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Software attacks like worm, botnet, and DDoS are the increasingly serious problems in IoT, which had caused large-scale cyber
attack and even breakdown of important information infrastructure. Software measurement and attestation are general methods
to detect software integrity and their executing states in IoT. However, they cannot resist TOCTOU attack due to their static
features and seldom verify correctness of control flow integrity. In this paper, we propose a novel and practical scheme for software
trusted execution based on lightweight trust. Our scheme RIPTE combines dynamic measurement and control flow integrity with
PUF device binding key. +rough encrypting return address of program function by PUF key, RIPTE can protect software
integrity at runtime on IoTdevice, enabling to prevent the code reuse attacks. +e results of our prototype’s experiment show that
it only increases a small size TCB and has a tiny overhead in IoTdevices under the constraint on function calling. In sum, RIPTE is
secure and efficient in IoT device protection at runtime.

1. Introduction

1.1. Background. Internet of things and embedded system
spread quickly and widely in daily life, which is deployed in
intelligent traffic, unmanned aerial vehicle, remote medical,
environment monitoring, intelligent home, smart city,
factory, etc. Cloud infrastructure extends the capabilities of
computing and storage for IoT, and development of
LPWAN (Low Power WAN) strengthens IoT’s communi-
cations, interconnects devices with Internet or mobile In-
ternet conveniently, and also provides rich applications for
intelligent hardware in IoT. Statistics from Gartner show
that global IoTdevices reach 20.8 billion in 2020. IoTsecurity
incidents occur frequently. Hackers intruded a large scale of
IP cameras, video cameras, and routers in 2016 and con-
ducted DDoS attack to interrupt more than 1200 web server
including Twitter and Netflix.

Generally speaking, IoT is vulnerable to malicious at-
tacks, due to lack of security mechanisms on devices. It is a
critical problem how to verify remote IoT devices with the
expected states. Various schemes are presented to build trust
architecture in IoT devices. SMART [1] was an efficient and

secure method for establishing a dynamical root of trust in
remote IoT device. Intel Lab proposed TrustLite [2] security
architecture for trusted execution-based hardware-enforced
isolation by lightweight MMU and verified its security ca-
pabilities in FPGA prototype for low-cost IoTdevices. Tytan
[3] improved TrustLite architecture based on MPU
(Memory Protection Unit) by TUD, Germany. It started
FreeRTOS real time OS on strong isolation provided by
security hardware and achieved great performance im-
provement in real time.

PUFs (Physical Unclonable Functions) [4, 5] are another
lightweight method to establish device trust. +ey have the
characteristics of both high robustness and uniqueness,
widely applied in device identification and authentication
etc. +ere are many types of PUFs, e.g., SRAM PUF [6, 7],
optical PUF [8], Ring Oscillator PUF [9], Flash memory-
based PUF [10]. So far, SRAM PUF is the most mature PUF
technique in practice. It extracts the unique and reliable
device key to build embedded trust by applying fuzzy ex-
tractor [11]. Zhao et al. [12] proposed a lightweight root of
trust scheme based on SRAM PUF in Trustzone environ-
ment, and built the trust architecture from root of trust in an
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embedded system. PUF is a convenient and efficient method
to construct lightweight trust. It has two obvious advantages:
first it can provide a unique device key derived from
hardware fingerprint without any storage; second, PUF can
bind the system critical data with hardware platform, which
reduces the attack surface so that we can use PUF to protect
the runtime execution environment for IoT device.

+e latest Cortex-M chips such as Cortex-M23/33
support Trustzone technology (called TZ-M [13]) to enhance
terminal security. TZ-M can be used to protect firmware,
flash image, and peripheral, and support secure boot, trusted
execution, and code update for embedded system and
software. ARM TrustZone divides platform’s computing
environment into secure world and normal world based on
CPU security extension. Samsung provides Knox [14] for
smartphones, which utilizes TZ security features to support
business and personal system co-existed in one smartphone.
In addition, Samsung released several smartphone products
including Galaxy S4, S5, S6, S7, Galaxy Note 3, etc. Knox
devices are equipped with root certificates signed by gov-
ernment or enterprise, and what is more, each firmware or
software image must be checked by certificates during secure
boot. TIMA (Trustzone-based Integrity Measurement Ar-
chitecture) in Knox measures and monitors kernel integrity
at system runtime. Furthermore, TZ is used in fingerprint
identification and mobile payment, e.g., Apple’s TouchID,
Qualcomm Secure Execution Environment, and Huawei
smartphone.

Intel presented TXT [15] to establish isolation envi-
ronment based on CPU security extension, which ensures
software integrity and data confidentiality. Flicker [16]
utilizes TXT to isolate sensitive codes to untrust os and
especially provides fine-grained remote attestation of iso-
lated codes. Its TCB is also very small. Later, a series of
schemes [17∼20] like TrustVisor advance the research from
idea of Flicker. TrustVisor [18] is a solution of virtual
machine monitor based on VT feature, realizes the security
protection of sensitive codes in isolation environment, and
only decreases performance by 7% than the normal system.
In cloud computing, Intel SGX (Software Guard Extensions)
[21] protects memory codes and data and implements root
of trust, remote attestation, and data sealing. Dynamic
memory management inside enclave [22] is proposed to
extend the SGX instruction set, facilitates memory allocation
in enclave initialization for software developers. +e ap-
proach of isolated OS kernel with Intel SGX [23] is also
presented on cloud platform. It is obvious that Intel SGX is
gradually improved and quickly advanced.

1.2. Contribution. In sum, TEE (Trusted Execution Envi-
ronment) technology is quite universal in IoT. In order to
protect IoT software runtime integrity, we propose a novel
and practical scheme of software trusted execution in this
paper. It measures and verifies the embedded program code
integrity dynamically and enables to prevent common code
reuse attacks. Taking advantage of ARMTrustzone and PUF-
based lightweight trust, it can efficiently ensure integrity of
code execution and security of code distribution.

