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Cybercrime is significantly growing as the development of internet technology. To mitigate this issue, the law enforcement adopts
network surveillance technology to track a suspect and derive the online profile. However, the traditional network surveillance
using the single-device tracking method can only acquire part of a suspect’s online activities. With the emergence of different types
of devices (e.g., personal computers, mobile phones, and smart wearable devices) in the mobile edge computing (MEC) en-
vironment, one suspect can employ multiple devices to launch a cybercrime. In this paper, we investigate a novel cross-device
tracking approach which is able to correlate one suspect’s different devices so as to help the law enforcement monitor a suspect’s
online activities more comprehensively. Our approach is based on the network traffic analysis of instant messaging (IM) ap-
plications, which are typical commercial service providers (CSPs) in the MEC environment. We notice a new habit of using IM
applications, that is, one individual logs in the same account on multiple devices. 'is habit brings about devices’ receiving sync
messages, which can be utilized to correlate devices. We choose five popular apps (i.e., WhatsApp, Facebook Messenger, WeChat,
QQ, and Skype) to prove our approach’s effectiveness. 'e experimental results show that our approach can identify IMmessages
with high F1-scores (e.g., QQ’s PC message is 0.966, and QQ’s phone message is 0.924) and achieve an average correlating
accuracy of 89.58% of five apps in an 8-people experiment, with the fastest correlation speed achieved in 100 s.

1. Introduction

According to a report of CyberEdge Group, 80.7% of sur-
veyed organizations were affected by a successful cyberattack
in 2019 (https://cyber-edge.com/wp-content/uploads/2020/
03/CyberEdge-2020-CDR-Report-v1.0.pdf). To defend
against the cyberattacks, the law enforcement usually adopts
network surveillance technology to track a suspect and
analyzes the network traffic of his device to derive his online
profile. However, the traditional network surveillance using
the single-device tracking method can only obtain the online
activities of a suspect’s single device. As different devices
play different roles in the MEC environment, one suspect
can employ multiple devices to carry out a cybercrime. For
example, a suspect may launch a cyberattack on a personal
computer and communicate with his accomplices on a
mobile phone. If only tracking his personal computer, the
law enforcement cannot capture the suspect’s accomplices.
In this paper, we propose a novel cross-device tracking
approach which is able to correlate one suspect’s different

devices (e.g., personal computer and mobile phone), which
can help the law enforcement monitor a suspect’s online
activities more comprehensively.

Cross-device tracking approaches are mainly divided
into two categories, i.e., deterministic tracking and proba-
bilistic tracking [1]. 'e former approach relies on deter-
ministic identifiers to correlate one user’s different devices.
For example, since one user logs in the same YouTube
account on two devices, the YouTube website can achieve his
login information directly to realize cross-device tracking.
However, this approach can only be utilized by those
companies which need users to log in. At present, most
researchers focus on probabilistic tracking. 'is kind of
approach is based on the similarity of user preference and
behavior when one user operates different devices. For in-
stance, Kane et al. [2] found that there is a certain overlap
between the sites that users visit on their personal computer
and mobile phone. 'erefore, it is possible to perform cross-
device tracking based on users’ web logs on distinct devices.
By providing users’ web logs of different devices, ICDM2015
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[3] and CIKM2016 [4] held two cross-device tracking
competitions. 'ese datasets provided were collected by
commercial companies within about one month, and these
two competitions mainly focused on designing linking al-
gorithms based on the datasets. 'is approach has two
drawbacks. First, this kind of cross-device approach often
requires users’ active participation, i.e., software installing
and log records, which is difficult in practical application.
Second, it is not suitable for fine-grained correlation with a
specific range of users who have similar behaviors, while our
approach in this paper is better to deal with this situation.

IM applications are typical CSPs in MEC, and they are
widely used in daily life, e.g., chatting online with friends,
transmitting files, and conducting video conferences. Google
initially proposed an IM app called “Hangouts” that enables
one user account to be logged in on multiple devices at the
same time and sync messages automatically across devices.
'erefore, if one user starts a chat on his computer, he can
continue his chat on his phone (https://support.google.com/
hangouts/answer/2944865?hl�en&ref_topic�6386410). In
this way, instant messages are exchanged from one-to-one to
one-to-multiple. For example, when you receive a message
from a friend, your IM apps simultaneously used on two
devices can receive this message almost at the same time.
'en, many other IM apps such as WhatsApp, Facebook
Messenger, WeChat, QQ, and Skype have added this
functionality that is referred to as the cross-device message
sync mechanism in this paper. 'e cross-device sync mes-
sage can be leveraged to correlate two devices belonging to
the same user so as to achieve the goal of cross-device
tracking.

