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WiFi positioning systems (WPS) have been introduced as parts of 5G location services (LCS) to provide fast positioning results of
user devices in urban areas. However, they are prominently threatened by location spoofing attacks. To end this, we present a
Wasserstein metric-based attack detection scheme to counter the location spoofing attacks in the WPS. .eWasserstein metric is
used to measure the similarity of each two hotspots by their signal’s frequency offset distribution features. .en, we apply the
clustering method to find the fake hotspots which are generated by the same device. When applied with WPS, the proposed
method can prevent location spoofing by filtering out the fake hotspots set by attackers. We set up experimental tests by
commercial WiFi devices, which show that our method can detect fake devices with 99% accuracy. Finally, the real-world test
shows our method can effectively secure the positioning results against location spoofing attacks.

1. Introduction

Driven by the demands of location-based services (LBS) and
the Internet of .ings (IoT), 3GPP Release 16 has intro-
duced a variety of positioning technologies as supplements
to the cellular-based positioning method in the 5G location
services (LCS) [1]. As shown in Figure 1, the hybrid LCS
architecture integrates global navigation satellite systems
(GNSS) and WiFi positioning systems (WPS), to offer a
positioning result of high accuracy, availability, and reli-
ability. Applications such as autonomous driving, un-
manned aerial vehicles, and massive IoT tracking will benefit
from the improvement of LCS.

In the architecture of LCS, GNSS can provide the most
accurate position for the user’s mobile device in the open
area, but it suffers from the poor visibility of satellites in the
urban area and high power consumption [2]. On the con-
trary, WPS can provide fast and relatively less accurate
positioning results in the indoor area where other methods
are inadequate due to multipath or signal blockage. But the

introduction of those methods also imports potential threat
vectors from those technologies. For now, although the
design of 5G LCS has evaluated the credibility of the po-
sitioning results based on if the network access is trusted. But
it did not propose specific schemes to secure the positioning
results from those methods, which may damage its ability to
serve the high-level applications. Due to the opening nature
of WiFi technology, the WPS is the weakest part of LCS in
the cases of both trusted and untrusted access.

WPS uses massively deployedWiFi access points (AP) in
urban areas as location anchors. .e implementation of
WPS is shown in Figure 2. In the first stage, WPS service
providers collect information on APs in urban areas and
build a hotspot database that matches APs to their actual
geolocation. In the second stage, when the user needs to
obtain the current location, the mobile device gathers the
APs’ information in the surrounding environment and
sends them to WPS service providers. 5G LCS requests the
basic service set identifier (BSSID), which usually is the
MAC address of nearby APs to locate the mobile device. .e
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received signal strength indication (RSSI) and service set
identifier (SSID) may also be used for positioning. Finally,
WPS calculates the positioning result by querying the
geolocation corresponding to the APs.

In the process of positioning by WPS, the mobile device
cannot verify the identity of the wireless hotspots, which
makes WPS vulnerable to location spoofing attacks. .e
attacker can convince the WPS to output a fake position that
is far away from the actual location of the mobile device..is
spoofing attack technique leads to various kinds of security
threats and user privacy leakage.

In 2009, researchers first proposed the location spoofing
attacks method to WPS, which aims at widely used smart-
phones and commercialWPS services such asGoogleMaps and
Skyhook [3]. .ey deceived the positioning results of smart-
phones by transmitting fakeWiFi hotspot beacons. In the study
by Matte et al. [4], researchers combined the WiFi location
spoofingmethodwith the social network information leakage to
obtain the user identity of nearby smartphones, which poses a
great threat to personal privacy. Reference [5] proposed a
method of using fake WiFi hotspots in specific places to rec-
ognize theMAC address of a specific user’s device and track the
activities. Since location-based services have been integrated
into a wide range of mobile applications (apps) on the
smartphone, the location spoofing attacks in WPS may directly
threaten the usability of those applications and the user’s in-
formation security. As shown in Table 1, the location spoofing
attacks against WPS have effects on various types of mobile

apps. Hackers can leverage this spoofing method to perform
attacks such as hijacking the positioning results of navigation
apps, injecting a wrong location to the online order system,
pushing misleading information through the location-based
advertising system, and obtaining the nearby user’s identity in
social network apps.