(1) It enables binding software and IoTdevice with PUF
key. While only software is released and distributed
from IoTserver, it can be correctly executed on target
device, which implies that the binding relationship is
authenticated between codes and device. Even
though the control flow integrity of software codes is
cracked and bypassed by hacker on one device, the
same version software deployed on the other devices
cannot be attacked in IoT network, so that it can
prevent the worm botnet from infecting IoT
network.

(2) It measures function codes of software dynamically
during its execution and further ensures the whole
software runtime integrity on device. It also elimi-
nates security risk of TOCTOU (Time of Check,
Time of Use) [24] attack by reducing time interval
significantly between measurement and execution
and thus prevents the dynamic-link library hijacking
through detecting integrity of software’s function
codes.

(3) It can prevent code reuse attack such as ROP
(Return-Oriented Programming) and JOP (Jump-
Oriented Programming). +e function return ad-
dress is encrypted under the PUF key. When the
control flow is hijacked through modifying function
return address on stack, error return address will
cause faults for function return.

(4) It presents a comprehensive evaluation of RIPTE
under Mibench, a universal benchmark suite of
embedded applications for IoT. We also give out
performance optimization for return address de-
cryption, and it can be improved 24.5% by pre-
computing in decryption.

2. Threat Model and Architecture

Attackers attempt to instrument the malicious codes, tamper
the execution environment of trusted software codes, and
further control IoT devices and network. According to
Dolov-Yao security model [?]3, we consider the following
adversaries: network intruder, device cracker, and software
code attacker. On one hand, adversaries in our scheme aim
to tamper the static firmware or software when the device is
upgrading software, so that the device installs the vulnerable
software with attacker’s malicious codes. On the other hand,
they seek to dynamically execute the malicious code or
behavior reusing code gadget. And the physical attack, DDoS
attack, is beyond our discussion in our threat model.

2.1. System BootKit Attack. +e firmware/software in IoT
device mostly do not have a code signature, so that the
attacker can reverse engineer code, modify it, and fuse ar-
bitrary malicious code to IoT device. Due to the authenti-
cation with a weak password or no password, the attacker
can easily inject the bootkit into the IoT embedded system.
+e attacker may tamper the integrity of firmware and
software in memory at system bootstrap. In order to pass the
verification of memory checksum, the attacker start bootkit
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to complete memory copy, substitution, or memory com-
pression to hide the malicious codes in unused memory
region. +e root of trust and secure bootstrap can prevent
this kind of attack by the trusted chain establishment.

2.2. Code Reuse Attack. +e attackers’ objective is to exploit
Code Reuse Attack (CRA) vulnerability to execute malicious
behavior and obtain the system privileged rights. +e at-
tacker can completely control stack memory regions and
reuse the existing codes in the system to construct a set of
code gadgets running with malicious behaviors. +is attack
does not inject any extra malicious codes inside the system,
so it is difficult to detect and prevent CRA. In recent years,
CRA can bypass secure boot and code signature verification
in IOS device to achieve system jailbreak and software
unlocking. +e common CRA includes ROP, JOP, JIT
Spraying, etc.

2.3. Device Compromising Attack. When one IoT device is
compromised, its device key is exposed to the intruder. +e
intruder using the compromised device may distribute
malicious code to other devices or servers with the valid
device key. Even worse, he may compromise a large number
of devices, form a IoT botnet to carry out a large-scale cyber
attack.

2.4. Network Communication Attack. +e intruder may
eavesdrop, intercept, and modify the communication
messages between devices. Due to lack of security protection
mechanism, the intruder may tamper and replay the mes-
sages to reinstall software of the malicious version or old
vulnerable version. But this kind of intrusion must com-
promise the distribution protocol on software upgrading for
IoT device firstly.

Our scheme needs some hardware security extensions to
support our security architecture. In order to prevent above
adversaries, we assume that our system has the following
security features:

(i) A tiny trust anchor is embedded in the device. (1) It
establishes the static trust chain from device boot
and thus guarantees the integrity and security of
rich OS and secure OS. (2) It dynamically measures
integrity of software codes at runtime on IoTdevice.
Furthermore, it can attest the trustworthiness of
software codes to administrator server with fresh
nonce. (3) It can derive encryption key from tiny
anchor (e.g., SRAM PUF) [12] to protect the return
address and indirect jump address in runtime
memory.

(ii) Trusted execution environment provided by ARM
TrustZone is assumed to protect secure os and its
trusted services such as measurement engine, ad-
dress checking module, etc. Because device key is
derived from trust anchor, it does not need auxiliary
secure storage to protect key’s sensitive data in TEE.

(iii) DEP (Data Execution Prevention) is open to pro-
vide system-level memory protection, and it pre-
vents the code injection attack and other malicious
code executed from data pages such as the default
heap, stacks, and memory pools.

Against these security threats, we design secure execu-
tion architecture (shown in Figure 1) which utilizes the ARM
TrustZone to protect the integrity and security of the code
execution. +e tiny anchor SRAM PUF provides secure
device key and random source as lightweight root of trust in
the hardware layer. In the system layer, TEE-based Trust-
zone protects the secure OS, cryptographic service module,
and program address validation module, which ensures the
target codes trust execution. +e target to be protected runs
in the normal world where attacker can intrude the virus,
trojan horse, and other malicious codes to steal sensitive
data, promote privileged rights, even completely control IoT
device. +e Adminstration Server is responsible for vali-
dating, distributing, and installing the trustworthy codes to
IoT devices.