In this paper, we put forward a new cross-device tracking
approach based on the IM sync message detection. We
assume the law enforcement can capture target devices’
network traffic from the gateway. 'en, we classify the
network traffic by IPs and identify the device type according
to the user-agent field of HTTP packets. After that, we filter
out the retransmitted packets which may reduce our cor-
relation accuracy. We analyze a set of ground-truth IM
application network traffic and find that sync messages are
contained in the gate server’s flow. 'us, we employ domain
names matching to identify those flows of gate servers,
which have specific domain names and summarize several
filtering rules to identify the other flows. In order to identify
sync messages in the gate server’s flow, we extract the
features of sync messages in advance and employ machine
learning and rule matching as classification methods.
According to the identification result, we extract sync
messages’ timestamps to form each device’s message-re-
ceiving time list.'en, we calculate the time interval between
each timestamp in two devices’ time lists. It is regarded that
when the interval is less than a threshold, it is one successful
sync message match. According to the matching result, we
employ the SPRT (sequential probability ratio testing [5])
algorithm to determine whether two devices are correlated
or not. SPRT algorithm fits our scenario very well and gives
theoretical support to our approach. It can make a decision

as fast as possible when we observe the sequence of sync
messages matching results.

To evaluate our cross-device tracking approach, we choose
five popular IM applications (https://www.statista.com/
statistics/258749/most-popular-global-mobile-messenger-apps/)
in our experiments: WhatsApp, Facebook Messenger,
WeChat, QQ, and Skype. In our experiments, we first test the
ability of our approach to identify messages. 'e best per-
formance is PC’s message of QQ, whose F1-score reaches
0.966, while the worst is PC’s message of Skype which also has
0.820. 'en, we carry out device correlation experiments by
designing a scenario that includes 8 people with 16 devices.
'e results show that our approach achieves a 97.9%
matching accuracy of WeChat and an 83.3% accuracy of
Skype. When the number of participants increases to 16, the
matching accuracy of WeChat also exceeds 86%. Besides, we
also analyze the factors, i.e., different users, message fre-
quency, and user amount. We find that different users have
little effect on correlating results, and the increase of message
frequency or user amount reduces the correlation accuracy.
Last but not the least, we count our matching time of each
app, finding that most of the matching time length of QQ and
WeChat is less than 400 seconds.'is result indicates that our
approach is faster than those approaches [6,7] which are based
on long-time records of weblogs.

'e major contributions of our paper are summarized as
follows:

(i) First, we propose a novel approach based on net-
work traffic analysis to realize cross-device tracking.
Our approach just sniffs the network traffic silently
which does not require users’ active participation.
Also, we do not analyze the deterministic identifiers
such as IM numbers, usernames, and network IDs.

(ii) Second, we extract the features of five popular IM
apps’ messages to identify sync messages and em-
ploy rule matching andmachine learning to identify
different apps’ messages. We deal with real users’
network traffic which includes other apps’ network
traffic and background network traffic interference.

(iii) 'ird, we utilize the SPRT algorithm to accelerate
the speed of judging whether the devices are cor-
related or not, and we perform experiments to prove
that our approach is effective and fast, which can
solve the problem of cross-device tracking in a fine-
grained scenario.

'e rest of this paper is organized as follows. We in-
troduce the architecture of an IM system and the cross-
device message sync mechanism in Section 2. In Section 3,
we present our cross-device tracking approach, including
the tracking scenario, basic idea, and the detailed workflow
of our approach. Section 4 shows the experimental results of
our approach, which is followed by discussing future re-
search directions and corresponding countermeasures in
Section 5. 'e existing related work is introduced in Section
6, and a conclusion is drawn in Section 7.
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2. Background

In this section, we introduce the architecture of an IM
system and the cross-device message sync mechanism.'en,
we present the observation of IM application network traffic.