Figure 3 presents a proof-of-concept WiFi location
spoofing attack. In the experiment, the attacker manipulates
the positioning result of the Google Maps on a smartphone
by simply setting up a rogue WiFi access point and sending
fake WiFi beacons. Due to the open nature of the WiFi
technique, the hacker can easily perform this kind of attack
by the commercially off-the-shelf (COTS) devices. Figure 4
shows several WiFi hacking devices that can be used to
launch location spoofing attacks against WPS.

As theWPSwas introduced into 5G location systems, the
location spoofing attack in WPS also becomes a potential
threat to the 5G LCS. .e above discussion motivates us to
propose a novel method to tackle location spoofing attacks.
.e proposed method is implied on mobile devices, and it
can secure the positioning results of both the WPS sub-
system in 5G LCS and the standalone WPS.

2. Related Works

To counter the spoofing attacks in the WiFi positioning
system, researchers have developed a variety of verification
and attack detection methods to secure positioning results.
Reference [6] proposes the Location Validation System
(LVS) to tackle location spoofing attacks. LVS verifies the
positioning result by testing whether multiple users in the
same area can communicate with each other. At the same
time, to deal with collusion attacks by multiple attackers, a
scoring algorithm of each node is proposed to solve the
problem. .is method relies on collaborative sensing from
multiple users and is not suitable for scenarios with low user
density. In their work [7], Ye et al. utilize the unique tags
with the time and location attributes extracted from the
frames of a hotspot to verify its’ validity..e implementation
of this method needs to introduce a credible witness device
nearby. Reference [8] mainly uses multiple wireless APs as
sensors to collect the Received Signal Strength Indicator
(RSSI) of the user devices and detects the attack based on the
correlation between the RSSI and the devices. Reference [9]
aims at detecting spoofing attackers in wireless networks
through RSSI and then locating the position of attackers.
.is method requires the cooperation of multiple devices at
different locations. But RSSI is not a reliable feature and the
attacker can easily bypass these RSSI-based detection
methods by simply changing the signal transmission power.

Another group of detection methods is based on RF
fingerprint (RFF). RFF refers to the unique signal charac-
teristics of wireless communication devices due to the
variability in their hardware and the propagation channel.
As a result, it can be used to verify the identity of a device.
Commonly used RFF includes the following: carrier fre-
quency offset, channel status information (CSI), power
spectrum, IQ imbalance, clock stability, signal phase offset,
the delay between transmission and reception, etc. Wang
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Figure 1: Positioning methods in the 5G location services.
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Figure 2: Procedure of WiFi positioning.
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(a) (b)

Figure 3: Positioning results of Google Maps on Android before and during the spoofing attack. (a) .e real position is in the Zhengzhou
University, Henan Province, China. (b) .e positioning result is hijacked to Hangzhou, Zhejiang Province, China, which is about 800 km
away from the real geolocation.

Table 1: Mobile applications vulnerable to the WiFi location spoofing attacks.

Application type Name
Functions vulnerable to the WiFi location spoofing attacks

Positioning Online ordering Message pushing Sharing location

Map and navigation
Google Maps ✓ — — —
MapQuest ✓ — — —
Baidu Map ✓ ✓ — —

Location review and online ordering

Foursquare ✓ — ✓ —
Groupon ✓ ✓ ✓ —
Yelp ✓ ✓ ✓ —

Trip Advisor ✓ ✓ ✓ —

Social media

Twitter ✓ — ✓ ✓
TikTok ✓ — ✓ —

Sina Weibo ✓ — — ✓
WeChat ✓ ✓ ✓ ✓

(a) (b) (c) (d)

Figure 4: WiFi hacking devices. (a) Pocket-size WiFi attack tool. (b) Rogue WiFi access point. (c) Card-size WiFi attack tool based on
ESP8266 chip. (d) WiFi attack tool based on RaspberryPi.
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et al. [10] leveraged the channel status to detect spoofing
attacks in wireless networks. Reference [11] identifies
wireless devices by using the spectrum features of trans-
mitters. Reference [12] combines the phase differences and
the frequency differences to enhance wireless security. Re-
cently, researchers introduced machine learning methods
into RFF recognition, which can provide better performance
compared with traditional methods [13–16].