TrustZone divides environment into normal world and
secure world, and main security service modules are located
in a secure world. ME (Measurement Engine) measures the
pieces of software codes at runtime. ACM (Address
Checking Module) is responsible to decrypt the return
address and verify its correctness according to control flow
integrity. It can optimize the performance of decryption and
verification with the support of target CFI table. AS (At-
testation Service) signs the measurement log and attests
current softwares’ running states. In normal world, the
software execution is hooked by client kernel module above
TrustZone Driver, and Softwre upgrade module is used to
verify and install the instrumented software when Admin-
istrator Server distributes it securely.

3. RIPTE Design

3.1. Lightweight Trust Establishment. +e static environment
after device starts up is guaranteed by lightweight trust chain
rooted from SRAM PUF. PUF is used as lightweight trust
anchor bound with hardware device, which provides trust
device identity of hardware fingerprint, secure environment
built on device key. PUF is a standard security component,
and now it is gradually becoming a commercial application.
In our system, we bind PUF and software together to identify
the device and protect software’s integrity and
confidentiality.

+e primitive key is essential to protect software exe-
cution, which is derived from primary seed (pufSeed)
generated by PUF. +ere are two kinds of keys IdentityKey
and EncryptionKey bound with device in our scheme.
IdentityKey is used to attest device identity and its software
states. EncryptionKey is used to protect the sensitive memory
data. +e function KDF adopts NISTs recommendation [25]
and key derivation is as follows:

IdentityKey: � KDFa(ALG ECC 256, pufSeed,

“IDENTITY,”NULL, NULL, 256)
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EncryptionKey: � KDFa(ALG
AES 256, pufSeed, “ENCRYPTION, ”NULL,

NULL, 256)

+e IoT device starts up from bootloader and then
measures each component’s integrity, verifying its code
signature one by one. +is process will build the initial trust
environment. As Figure 1 shows, the establishment of static
trust chain can be divided into 4 stages.

(1) +e device identity key and encryption key are
derived from SRAM PUF fingerprint by fuzzy
extraction algorithm after the device starts up.
+en device measures integrity of bootloader and
verifies measurement values according to its code
certificate.

(2) +e bootloader measures the Secure OS, verifies its
image signature by certificate and then extends the
integrity measurement event to system log. If the
signature verification fails, Secure OS will halt until
the image is repaired. +en Secure OS starts trust
services such as algorithms of Measure, Attest, and
Code_upgrade, which are executed in TEE protected
by ARM TrustZone.

(3) Secure OS measures the Normal OS and verifies its
image signature by OS certificate, so that the trusted
chain will be established from hardware PUF,
bootloader, Secure OS to Normal OS.

(4) Normal OS measures software integrity and extends
measurement event to system log. Due to the variety
of subs, integrity verification is not mandatory.
Multiple software will simultaneously run in un-
protected normal world, and virus, worm, etc. can
intrude the system by exploiting system vulnera-
bilities. Consequently, it is extremely important to
protect runtime integrity of software.

+e core algorithms to protect softwares runtime in-
tegrity are provided by trusted service modules located in an

isolated execution environment based on TrustZone. +e
main algorithms include the following.

3.1.1. Measure. It measures the code fragments of function
level at runtime and returns the measurement results to
attestation service and other trusted services.+e SHA1 hash
algorithm is used to calculate the digest of code fragments.
+e measurement algorithm is activated before the code
fragments execute at runtime.

3.1.2. Attest. It reports the proofs on information flow in-
tegrity and codes integrity, signs the proofs by device
identity key, and sends the attestation data to the remote
verifier to prove its trustworthiness. +e device identity key
is derived from hardware PUF fingerprint by fuzzy ex-
traction algorithm.

3.1.3. Code Upgrade. It is the trusted upgrade algorithm of
firmware and software in IoT device. +e certificate
cert(pkS) is used to verify the code signature on distributed
software from administrator server. +e monotonic counter
c is used to prevent replay attack and version rollback attack
on software distribution. When the software version is
upgraded, the counter will increase one.+e device upgrades
software according to codes binding with device key derived
from PUF.+e invalid codes will be rejected during software
upgrading.

3.2. Runtime Integrity Protection. +e integrity check en-
sures security of the initial environment before software
runs. However, attackers can breach software’s runtime
integrity by exploiting vulnerabilities to inject malicious
code or reuse the system codes. For example, ROP reuses the
short instruction sequences (called gadgets) that end with ret
instruction, overwrites the stack return address with gadgets
address, and changes the execution flow of programs.
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Figure 1: RIPTE architecture and its secure boot based on TEE.
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We utilize the memory security mechanism DEP to
prevent illegal execution by injecting malicious codes in
stack and data segments. Hackers can inject malicious codes
in memory pages such as stack, heap, and memory pool
marked as nonexecutable, but these injected codes are
prevented from executing by DEP. +e method of runtime
integrity protection is associated with DEP in TEE archi-
tecture in our scheme. It mainly includes three aspects: (1)
runtime integrity of code block; (2) correctness of code
return address; and (3) validity checking of indirect jump
address of code. +e integrity protection on code block and
return address is implemented implicitly by decrypting
return memory address (cf. Figure 2).

3.2.1. Software Code Runtime Measurement. +e general
method of measuring codes is static measurement in IMA
[26] when the executable codes are loading into the memory,
which effectively guarantees codes integrity at loadtime. We
are expected to protect codes runtime integrity further. +e
software is divided into function blocks denoted by
fn block[i] according to the granularity of function slices.
Before the function is called during program execution, code
block of this function must be measured at runtime, and its
integrity is checked indirectly when function return address
is decrypted.

+e runtime measurement checks integrity of each code
block, so it can prevent dynamic-link library hijacking to
change the function invocation. +e measurement occurs at
the time of function calling. Obviously, it reduces the in-
terval between check and execution of code integrity and
lowers the security risk of TOCTOU attack. +e frequent
triggers of runtime measurement may affect performance in
the general terminal platform like PCs and smartphones, but
it is suitable for IoTapplication of fixed and fewer codes. We
consider the measurement engine must be located in a se-
cure execution environment based on TrustZone, so hackers
cannot attack the measurement engine and disable or bypass
the runtime measurement.