2.1. Architecture of an IM System. Figure 1 shows a typical
architecture of an IM system. An IM system consists of IM
clients and different types of servers, e.g., authentication
servers, file servers, gate servers, and route servers [8]. 'e
IM clients are installed on devices (e.g., mobile phones and
personal computers) by users.'e authentication servers are
used to verify the user identity. 'e route servers act as a
message relay center to concatenate the connection between
users and relay their messages. 'e gate servers are edge
servers that maintain a persistent chatting connection with
the IM clients and mainly relay messages on behalf of the IM
client. To communicate with each other, an original IM
client sends a request to the route server, requiring the latter
to establish a connection to the target IM client. Since the
route server knows the gate servers of these two IM clients, it
can concatenate connections of the gate servers of the two
IM clients and relay their messages. In addition, the file
servers are used to store and relay the files shared between
users as most of the IM systems support file sharing
functionality.

2.2. Cross-DeviceMessage SyncMechanism. 'e modern IM
system supports the cross-device message sync mechanism
so that a user can keep an IM conversation after he switches
from one device to another in a hurry. We take the scenario
in Figure 1 as an example to illustrate how an IM system
works. As shown in this figure, user A logs in the same IM
account on two distinct devices (i.e., a mobile phone C1 and
a personal computer C2), and user B employs a device C3 to
communicate with user A. To keep an IM client online after a
user logs in the device, a gate server is responsible for
maintaining a persistent connection between the gate server
and the IM client and relaying IM messages. As a result, C1,
C2, and C3 establish persistent connections to the gate
servers S1, S2, and S3, respectively. Once user B intends to
communicate with user A, a route server S4 is used to es-
tablish connections to the corresponding gate servers so as to
concatenate the connections among C1, C2, and C3 and then
forward messages on behalf of user A and user B. To achieve
the cross-device message sync functionality, the route server
is used to create and send cross-device sync messages to
ensure that C1 and C2 can receive the same message almost
at the same time. In particular, if a message m1 is sent from
C3 and arrives at the route server S4, the message is copied
and forwarded to gate servers (i.e., S1 and S2) by S4. In this
way, user A can receive the message, referred to as the sync
message, on both C1 and C2.

2.3. Observation of IM Application Network Traffic. We
collect the network traffic of IM applications to observe the
pattern of sync messages. In this paper, we mainly focus on 5

popular IM applications around the world, including
WhatsApp, Facebook Messenger, WeChat, QQ, and Skype.
We install these IM clients on two types of devices (i.e.,
mobile phones and personal computers) and require users to
send and receive chatting messages so that we can capture
the IM chatting traffic. We find that the messages are
transmitted in the gate servers’ flow one by one as the user
sends them sequentially. As mentioned in [9, 10], one
message consists of a series of successive packets with short
time interval and similar packet number in one application.
In addition, since network traffic is encrypted between
clients and gate servers, we cannot derive the plaintext of
messages from the network traffic.

3. Methodology

In this section, we first describe the assumption and basic
idea of our cross-device tracking approach and then in-
troduce the detailed approach, step by step. Table 1 sum-
marizes the notations used throughout this paper.

3.1.Overviewof theCross-DeviceTrackingApproach. 'e law
enforcement agency aims to correlate two devices used by a
suspect so as to monitor his online behaviors. It is assumed
that the suspect employs one personal computer (e.g., a
desktop or a laptop) and one mobile phone to access the
internet. It should be noted that we mainly focus on two
kinds of devices in this paper, i.e., personal computers
running Windows systems and mobile phones running
Android systems. As Figure 2 shows, the suspect can operate
his devices to access the internet via wired or wireless
networks. 'e law enforcement controls the gateways of the
network used by the suspect in order to passively record
incoming and outgoing network traffic of the suspect. We
also assume that the IP addresses of these devices do not
change during a short period of time. In addition, we assume
the suspect logs in the same IM application with one account
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Figure 1: Architecture of an IM system.
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on both the mobile device and the personal computer. As a
result, when a user sends to the suspect a message, the IM
applications on both distinct devices of the suspect will
receive the message nearly at the same time due to the cross-
devicemessage syncmechanism. Since the syncmessages are
transmitted through the network, the law enforcement can
passively identify two sync messages sent to these devices so
as to link them. Last but not the least, we do not rely on the
explicit identifiers, such as user IDs, in the IM messages to
achieve cross-device tracking.