3. Problem Model

In this section, we first introduce the current model of
spoofing attacks against WiFi positioning systems as the
background..en, we describe the attack detection model to
deal with this problem. .e detailed implementation of our
method will be introduced in Section 4.

3.1. Attack Model. .e process of spoofing attack against
WPS is shown in Figure 5. In the preparation stage, the
attacker needs to collect information such as the SSID and
MAC address of WiFi access points (AP) in the target lo-
cation. .is process can be achieved by querying the public
WiFi geolocation database such as WIGLE [17] or collecting
information in the real world. In the attack stage, the at-
tacker uses WiFi attack devices to send forged WiFi beacon
frames. .ose beacon frames claim multiple fake APs which
do not exist in the environment. When the user’s mobile
device received the forged WiFi frames, it sends a list of
nearby APs which contains fake data injected by the attacker
to the positioning server. Finally, the server receives the AP
list and responds a false positioning result to the mobile
device. .e attacker can manipulate the positioning result of
the mobile device in real time by modifying the fake beacon
frames.

3.2. Attack Detection Model. Figure 6 shows a general de-
tection model to counter the spoofing attack. .ere are four
roles in the attack detection model: legitimate APs, fake APs,
the user’s mobile device, and the positioning server. Among
them, legitimate APs are the real wireless devices in the
environment and can provide correct location information.
Fake APs set by the attacker intends to mislead the target
mobile device to a false positioning result. In order to
counter the WiFi location spoofing attack, this article in-
tends to design an attack detection system to tell whether an
AP is a legitimate device or a fake device based on the RFF of
their WiFi signals. .en, the mobile device can filter out the
fake APs and exclude the fake APs before sending the po-
sitioning request. Finally, the mobile device can obtain the
correct positioning result from the positioning server.

4. Spoofing Attack Detection Based on
Wasserstein Metric

4.1. Basic Idea. Based on the principle of the RF fingerprint,
we know that the signals emitted by different wireless devices
carry different features. In the spoofing attack scenario, since
WiFi signal frames of fake APs are created by the same

device of the attacker, therefore, they will share similar signal
features which provide the possibility to detect spoofing
attacks.

In this paper, we utilize the frequency offset as the signal
feature to identify devices. .e frequency offset is the dif-
ference between the carrier frequency of the transmitted
signal and the ideal signal. Different transmitters usually
have different frequency offsets. Compared with other RF
fingerprints, it can be obtained from the carrier synchro-
nization stage [18] of the WiFi receiver and does not need
additional hardware, which gives it advantages in imple-
mentation and cost.

Figure 7(a) shows the frequency offsets of WiFi signal
frames sent by three wireless APs within 10 seconds.
Figure 7(b) shows the kernel density estimation (KDE) of the
signal frequency offsets of each device. It can be seen that, for
different devices, their statistical distributions are different.
Figure 7(c) shows the signal frequency offsets ofWiFi frames
sent by the attack device which claims three fake identities;
Figure 7(d) shows the KDE of these three fake devices. As
shown in Figure 7(d), although these signal frames claim to
come from different devices, they share a similar distribution
of frequency offsets, which indicates that they are trans-
mitted by the same device.

Based on previous analysis, the basic idea of our de-
tection method is to find if there are WiFi APs that have
similar frequency offset distributions. To accomplish this
work, we combine the Wasserstein metric and the clustering
algorithm in our method. .e Wasserstein metric is a
practical way to compare the probability distributions of two
random processes; for instance, random signal frequency
offsets of aWiFi AP in this paper..e clustering algorithm is
applied to find similar APs in the point of Wasserstein
metric. Finally, the APs in the cluster are classified as fake
devices set by the attacker.

