the al­
gorithm in an annotation module; a distinction is 
made between work and data partitions. 

More recently, the Yale Extensions that are 
currently being developed specify the distribution 
of arrays in three stages: alignment, partition, and 
a physical map [ 1]. Because all these stages are 
modeled as bijective functions between index do­
mains, data replication is not possible. By restrict­
ing the scope of layout directives to phases, a 
block structure is imposed on Fortran 90. 

The programming language Fortran D [ 4] , un­
der development at Rice University, proposes a 
Fortran language extension in which the program­
mer specifies the distribution of data by aligning 
each array to a virtual array, known as a decom­
position, and then specifying a distribution of the 
decomposition to a virtual machine. These are ex­
ecutable statements, and array distributions are 
dynamic only. While the general use of alignment 
enables simple specification of some of the rela­
tionships between items of program data, we be­
lieve that it is often simpler and more natural to 
specify a direct mapping. We further believe that 
many problems will require more complete control 
over the way in which data elements are mapped 
to processors at runtime. Fortran 90D [24], pro­
posed by researchers at Syracuse University, is 
based upon CM Fortran [25]. 

Digital Equipment Corporation has proposed 
language extensions2 for data distribution confor­
mant with both FORTRA'\ 77 and Fortran 90. 
These include directives for statically aligning 
data with decompositions. They are specified 
when the array is declared. The user may explic­
itly distribute dummy array arguments; if the dis­
tribution differs from that of the actual argument, 
redistribution occurs. The original distribution is 
restored at subroutine exit. It is assumed that the 
compiler will implement a default distribution for 
those arrays which are not explicitly distributed by 
the user. A forall statement is provided. 

Cray Research Inc. has announced a set of lan­
guage extensions to Cray Fortran (c£77) [3] which 
enable the user to specify the distribution of data 
and work. They provide intrinsics for data distri­
bution and permit redistribution at subroutine 
bounds. Further, they permit the user to structure 
the executing processors by giving them a shape 
and weighting the dimensions. Several methods 
for distributing iterations of loops are provided. 

The Cray programming model assumes that 
initial execution is sequential and the user speci­
fies the start and end of parallel execution explic-

PROGRAMMING IN VIENNA FORTRAN 47 

itly. Many of the features of shared memory paral­
.lel languages have been retained: these include 
critical sections, events, and locks. New instruc­
tions for node 110 are provided. In addition, there 
are a number of intrinsic functions to access parts 
of arrays local to a processor, and reduction and 
parallel prefix operations are included. 

The implementation of Vienna Fortran and 
similar languages requires a particularly sophisti­
cated compilation system, which not only per­
forms standard program analysis but also, in 
particular, analyzes the program's data depen­
dences [26]. In general, a number of code trans­
formations must be performed if the target code is 
to be efficient. The compiler must, in particular, 
insert all messages-optimizing their size and 
their position wherever possible. 

The compilation system SUPERB (University of 
Vienna) [8] takes, in addition to a sequential For­
tran program, a specification of the desired data 
distribution and converts the code to an equiva­
lent program to run on a distributed memory ma­
chine, inserting the communication required and 
optimizing it where possible. The user is able to 
specify arbitrary block distributions. It can handle 
much of the functionality of Vienna Fortran with 
respect to static arrays. 

The Kali compiler [6] was the first system to 
support both regular and irregular computations, 
using an inspector/ executor strategy to handle in­
directly distributed data. It produces code which 
is independent of the number of processors. 

The MIMDizer [9] and ASPAR [27] (within the 
Express system) are two commercial systems 
which support the task of generating parallel code. 
The MIMDizer incorporates a good deal of pro­
gram analysis, and permits the user to interac­
tively select block and cyclic distributions for array 
dimensions. ASPAR performs relatively little anal­
ysis, and instead employs pattern-matching tech­
niques to detect common stencils in the code, 
from which communications are generated. 