Figure 3 shows the workflow of our cross-device tracking
approach. First, we capture and preprocess users’ network
traffic of mobile devices and personal computers. 'e net-
work traffic is classified by IP addresses, and the device type
(i.e., Windows personal computers and Android mobile
phones) is identified according to the user-agent field of
HTTP packets. Second, we collect ground-truth IM appli-
cation (i.e., WhatsApp, Facebook Messenger, WeChat, QQ,
and Skype) network traffic and analyze the features of gate
server’s flows. After that, we propose several filtering rules to

identify the gate server’s flows that contain sync messages.
'ird, we design experiments to analyze the attributes of
sync messages and employ the rule matching and machine
learning techniques to identify different applications’ sync
messages. After the identification of sync messages, we re-
cord their receiving timestamps to form the device sync
message time list. At last, we compare the timestamps of sync
messages between two devices and define the time gap that is
less than 0.3 seconds as a successful match. Based on the
matching results of sync messages of two devices, the se-
quential probability ratio testing (SPRT) algorithm is lev-
eraged to make a quick decision of whether two devices are
correlated.

3.2. Capturing and Preprocessing Network Traffic. As shown
in Figure 2, we can capture the network traffic from the
gateway and wireless routers, respectively. After capturing
network traffic, we first classify them into several groups in
terms of the IP addresses of the devices.'en, we identify the
devices as either an Android mobile phone or a Windows
personal computer based on the HTTP traffic transmitted
from these devices. Since HTTP packets are common in
network traffic from both mobile phones and personal

Table 1: Summary of notations.

Symbol Meaning
↑, ↓ An outgoing packet, an incoming packet
D, U 'e set of devices, the set of users
X, Y 'e set of personal computers, the set of mobile phones
Xk 'e set of sync message timestamps of the kth PC
Yℓ 'e set of sync message timestamps of the ℓth mobile phone
Zkℓ 'e set of sync message timestamps of the kth PC and the ℓth mobile phone successfully matched
Mkℓ

i 'e result of matching sync messages in the ℓth mobile phone with the ith message of the kth PC
∧n 'e likelihood ratio
θ0 'e probability of sync message matching when two devices are not correlated
θ1 'e probability of sync message matching when two devices are correlated
ηu, ηl 'e upper boundary, the lower boundary
α, β 'e false-positive rate, the false-negative rate
Tm 'e average time interval between user receiving sync messages
Tinterval 'e packet interval threshold
Toffset 'e time offset of the network environment
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Figure 2: Cross-device tracking scenario.
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Figure 3: Workflow of the cross-device tracking approach.
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computers, we can use the value of the user-agent field in the
HTTP packets as keywords to identify the device types. 'e
user-agent field of HTTP packets from a Windows system
often contains “Windows NT,” while that from an Android
system often includes “Android” (http://useragentstring.
com/pages/useragentstring.php/). In addition, to reduce
the noise, we remove the retransmitted packets from the
captured traffic.

3.3. Identifying IM Flows of Gate Servers. We intend to
identify the flows of IM gate servers that include the sync
messages transmitted between gate servers and IM clients.
To this end, we first collect a set of ground-truth IM network
flows and analyze the communicationmechanism of IM gate
servers. We require a group of senders to use different IM
clients to transmit messages to the other group of receivers
who employ two devices to receive the sync messages. In
particular, the senders use each IM client to transmit 20
messages with a time interval (e.g., 10 seconds). 'e re-
ceivers record the message timestamp upon obtaining a sync
message. According to the timestamps, we can locate packets
carrying the sync messages in network flows and treat these
flows as the IM flows of gate servers. 'en, we use the
ground-truth flows to analyze the IP addresses and DNS
request packets of the flows of gate servers. We find that the
sync messages produced by the Windows version of QQ are
transmitted by OICQ protocol, which is a kind of UDP
packet that can be identified by using the DPI (deep packet
inspection) technique. Meanwhile, the Android version of
QQ and other IM applications employ TCP protocols to
transmit sync messages between IM clients and gate servers.
We find that gate servers of some IM applications own
domain names, and others do not own. 'erefore, there are
two types of IM gate server flow recognition methods.

For the IM gate servers that have domain names, we
collect a set of domain names of gate servers using the
ground-truth flows as shown in Table 2. In the identification
phase, we derive the DNS traffic of IM clients and use the
domain name set to identify the flows of the gate server. It
should be noted that the domain names in Table 2 are
collected in our network within around 7 months. However,
they may be changed due to the IM application update. In
practice, the law enforcement can collect sufficient domain
names in different network environments in advance.