+e measurement engine must trace the function calling
with software code execution (Algorithm 1). +e detailed
measurement algorithm is shown as follows.

3.2.2. Function Return Address Protection. +e code reuse
attack like ROP cannot tamper the software code itself, but it
modifies the function return address in stack and jumps to
the existing gadgets in system libraries ended with ret in-
struction. In order to ensure the runtime integrity, we design
the encryption of return address to protect codes correct call
and return and prevent illegal jump to ROP gadgets. +e
encryption does not protect the integrity of code instructions
in memory code segment, but ensures the correctness of
function return address. Any exceptional modification on
encrypted return address in stack must cause invalid
function return at final.

+e encryption on return address follows
retaddrj

′ � EncK(retaddrj, mj), where K is the device en-
cryption key derived from PUF, and mj is the measurement
value of code block on function fj. We recommend the AES

encryption algorithm to protect return address, which has
enough security strength to resist differential attack. In a
word, the return address is bound with function measure-
ment and encrypted with device PUF key.

In our scheme, measurement engine measures the
calling target function, and the address checking module
encrypts or decrypts the return address. Figure 2 describes
the encryption process on return address, and decryption is a
similar process in reverse. Its concrete method is given
below:

(1) When function calling occurs, measurement engine
hooks call and pushes operation on function calling,
e.g., bl 0x11524, push fp, lr􏼈 􏼉 in ARM devices. It
passes binary instructions currently executed on
code segment to address checking module.

(2) Address checking module parses the return address
of function calling, uses the device key to encrypt the
address, and then pushes the encrypted address into
stack.

(3) +e function executes normally until the function
returns. +e data except the return address have no
change on stack, and only the function return ad-
dress is encrypted. +e attacker can modify all the
data on stack for code reuse attack.

(4) Measure engine hooks pop operation before function
return, e.g., pop fp, pc􏼈 􏼉, and then passes binary
instruction currently executed to address checking
module.

(5) Address checking module fetches the encrypted
address, and decrypts it with device key. +e original
return address is popped to the instruction pointer
register. Finally the function returns as usual.

We should note that the first function block 0 is not
necessary to return. +erefore, the first function is only
measured, but not encrypted. Because the return address in
encrypted with measurement of function codes, the de-
cryption implies the check of function measurement. +e
measurement must be correct; otherwise, the decryption
may cause memory crash because of an invalid return
address.

3.2.3. Indirect Jump Address Checking. +e address jump of
function calling is protected by return address encryption in
the above subsection, but the indirect jump may violate
control flow integrity inside function, which can cause JOP
attack. So we use the address checking policy to prevent
illegal indirect jump with the support of information flow
integrity. Measurement engine hooks the indirect jump
instruction, and check address module verifies the target
address based on function calling table in TEE. If it conforms
to address checking policy, normal jump is allowed; oth-
erwise, exceptional jump is rejected.

Figure 3 depicts the address checking process according
to security policy. Take IoT devices of ARM instruction set
for example, measurement engine hooks jump instruction
such as b, bl, bx, blx, and bxj and passes the binary
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instruction to check address module (please refer to return
address protection above on checking process of return
instruction). +en check address module parses the target
address from the jump instruction and checks whether the
jump target address is limited in function scope according to
function calling table. If target address is inside the function,
jump instruction is allowed; otherwise, check address
module determines whether the target address is not the
entry address of other function. If yes, jump instruction is
allowed, and if no, it is refused because the target address
may be the codes of JOP gadget.

3.3. Software Package Distribution. +e instrumented soft-
ware codes cannot be executed directly on device in our
scheme, so a centralized server must rewrite software binary
code bound with assigned device and distribute software to

the device. In stub distribution, the server must authenticate
the device identity and ensure the trustworthiness of dis-
tributed software code to IoT device. +e security mecha-
nism such as integrity checksum and code signature will be
applied to software code distribution. As for software’s OTA
(over the air) update or incremental update, they are not
considered in our scheme beyond the security. Identity keys
of server, sample device, and target device are predeployed
before software distribution. In our system, only authorized
device or device group can install distributed software from
server, and the attacker cannot forge software codes from
compromised device or rollback software version to cheat
device through the distribution protocol. After software
installation, secure boot ensures the loading and execution
of a correct and trustworthy software.

+e distribution protocol participants include adminstra-
tion server, sample device (called initiator), and target device.

Program code
segment

FN_block [0]

FN_block [1]

FN_block [2]

FN_block [3]

FN_block [n]

m0
addr_1

addr_2

addr_3

addr_n

addr_1′

addr_2′

addr_3′

addr_n′

m1

m2

m3

mn

Measurement Jump
address

Encrypted
address

f1 return address

f2 return address

f3 return address

fn return address

PUF key
extraction K

Helper
data w

Figure 2: +e encryption and decryption method on program return address.