4.2.WassersteinMetric. .eWasserstein metric is a distance
function defined to measure between probability distribu-
tions. It is also called Wasserstein distance. .is concept was
introduced in the optimal transport problem, where dis-
tribution is viewed as a pile of earth and the earthmover
needs to move the mass to turn one pile into the other [19].
.e Wasserstein metric is the minimum cost, which is the
amount of earth times the distance it needs to be moved. For
the problem of this paper, the expression for Wasserstein
distance is

W(P, Q) � inf
c∼Π(P,Q)

E(x,y)∼c‖x − y‖, (1)

where P and Q are the frequency offset probability distri-
butions of the signals sent by two wireless APs and Π(P, Q)

is the set of all possible joint distributions when P and Q are
combined. A sample (x, y) ∼ c is taken from the joint
distribution c, the distance between them ‖x − y‖ is cal-
culated, and the distance expectation E(x,y)∼c‖x − y‖ under
that joint distribution is calculated based on it. inf(·) in the
equation represents the minimum value taken, i.e., the lower
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bound under all possible joint distributions, defined as the
Wasserstein metric.

In the case of one-dimensional distributions, the closed-
form solution of the Wasserstein metric is

Wp(P, Q) � 􏽚
1
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where F(z) and G(z) are the cumulative distributions’
function of the two hotspots’ signal frequency offset dis-
tributions, i.e., the integral of the probability density
function.

In practice, we cannot obtain the closed form of F(z)

and G(z), but can estimate it by random sampling. As-
suming that samples of random distribution P are ob-
tained by collecting the frame from a device and are
ranked from small to large as X1, X2, . . . , Xn and another
n incremental sample results Y1, Y2, . . . , Yn for the fre-
quency offset distribution Q, then
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where ε(x) is the unit step function and 􏽢F(x) and 􏽢G(x) are
probability accumulation function estimates of the fre-
quency bias distributions P and Q. In the case of p � 1, we
can deduce the estimation of Wp(P, Q) as
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.us, we can estimate the Wasserstein metric between
two APs’ by their frequency offset samples:

􏽢Wp�1(P, Q) �
1
n

􏽘

n
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Xi − Yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (5)

Based on the above analysis, it is possible to measure the
similarity between multiple APs by calculating the Was-
serstein metric between the frequency offset distributions of
their emitting signals. Figure 8(a) shows the Wasserstein
metric matrix of signals from a set of legitimate Wi-Fi APs.
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Figure 5: Spoofing attack model in the WiFi positioning system.
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Each element in the matrix stands for the value of Was-
serstein metric for a pair of devices. Figure 8(b) is the
Wasserstein distance matrix of signals from a set of Wi-Fi
APs under attack, wherein device nos. 9∼16 are the fake APs
generated by an attack device.

4.3.DistributionClustering. Given the obtainedWasserstein
metric of the frequency offset distribution between each
device, the questions that need to be addressed are (1) de-
termine if there are signals in the environment with similar
frequency offset distributions and (2) distinguish the fake
APs from legitimate APs. As we have no a priori knowledge
of legitimate APs, it leads us to a typical distribution clus-
tering problem.

In this paper, we use the density-based spatial clus-
tering of applications with noise (DBSCAN) method to
cluster the frequency offset distribution of signals.

DBSCAN was proposed by Ester et al. in 1996, which is
one of the most commonly used clustering methods [20].
.e DBSCAN method is suited to solve this clustering
problem for it does not need to specify the number of
clusters and is robust to a large number of out-of-cluster
noise points, which are the legitimate APs in this paper.

We utilize (5) as the distance function for the
DBSCAN algorithm to cluster the signal samples from all
devices collected. .e APs in the same cluster mean they
are similar in the meaning of Wasserstein metric. Ulti-
mately, the wireless devices that are successfully clustered
are assigned as fake APs, while the remaining wireless
APs that are not in the clustering are legitimate devices.
Algorithm 1 is shown as follows.