Pandore [28] takes a C program annotated 
with a user-declared virtual machine and data 
distributions to produce code containing explicit 
communication. Compilers for several functional 
languages annotated with data distributions (ld 
Nouveau [29], Crystal [30]) have also been devel­
oped which are targeted to distributed memory 
machines. 

Others [31-33] compile languages based on 
SIMD semantics. These attempt to minimize the 
interprocessor synchronizations inherent in SIMD 
execution. The AL compiler [34], targeted to one-
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dimensional systolic arrays, distributes only one 
dimension of the arrays. Based on the one-dimen­
sional distribution, this compiler allocates the iter­
ations to the cells of the systolic array in a way that 
minimizes the intercell communications. 

The P ARTI primitives, a set of runtime library 
routines have been developed to handle irregular 
computations [ 14, 35 J. These primitives have 
been integrated into the Vienna Fortran Compila­
tion System and are also being implemented in the 
context of the Fortran D Programming environ­
ment being developed at Rice University. Similar 
strategies to preprocess DO loops at runtime to 
extract the communication pattem have also been 
developed within the context of the Kali language 
[ 6, 36 J. Explicit runtime generation of messages is 
also performed by other researchers [29, 30, 32]; 
however, these do not save the extracted com­
munication pattem to avoid recalculation. 

71MPLEMENTATION STATUS 

The Vienna Fortran Compilation System is cur­
rently being developed at the University of Vienna. 
It is based upon previous work performed by 
several groups, but, in particular, upon the ex­
perience gained with the 2arallelization system 
SUPERB [8 J. It currently generates code for the 
Intel iPSC/860, the GENESIS architecture, and 
SUPRENUM. 

The implementation of a substantial subset of 
Vienna Fortran has already been completed. This 
includes: 

1. Static array distributions 
2. Arbitrary rectilinear block distributions 
3. Inherited distributions for dummy array ar­

guments 
4. F orall loops 

Special consideration has been given to opti­
mizing the generated code. In particular, the fol­
lowing analysis and optimization methods have 
been implemented: 

1. lnterprocedural communication analysis 
2. Communication optimization: matching ac­

cess pattems to aggregate communication 
routines, elimination of redundant com­
munication, and fusion of communication 
statements 

3. lnterprocedural dynamic distribution anal­
ysis 

4. lnterprocedural distribution propagation 

5. Procedure cloning 
6. Optimization of parallel loop scheduling 
7. Optimization of irregular access pattems, 

based on the PART! routines [151 

The current compilation system is a full imple­
mentation of FoRTRA'\ 77. Among other things, it 
permits the user to distribute work arrays, sections 
of which may be individually distributed; it also 
handles equivalencing. It performs extensive data 
dependence analysis and interprocedural analysis 
to determine the correctness of all transformations 
applied to the program code. 

Implementation of further features of Vienna 
Fortran, in particular the dynamic distributions, is 
under way. There is still an amount of research to 
be done in this area, including methods for the 
efficient handling of user-defined distribution and 
alignment functions. 

8 CONCLUSIONS 

In view of the increasing importance of distributed 
memory parallel computing systems, it is vital that 
the task of writing new programs and converting 
existing (sequential) code to these machines be 
greatly simplified. An approach which may sub­
stantially reduce the cost of developing codes is to 
provide a set of language extensions for existing 
sequential languages (in particular, Fortran and 
C) that are not bound to any specific existing sys­
tem but can be used across a wide range of archi­
tectures. These extensions should be as simple as 
possible, but they should also be broad enough to 
permit the expression of a wide variety of algo­
rithms at a high level. In particular, since the data 
distribution has a critical impact on the perfor­
mance of the program at runtime, tight program­
mer control of the mapping of data to the system's 
processors must be possible. 

We believe that Vienna Fortran is a significant 
step on the path towards a standard in this area. 

The authors would like to thank Peter Brezany, An­
dreas Schwald, Mark Furtney, Irene Qualters, Joel 
Saltz, John Van Rosendale, and the Fortran D group at 
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