Input: code blocks of software: fnblock[j], j � 0, . . . , n

Output: measurement results and log: χ, log
(1) +e code blocks are loaded into memory with each block’s virtual address ranged from fnblock[j].start to fnblock[j].end;
(2) Device X measures SW at runtime.
(3) (1) Initialize SW measurement log as log : �{}, aggregated measurement fingerprint as χ: � 0;
(4) 2) +e first function: f0 � fn block[0]. Device reads
and measures it, s0: � Read(SW, f0.start, f0.end), m0: � HASH(s0);
(5) (3) +e measurement is recursively triggered with function calling. And its algorithm measure(f0)

(6) for f in function call table(f0) do
(7) (a) Reads code block sj of function f, sj: � Read(SW, f.start, f.end), measures it and obtain fingerprint mj: � HASH(sj);
(8) b) Record measurement log for sj, log : � log ∪ (descj, mj)􏽮 􏽯 , where descj is the description information of code block, e.g.

function name, type;
(9) (c) Aggregate fingerprints for SW, χ: � HASH(mj‖χ);
(10) (d) measure(f);
(11) end
(12) (4) Device X stores χ, log of every code block execution for future attestation.
(13) return χ, log

ALGORITHM 1: Measurement algorithm of software codes.
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Server is responsible for releasing software package by re-
writing binary codes according to device key. It verifies devices
identity and distributes trusted software stub to device. Initiator
may be a simulation device or a real device in IoT network. It
assists server to extract sample software and ensures the subs
integrity and trustworthiness. Target device is the target
platform on which distributed software is installed and exe-
cuted. Figure 4 shows whole distribution protocol, which can
be divided into 2 sub protocols: extraction and distribution.

3.3.1. Extraction

(1) Initiator executes the sample software and measures
and attests its integrity. Initiator signs the mea-
surement aggregation of the software with device key
derived from PUF. +e signature is
sig � HMAC(K,Hash(χ‖nonce‖ti‖v)).

(2) Initiator sends integrity proof and signature (sig, log)

to server with for device attestation. Server verifies the
signature and measurement according to log.

(3) Server rewrites software using device key K of initi-
ator, that is to say, Server encrypts the software return
address with device key and measurement. Server
generates the signature for the rewritten software and
returns software package with signature to Initiator.

(4) Initiator verifies software integrity by servers sig-
nature, installs or upgrades the distributed sub, and
runs testing software correctness.

3.3.2. Distribution

(1) Target device encrypts its device key with Server’s
public key and requests software’s upgrade or install
with the current counter

(2) Server decrypts device’s key and rewrites new soft-
ware based on it. +en Server signs the software and
device counter by its private key and distribute
software with its signature.

(3) Device verifies the nonce, counter, and signature.
+en if verification is passed, Device upgrades
software, and also increases counter.

From the above protocol figure, we consider that
software integrity is ensured by servers’ signature, and
the rewritten software are different from each device
because of different PUF device keys so that the distri-
bution protocol mainly focuses on distributing
same version software but different code copy to all IoT
devices. Device identity must be verified before server
distributes software for device. In order to prevent the
rollback of old version software, devices must verify the
counter bounded with software before installing or
upgrading.

4. Security Evaluation

4.1. Bootkit and Firmware Tampering. +e illegal firmware
tampers the correct one on the device and injects mali-
cious codes at the system initialization. +is is the basic
security problem in IoT devices. +e Bootkit is a kernel-
mode rootkit variant at boot stage, and it may copy,
substitute, and compress the memory containing mali-
cious codes so as to bypass checksum verification in
system secure boot. +e lightweight trust establishment is
employed to achieve secure boot from PUF hardware. +e
attackers cannot intrude the trust root in secure world of
TrustZone, so they cannot bypass verification on boot-
loader, os kernel, and other softwares, which is efficient to
prevent Bootkit.

Calling function
Measure function 

body codes 

Yes/inside Check whether target
address is inside function

No/outside

Decrypt the return 
address

No Check whether it is 
function entry

Yes
YesValid return address

No

RET

Indirect jump

Abort

Segment error

Continue

Figure 3: +e process to determine validity of function return address.
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4.2. Code Reuse Attack. +e return address encryption is
implemented to prevent code reuse attack like ROP and JOP
in our scheme. As DEP is enabled, our systemwill reject code
injection. But CRA modifies the return address in stack,
jump tomalicious gadgets in system library, and executes the
malicious behaviors. For example, ROP gadget is a piece of
code located in the existing program and shared library code,
which typically ends in a return instruction. +e return
address is encrypted with checksum of function codes by
PUF key in our system. +erefore, any tampering of return
address will be checked while decrypting return address, and
CRA can be prevented by address checking modules resided
in TrustZone secure world.

4.3. Dynamic-Link Library Hijacking. +e attacker may
exploit system vulnerabilities to tamper the dynamic-link
library (dll) as a system service. +ough the application
software is healthy, it triggers the execution of malicious
codes when invoking dynamic-link library hijacked by at-
tacker. In our scheme, measurement engine (ME) will
measure the target function defined in dll while control flow
transfers to dll and verify the integrity of target function. If it
is the same one according to the digest of function codes, the
dll’s invocation will be terminated immediately. Owing to
the enforcement in function level, the dynamic measure-
ment and verification can prevent this kind of attack effi-
ciently in our scheme.

4.4. TOCTOU Attack. TOCTOU attack is a time interval
attack to bypass security checking mechanism. +e threat is

relatively high under the traditional static measurement and
checking at software loading time. Our dynamic measure-
ment can reduce the security risk significantly through
shortening the time interval between measurement and
checksum. Although periodic monitor of codes’ integrity
can mitigate this attack, the performance will be obviously
affected. +e function codes are checked while it is called;
thus, TOCTOU attack is prevented with high probabilities
by measuring the integrity of the current running codes at
runtime.

4.5. Network Replay & MITM Attack. +e software distri-
bution protocol uses monotonic counter to prevent replay
attack and version rollback attack. Besides counters, the
devices and server both use fresh random number and
message signature to ensure message integrity and identity
authentication. +ese security mechanisms can efficiently
prevent resist replay, man-in-the-middle, and impersona-
tion attacks.