An example of the DBSCAN clustering result is illus-
trated in Figure 9. As shown in the figure, all the fake APs are
in the cluster, and the legitimate APs are marked as noise
points.
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4.4. Overall of the Attack Detection Method. Finally, Fig-
ure 10 shows the overall view of the proposed attack de-
tection scheme integrated with the Wasserstein metric and
DBSCAN algorithm. Our method first collects the beacon
signals of WiFi APs in the environment and estimates their
frequency offset, next calculates the Wasserstein metric
between each pair of the frequency offset distributions, and
then uses the DBSCAN algorithm to find similar devices in
the meaning of Wasserstein metric. If there are 2 or more
APs in the same cluster, it means there are spoofing attacks
in the environment. Finally, we mark the APs in the cluster
as fake APs and add them to the blocklist. .ose detected
fake APs can be blocked in theWPS which ensures that users
can acquire the correct positioning result from the posi-
tioning server.

5. Experiments and Results

.is section describes the experimental testing of the pro-
posed spoofing attack detection method. We build a sim-
ulation scenario of spoofing attacks by commercial WiFi
devices, implement a prototype attack detection system
based on the USRP device, and evaluate the performance of
our method.

5.1. Experimental Setup. .e hardware devices used in our
experimental system are shown in Figure 11..e left side of the
photo includes three commercial outdoor wireless APs, a home
wireless router, and several RaspberryPi 3B board computers,
which are used to build the wireless environment of WPS
scenarios. Another RaspberryPi 3B board computer is installed
with the MDK3 wireless attack tool to simulate the WPS
spoofing attack by hackers. To the right of the image are the
USRP B210 device and a laptop used to implement our attack
detection method.

Figure 12 shows the architecture of the location spoofing
detection experimental system. Firstly, the WiFi signal is col-
lected by the USRP B210 device. .en, we use the GNU Radio-
based software receiver [21] to demodulate theWiFi signal..e
spoofing attack detection method proposed is parallelly

integrated with the software receiver. It is fed with frequency
offset records and outputs the MAC addresses of fake APs.

In order to test the performance of the proposed method,
we use the system to collect signal records from multiple APs
and use different combinations of devices to construct 400 test
scenarios, 200 of which simulate normal conditions and 200 of
which are with the presence of attackers. Each scenario contains
at least 10 APs. For each AP, 400 samples of WiFi signals were
collected. In the evaluation stage, the signals are randomly
sampled from the datasets to ensure the stability of test results.

5.2. EvaluationMetrics. In each round of tests, we first get the
confusion matrix of the test dataset as shown in Table 2, where
TP is true positive, which refers to the number of correctly
detected fakeWiFi APs..e FNmeans false negative, and TN/
FP stands for the counts of true negative and false positive.

With the definition above, to evaluate the performance
of our method, we adopt standard statistical metrics such as
accuracy, precision, and recall, and these metrics are defined
as follows:
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Accuracy �
TN + TP

TN + TP + FN + FP
,

Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
.

(6)

5.3. Performance of Identification

5.3.1. Impact of Various Parameters. .e first experiment
aimed to find the optimized parameters of the proposed
algorithm. Two parameters, min_pts and ε, directly affect
the detection performance of the proposed algorithm. We
change the parameters to test the impact of those pa-
rameters on the performance metrics in the 400 sce-
narios. .e test results are shown in Figure 13, where the
best accuracy (99%) is achieved when min_pts � 3 and ε
� 320; meanwhile, precision and recall are also high. .is
set of optimized parameters will be used in the subse-
quent tests.

5.3.2. Impact of Sample Numbers. Figure 14 gives the impact
of a varying number of samples on the detection perfor-
mance. .e more the signal samples collected the more
improved is the identification performance. .e proposed

method performs poorly when the number of samples is less
than 25. As the number of samples increases, the perfor-
mance shows an upward trend. When using 40 samples, the
accuracy, precision, and recall surpass 95%, and when using
more than 80 samples, the method achieves 99% accuracy
and ensures high recall and precision. In general, WiFi
hotspots broadcast beacon frames at a rate of 10Hz, so the
algorithm can collect 100 samples of data from each AP
hotspot within 10 seconds, which ensures the effective de-
tection of fake APs.