4.6. Device Compromising Attack. +e same hardware and
software configuration are deployed commonly in IoT
network, especially in swarm devices. If one device is affected
by worm and virus, other devices will be attacked soon, so
that the hackers will intrude and control whole IoTnetwork.
What is worse, the attackers will manipulate all device nodes
to conduct large-scale botnet attack. In our scheme, every
device has a unique PUF key and the instrumentation code
on each device has difference on the return address. Con-
sequently, the other software is immune to the same kind of
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 (K′i)
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 (Ki)

si = Signsks
 (stub′i , ni1, ni2, vi)
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Figure 4: Distribution protocol for device software in IoT.
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attack without knowing its device PUF key, although one
device is compromised and its PUF key is exposed to at-
tacker. +e attacker can obtain the function measurement
and original return address from the compromised device,
but he cannot crack software return address on other device
without device PUF key and construct the dedicated shell
codes for the code injection, buffer overflow, and code reuse
attack like ROP and JOP. +is efficiently reduces security
risk for the reason that the same kind of software attack is
spread to IoT network by compromised device.

5. Implementation and
Performance Evaluation

Following the above method, we implement RIPTE proto-
type based on lightweight trust architecture. In this section, a
simple example is given out to illustrate the implementation
principle; then, we summarize the performance results from
the experiments of test evaluation.

5.1. System Implementation. +e original software must be
rewritten to target one on specified IoT device by network
administrator. After that, the program can run with integrity
protection on the target device. First of all, the device
registers its valid identity with device key derived from PUF
and server allows the device to join the IoT network. +en
administrator prepares the original software to instrument
target one by rewriting tools. +e tools analyze binary codes,
especially function calling in program, add the codes of
measurement function, and insert hook modules with hook
instruction and encrytion/decrytion. When target program
executes, the function return address will be encrypted with
the device key and measurement value. Moreover, consid-
ering the binding relationship between target software and
IoT device, instrumented software can only be executed
correctly on the specified device. Finally the instrumented
programs are distributed to designated device and installed
on it. As a result, the target program can execute on the
specified device with integrity protection at runtime, pre-
venting the code tampering, and code reuse attack.

Figure 5 illustrates the secure execution principle of a
simple program within our scheme in ARM platform. +e
control flow of original binary codes may be hijacked by
codes tampering or code reuse attack like ROP and JOP.+e
function return address is in the form of plaintext in the
stack at program runtime, such as “00032468.” Instrumented
binary codes by rewriting tools has 2 kinds of hook functions
(entry hook and exit hook), which intercept the special
instructions about function jumping, stack push/pop. In the
simple example, entry hook is function hook bl and exit
hook is hook pop fp pc. Entry hook first measures codes
integrity of called function, then uses device key to encrypt
function return address, next outputs encrypted address to lr
register, and pushes it in stack. At the moment, the function
return address is in the form of ciphertext in the stack, such
as “A1B1E7BC.” Exit hook first pops the cihpertext of return
address to lr register and decrypts lr with function mea-
surement using device key and then outputs plaintext of

function return address to lr. After that, the regular return
will be transferred without any change.

5.1.1. Considerations in Implementation. +e choice of en-
cryption algorithm is a tradeoff between security and effi-
ciency. We implement AES as encryption algorithms in our
system. And we also test two other candidate algorithms
XOR and RC4, respectively. XOR is just a simple and ef-
ficient algorithm in address encryption, which requires less
power and fewer codes. Its problem is that the encryption
strength is not high and the key may be analyzed by dif-
ferential attack. RC5 can work well as lightweight algorithm
in wireless sensor network, which generally performs on 16/
32/64 bits messages. But RC5 is also vulnerable to differential
attack. AES is a usual algorithm in IoTapplication, especially
built-in implementation in COAP application layer. +e
hardware accelerations of AES algorithm are supported in
various CPU like Intel AES-NI instruction set. So we rec-
ommend AES to implement our scheme. In general, the
specified application scenarios and security requirements
determine the concrete algorithm choice in IoT network.

+e function return address on stack is 32 bits in ARM
32 bits platform. Since enough security strength is provided
in our scheme, we implement address encryption by 128 bits
key with the algorithms of AES and RC5.+e push operation
on stack limited the ciphertext lengths, so we consider al-
ternative method which truncates the address ciphertext into
two parts. +e first part is 32 bits pushed on stack, and the
remainder with size of 96 bits is stored in shared memories
as a lookup table, which index is first part’s contents. While
function is called, the plaintext of function return address is
encrypted, then the first part of ciphertext is pushed into
stack, and the remainder of ciphertext is stored into a hash
table. While called function returns, address checking
module fetches the ciphertext on stack, lookups the whole
ciphpertext of return address in a hash table, decrypts it, and
pops the correct address to the instruction pointer register.

+e performance can be greatly influenced because of
frequent encryption/decryption during function calling and
returning, such that we consider the optimization calcula-
tion by precomputing encryption address to improve per-
formance. +e IoTsoftware is relatively simple, in which the
target jumping address can be easily deduced before
instrumenting codes. +e function measurement is specific
value, and the encryption key is known to server in safe
mode before server rewrites software codes. +e server can
precompute encryption return address according to above
definite values and store it into a function address table.
While the program is executed on the device, checking
address module does not need to encrypt the return address
and directly search the ciphertext of return address from the
function address table. It pushes the ciphertext on the stack
when entering function. Furthermore, the decryption of
return address can be similarly done in function address
table according to the method of encryption. +rough an-
alyzing the sample programs in an embedded system, we
find out that function pointers are seldom used in program,
so that almost all the return address can be precomputed
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before instrumenting codes. It greatly improves the per-
formance while precomputing on address encryption and
decryption, especially in the program of frequent function
calling.

5.2. Performance Evaluation. In order to evaluate the per-
formance of our RIPTE prototype implementation (source
code is available at https://github.com/mars208/RIPTE), we
choose the benchmark suite MiBench [27] as overall per-
formance for commercial embedded softwares and cube
algorithm in basicmath of MiBench as single and loop
performance test.

All benchmarks are executed on embedded development
boards HiKey, CPUARMCortex-A53 1.2GHz with 8 Cores,
SOC HiSilicon Kirin 620, RAM 2GB. +e code size of the
main modules in our system are summarized in Table 1,
which indicates that just a few codes (1075 LOC) newly
added are instrumented to protect software except PUF and
secure boot (2170 LOC). PUF and secure boot are the basic
building blocks executing once to establish trust while the
system starts up and the total size of increasing TCB is
313.8 kB. We choose SRAM PUF to develop terminal system
which meets robustness and uniqueness the most important
properties of PUF. We use the noise present in the SRAM
start-up value to accumulate entropy for the secure random
seed. For FE.Gen and FE.Rec operations on PUF, we adopt
the code-offset mechanism using BCH code [28] based
encryption/decryption. +ese properties guarantee that er-
rors between the generate and reproduce procedures of PUF
can be corrected by the BCH code; thus, the device key can
be correctly derived from PUF key extraction. Table 2 shows
the scale of test samples on an embedded device and

performance comparison with/without code instrumenta-
tion. +e time cost per function is less than 1ms under the
stress test of more than 100 thousands function calling. And
the main performance cost is the overhead of trustzone
context switch, so that it has less performance impact under
condition of great security improvement.

Our system implements AES algorithm and also tests the
other two encryption algorithms, XOR and RC4. +eir
performance evaluation is shown in Figure 6 on decryption
procedure. +e encryption of the return address is finished
by the administrator before software distribution; thus, only
the decryption may influence the software’s runtime per-
formance. +e test results show that XOR algorithm is the
most efficient among three algorithms, RC4 comes second,
and AES costs 1.628 s in 10000 function callings. But AES is
more secure than other two algorithms, and the cost of AES
decryption is not expensive in high-end IoT device.

Precomputing is the most important method to optimize
runtime performance in our implementation. +e spending
time is 86.2ms with precomputation in 100 function calling,
as shown in Figure 7. Most of the function calling can be
predicated according to CFG (control flow graph), partic-
ularly in IoT software, so ACM (Address Checking Module)
in our system can precompute the return address of target
function. +e average performance improvement is 24.5%
by precomputing optimization from statistics of experiment
results. Figure 8 shows performance of encryption, de-
cryption, and measurement in multiple loop testing. With
the increase of the loop time, the performance of encryption
and decryption has minimal time growth, almost little
change. But the performance of measurement becomes
linear increase. +e more the functions are calling, the more
the measurement time is spent during runtime execution.

int testdiv()
{
int a = 6, b = 3, x;
x = div2 (a, b);
if (x == –1)
printf (″division error!\n″);

else
printf ("%d\n", x);

return 0;
}

Dump of assembler code for function testdiv:
0x00032440: push {r11, lr}
0x00032444: add r11, sp, #4
......
0x00032460: ldr r0, [r11, #–8]
0x00032464: bl 0x323e4 <div2>
0x00032468: str r0, [r11, #–16]
0x0003246c: ldr r3, [r11, #–16]
......
0x000324a4: pop {r11, pc}

Dump of assembler code for function testdiv:
0x00032440: push {r11, lr}
0x00032444: add r11, sp, #4
......
0x00032460: ldr r0, [r11, #-8]
0x00032464: bl 0x118fc <hook_bl>
0x00032468: str r0, [r11, #–16]
0x0003246c: ldr r3, [r11, #–16]
......
0x000324a4: pop {r11, pc}

int div2 (int x, int y)
{

if (y == 0 || x < 0 || y < 0)
return –1;

return x/y;
}

EIP: 0x0323e4

EIP: 0x032468

...
encrypt lr {0x32468->0xa1b1e7bc}
...
b 0x323e4 <div2>

…
pop lr
decrypt lr {0xa1b1e7bc->0x32468}
...
bx lr

Dump of assembler code for function div2:
0x000323e4: push {r11, lr}
0x000323e8: add r11, sp, #4
0x000323ec: sub sp, sp, #8
......
0x00032438: sub sp, r11, #4
0x0003243c: pop {r11, pc}

Dump of assembler code for function div2:
0x000323e4: push {r11, lr}
0x000323e8: add r11, sp, #4
0x000323ec: sub sp, sp, #8
......
0x00032438: sub sp, r11, #4
0x0003243c: bl 0x11aa4 <hook_pop_fp_pc>

Source codes Source codes

Original

Rewrite

Original

Rewrite

hook_bl: EIP: 0x118fc

hook_pop_fp_pc: EIP: 0x11aa4

1

4

2

3

00 00 00 03
00 00 00 06
00 03 24 68
FF FF DF 00

Stack

Stack

Ret addr

Enc ret addr

00 00 00 03
00 00 00 06
A1 B1 E7 BC
FF FF DF 00

Figure 5: Control flow transferring in simple example with/without RIPTE.

10 Security and Communication Networks

https://github.com/mars208/RIPTE


6. Related Work

6.1. Integrity Measurement. +e most typical scheme of
integrity protection is IMA [26] (Integrity Measurement
Architecture) in Trusted Computing, which uses TPM to
measure integrity of kernel and executable memory images
at loading time. PRIMA [29] scheme is an improvement
combining the static measurement with access control
model on information flow, and it reduces measurement
range and promotes the efficiency. Afterwards, schemes of
LKIM, HIMA, HyperSentry, etc. ([30∼33]) were presented
to extend IMA to other application systems. In brief, these
schemes are static integrity measurement, and it is not

suitable to protect the runtime integrity for a single appli-
cation in IoT device.

6.2. Software Attestation. Software attestation is a well-
known and popular technique to verify security states of IoT
devices under the resource constraints [34]. It prevents the
attacks like software tampering and malicious code injection
by verifying software checksum. +e concept of software
attestation was firstly presented in SWATT [35] for em-
bedded system, i.e., checksum on the whole memory. +e
typical scheme in early study is CMU’s Pioneer [36], in
which the remote verifier can check software integrity of
embedded system by challenge-response protocol on soft-
ware attestation. Following the thought of Pioneer, many
software attestation schemes ([37∼39]) were designed based

Table 1: Module size in RIPTE implementation.