5.4. RealWorld Experiment. .e purpose of this experiment
was to test the efficacy of our method combined with the
traditional WPS on countering location spoofing attacks in
the real-world environment.

Figure 15(a) shows the physical location (Zhengzhou
East Railway Station, Henan, China) of our test area which is
filled with public WiFi hotspots. First, we launched the
location spoofing attack by setting up fake wireless APs with
MAC addresses that are located far (Hangzhou Tower,
Zhejiang, China) from the actual physical location. .en, we
collect WiFi signals of the test area during the spoofing
attack.

At present, the 5G standard does not prescribe the detailed
implementation of WPS in LCS, and we use the Google Maps
geolocation service as an alternative solution to acquiring the
positioning result. Table 3 shows the WiFi AP list collected

WiFi beacon signal

… …

Distribution of
frequency offset

Wasserstein metrics for
distribution pairs

Collect WiFi beacon 
signal

Estimation 
frequency offset

Calculate wasserstein 
metric

DBSCAN 
clustering

MAC1 MAC2

MAC3 MAC4

Add fake APs to the 
blocklist

Clustering result

Figure 10: Flow diagram of the proposed detection method.

Figure 11: Hardware devices in the experimental system.
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Figure 13: Detection performance with different ε and min_pts.
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Figure 12: .e architecture of the location spoofing attack detection system.

(1) Collect all WiFi APs in the environment as the points in the dataset
(2) Estimate the Wasserstein metric between each pair of points in the dataset
(3) Find the points in the ε-neighborhood of every point, and identify the core points with more than min_pts neighbors
(4) Find the connected components of core points on the neighbor graph, ignoring all noncore points
(5) Assign each noncore point to a nearby cluster if the cluster is an ε- neighborhood, otherwise assign it to noise
(6) Mark the remaining noise points in the dataset as legitimate APs and the ones that have been clustered as fake APs

ALGORITHM 1: Density-based spatial clustering of applications with noise.
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during the spoofing attack. .e last column in the table shows
the detection results of our method.

When the positioning service was fed with the full list of
WiFi APs, the positioning result acquired was manipulated to
Hangzhou Tower, as shown in Figure 15(b), which is the fake
location..en, we applied our spoofing attack detection system
and excluded all the APs marked as “blocked” before actually
sending the positioning request to the service. Figure 15(c)
shows that the correct positioning result was acquired from the
positioning service after filtering out the fake APs by our
method.

6. Discussion

Our studies serve as a proof-of-concept that develops an un-
supervised detector to recognize and counter the location
spoofing attacks againstWPS, which can be seen as a part of the
generalized WiFi spoofing attack problem. Table 4 shows a
comparison between our proposed method and other related
works.

As shown in Table 4, our detection method provides rel-
atively high performance and competitive features compared
with existing methods. First, unlike the CSI and RSSI-based

methods, our attack detection method is independent of the
communication channel parameters, so it will keep stable
performance despite the change in the location of devices;
secondly, this is a user-side detection method, which does not
require additional communication overhead and collaborative
devices. .ird, our method does not need to record and learn
the feature of legitimate devices in advance, which is the biggest
difference compared with most other RFF-based methods.

.e main innovation of our work is leveraging the distri-
bution of a device’s signal feature instead of the one-shot feature
to identify the malicious devices. Combined with the Was-
serstein metric and DBSCAN algorithm, this approach can be
seen as dimension-raising processing and maximize the in-
formation extracted from one signal feature. But it also means
we need to make a trade-off between the performance and the
delay of collecting samples. Another main limitation of the
proposed method is that it still needs access to the raw signal to
extract the signal frequency offset. Although all the hardware
receivers have the frequency offset estimation stage to syn-
chronize the signal, few devices can provide the interface to
output this parameter, which makes it difficult to be applied on
most COTS devices. Moreover, the frequency offset used in our
method is affected by the Doppler effect. It could bring in
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0.6

20 40 60 80 100 120 140
Number of samples

Accuracy
Precision
Recall

Figure 14: Impact of a varying number of samples on the performance.