Module LOC Binary size (kB)
HOOK 905 5.7
Encryption 25 58.9
Decryption 58 60.9
ME 12 58.6
ACM 75 95.2
PUF 1747 10.7
Secure boot 423 23.8
Total 3245 313.8
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Figure 6: Decryption time for different algorithms.

Table 2: Performance comparison with/without instrumentation on different types of embedded programs.

Category Program Func Func call Binsize (kB) Org time/func (ms) Instr time/func (ms)
Automotive Basicmath 5 140481 12.5 0.088881 0.723067
Consumer JPEG 552 18017 1 232.4 0.002962 0.849559
Network Dijkstra 6 273610 7.1 0.031748 0.557701
Office Stringsearch 10 2781 44.3 0.014717 0.137495
Security Sha 8 111681 5.2 0.015941 0.518042
Telecomm crc32 3 3 3 2172.80 2774.55
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Figure 7: Performance optimization with precomputation.
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on different constructions of checksum function, in which
designer considered the factors such as pseudorandom
memory traversal, antireplay attack, memory detection with
minor change, and low network delay. Software attestation
can be categorized into time-based attestation and memory-
based attestation as usual [40]. +e former checks response
timing to identify compromised software; the later fills
memory with randomness to prevent malicious software in
the attestation. +e software attestation for peripherals was
presented to prove the firmware integrity of peripheral in
2010 [41], which can prevent malicious code injection during
firmware update. Asokan et al. proposed SEDA scheme [42]
for IoT cluster devices and constructed attestation tree from
the initial device to check all cluster devices in IoTnetwork.
Asokan et al. [43] designed and implemented a control flow
attestation for embedded device through logging branch
path of simple program execution. +e scheme overcomes
the shortages of static measurement and attestation, which
can efficiently prevent control flow hijacking attacks.

With deep development on software attestation, the
researchers found out some disadvantages of embedded
software attestation. For example, many schemes of software
attestation cannot prevent code substitution and ROP attack
[44, 45]; time-based attestation cannot resist the TOCTOU
(Time of Check, Time of Use) attack [46]. +erefore, we
attempt to solve these security issues of software attestation
from the point of code integrity protection based on trust
establishment.

6.3. Control Flow Integrity. One key challenge is the vul-
nerability of IoT devices to malware. Hacker often exploits
buffer overflow vulnerability to inject malicious code, while
simultaneously rewriting the function return address and
jump the entry address of injected codes [47, 48]. Control
flow integrity [49] is an important security method to
guarantee software trust execution in IoT device. +e key
idea of CFI is to enforce the control flow at runtime

according to control flow graph (CFG), which includes
hardware-based CFI and software-based CFI. Many CFI
research works follow the ID-based scheme presented by
Abadi et al. [49]. And its method assigns a label to each
indirect control flow transfer or potential target in the
program. G-Free [50] is a compiler-based approach to
eliminate ROP attack by protecting free-branch instructions
in binary executable. G-Free can be applied in compiling
GNU libc and many real-world applications. Recent work
from Google [51] and Microsoft [52] has moved beyond the
ID-based schemes to optimize set checks. Data execution
prevention (DEP) assisting CFI can efficiently prevent codes
from injection attack for stack or data ([53, 54]). +e re-
search trend of CFI [55] is to improve analysis and en-
forcement algorithms and to extend protection scope such as
just-in-time code, os kernel code. In embedded system, CFI
can be applied to prevent code injection attack and code
reuse attack like ROP and JOP. Because IoTenvironment has
small amount of code, the program can easily be examined
by CFG. But CFI enforcement certainly affects system
performance owing to its limited resource.

6.4. Secure Code Updates. Besides protection of software
runtime execution, secure code update is the important
aspect in software trust execution and software attestation in
IoT. Secure code update in an embedded system is referred
to software update, firmware update, over the air update
(OTA), software attestation, and so on. It must ensure the
integrity and authenticity of code updates before installation
and prove the integrity of newly installed software on IoT
device. PoSE-based (Proofs of Secure Erasure) methods
([39, 56, 57]) are applied widely in commodity devices, with
the strong assumption that attacker cannot communicate
with IoT device during software attestation. Perito and
Tsudik [40] used PoSE to propose a practical approach to
secure erasure and code update in embedded devices and
evaluated the scheme’s feasibility in commodity sensors.
Kohnhauser and Katzenbeisser [58] presented a code update
scheme which verifier can enforce the correct distribution
and installation of code updates on all devices in the net-
work. Especially the scheme allowed the administrator to
provide secure code updates for a group of devices.

7. Conclusion and Outlook

+e IoT devices currently have many known and unknown
vulnerabilities, which cause a large-scale swarm, botnet, and
DDoS attack targeting IoT. We propose RIPTE, a novel and
practical scheme for software trusted execution in IoTdevice
relying on secure hardware PUF and trust architecture. +e
lightweight trust is established by PUF and secure boot.
Software codes and IoTdevice are bound together to prevent
software tampering and version rollback. It eliminates dy-
namic-link library hijacking and TOCTOU attack by run-
time measurement in granularity of function. Encryption
protection of return address prevents the code reuse attack
like ROP and JOP. +e test results of our prototype indicate
that the runtime execution protection is efficiently applied to
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Figure 8: Performance on measurement, encryption, decryption.
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IoT software. +e hardware cryptographic support is con-
sidered to enhance our scheme in future work. In our
scheme, TEE with TrustZone is utilized to assure trust
service executing in secure world with high isolation se-
curity. +e TEE context switch between normal world and
secure world is the important performance factor, so we will
research the architecture and performance optimization as
the future work.
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