(a) (b) (c)

Figure 15: Real-world test positioning results. (a) Physical location of the test area. (b) Positioning result manipulated by spoofing
attack. (c) Positioning result secured by the proposed method.
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potential performance loss as the frequency offset changes when
the user is moving fast. Our future work is to utilize more signal
features in the method to achieve robust performance. Another
potential improvement is to introduce the innovative authen-
tication scheme [24–26], to provide extended security protec-
tion against nontraditional threats.

7. Conclusion

In this paper, an attack detection method based on the Was-
serstein metric and DBSCAN is proposed to address the
problemof location spoofing attacks inWPS..e algorithmfirst
extracts the frequency offset of the WiFi signals; then, it cal-
culates theWasserstein distance between each pair of APs in the
environment; finally, it uses the DBSCAN algorithm to detect

the fake wireless APs that share similar frequency offset dis-
tributions. We test our method in both controlled experiments
and the real-world environment..e experiments show that the
proposed method achieves a high accuracy of 99% for detecting
fake APs. .e real-world test shows that our approach can
effectively secure the positioning result against the location
spoofing attack.

Data Availability

.e data used to support the study are available from the
corresponding author upon request.

Conflicts of Interest

.e authors declare that they have no conflicts of interest.

Table 2: Confusion matrix of the detection result.

Test predict Fake AP Legitimate AP
Fake AP TP FP
Legitimate AP FN TN

Table 3: WiFi APs’ information collected in the real-world test.

Category MAC address ∗ Status

Legitimate AP

00: ∗ ∗ : ∗ ∗ : ∗ ∗ : 55:8C Good
00: ∗ ∗ : ∗ ∗ : ∗ ∗ : F5:62 Good
00: ∗ ∗ : ∗ ∗ : ∗ ∗ : 58:35 Good
00: ∗ ∗ : ∗ ∗ : ∗ ∗ : 19:C4 Good
00: ∗ ∗ : ∗ ∗ : ∗ ∗ : 39:33 Good
06: ∗ ∗ : ∗ ∗ : ∗ ∗ : DA:22 Good

Fake AP

78: ∗ ∗ : ∗ ∗ : ∗ ∗ : 7E:29 Blocked
78: ∗ ∗ : ∗ ∗ : ∗ ∗ : 7E:2A Blocked
78: ∗ ∗ : ∗ ∗ : ∗ ∗ : 7E:2C Blocked
78: ∗ ∗ : ∗ ∗ : ∗ ∗ : 7E:2E Blocked
80: ∗ ∗ : ∗ ∗ : ∗ ∗ : FD:50 Blocked
78: ∗ ∗ : ∗ ∗ : ∗ ∗ : 7E:28 Blocked
70: ∗ ∗ : ∗ ∗ : ∗ ∗ : 4F:A1 Blocked
C4: ∗ ∗ : ∗ ∗ : ∗ ∗ : C8:6D Blocked
E6: ∗ ∗ : ∗ ∗ : ∗ ∗ : C0:86 Blocked

∗.e MAC addresses are masked for privacy concerns.

Table 4: Comparison of different methods on WiFi spoofing attack detection.

Method
Implementation requirements

Detection rate (%)
Collaborative devices Priori

knowledge
Access to raw

signal
Restuccia et al. [6] Cross check with other users ✓ — — Not given
Ye et al. [7] Cross check with positioning servers ✓ — — Not given
Faria and Cheriton [8] RSSI with min-max match ✓ — — 99.1
Yang et al. [9] RSSI with SVM ✓ — — 98
Xiao et al. [22] CSI with generalized likelihood ratio test ✓ — — 90
Liu et al. [23] CSI with SVM ✓ — — 95
Wang et al. [10] CSI with multiple antenna positioning — — — 98.5
Suski et al. [11] Preamble spectrum feature — ✓ ✓ 80
Brik et al. [13] Multiple signal features — ✓ ✓ 99
Jiang et al. [14] CSI with deep learning — — — 95
Our method Frequency offset with Wasserstein metric — — ✓ 99
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