For the IM gate servers that do not have domain names,
we leverage reverse DNS lookup tools (e.g., Whois (https://
www.whois.com/whois/)) to choose the candidate flow set
and propose traffic filtering rules to identify the IM gate
servers based on the IP addresses in the network flows. We
discover that only gate servers of QQ andWeChat do not use
domain servers, and both IM applications are developed by
the Tencent company. 'erefore, if the IP addresses of the
servers belong to the Tencent company, we can save these
flows. In addition, since gate servers of Tencent may use the
network from different internet service providers (ISPs), we
also save the traffic from the servers that belong to ISPs.
'en, we summarize some features of the flows of gate
servers to perform further traffic filtering:

(1) Since the persistent flows between IM clients and
gate servers last longer than the others, we can
discover the persistent flows in terms of the time
period of the flows. Commonly, a message flow can
last a few minutes or even longer, compared with
ordinary flows that only last a few seconds. In
practical, we use an empirical threshold (i.e., 1
minute) to identify potential IM persistent flows.

(2) According to the ground-truth traffic, we do not find
any HTTP flows between IM clients and gate servers.
'erefore, we can exclude the HTTP traffic that is the
major traffic generated by user devices.

After employing these two filtering rules, there may be
some candidate gate server’s flows that we cannot uniquely
identify. In this case, we can move to the next step to identify
the sync messages for all candidate flows.

3.4. Identifying SyncMessages. After identifying IM flows of
gate servers, we further analyze the ground-truth dataset of
collected IM flows and extract the features of sync messages
in order to identify them. According to our observation,
each sync message transmitted from gate servers to the IM
client corresponds to a series of successive packets with short
packet time interval, while the interval between two mes-
sages is longer.'en, we can use an empirical packet interval
threshold (i.e., Tinterval, we conduct statistical analysis to
derive the value of Tinterval in Section 4) to automatically
segment the IM flows to derive groups of packet sequences;
these groups contain sync message packet group and
background network traffic group. As mentioned before, in
order to locate the sync message packet group, we record the
timestamps when receiving the sync messages. We find that
the packet pattern of sync messages from QQ, WeChat,
WhatsApp, and Facebook Messenger can be extracted for
syncmessage identification. However, the packet pattern of a
sync message of Skype is different from the other four IM
applications.'erefore, we try to employ a machine learning
method to identify this kind of message (i.e., Skype).

We can use the packet direction pattern and packet
length to identify the sync messages from the four IM gate
servers (i.e., QQ, WeChat, WhatsApp, and Facebook
Messenger). After the flow segmentation, the segmented
packets from the PC client of QQ as well as PC and mobile
clients of WeChat can be directly used to extract the packet
direction pattern as there is no noise packet. However, we
need to preprocess the segmented packets from the rest of
the clients to remove the noise packets and derive the packet
direction pattern. For the QQ mobile clients, we remove the
packets, whose length is less than 100 bytes. For the traffic
from clients of WhatsApp and Facebook Messenger, we
apply the longest common subsequence (LCS) algorithm to
sequences of packets so as to extract the common subse-
quence of the packet direction pattern for their sync mes-
sages.'en, the longest common subsequence can be used to
detect the sync messages.

After deriving the packet direction patterns, we perform
statistical analysis of the packet length and derive a specific
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packet length or a length range for each packet in the packet
direction pattern to further reduce the false-positive rate of
sync message identification. It is important to note that we
discover that the packet direction patterns extracted from
the PC client of WeChat as well as the mobile clients of
WeChat and WhatsApp are useful enough to identify the
sync message. 'erefore, we do not use the packet length to
identify the sync messages from these clients. For the
WhatsApp PC clients, the range of the first packet length is
used to decrease the false detection. Moreover, since the
OICQ protocol used by the QQ PC clients is not encrypted,
the deep packet inspection technique can be applied to
further improve sync message identification. In particular,
the fourth and fifth bytes of the two packets in the sequence
are 0x17 and 0xce in hex.

Table 3 shows the features used to identify the sync
messages. We denote “↑” and “↓” as an outgoing packet and
an incoming packet, respectively. 'en, packets of a sync
message can be represented as a sequence of “↑” and “↓.”'e
packet length range is denoted as (x, y). 'en, we use “−” to
concatenate the length range of each packet in order. For
example, (200,MTU) − 97 indicates that the packet length
of the first packet in the sequence is between 200 and MTU
(maximum transmission unit), and the second packet length
is 97. In addition, we denote “FPL” as the length of the first
packet in the packet sequence.

As the packet pattern of the sync message of Skype is
different from the other four applications, we employ ma-
chine learning methods to identify it. After segmenting the
flows of the gate server into different bunches of the packet
sequence, we process each bunch of the packet sequence to
obtain statistical features which are shown in Table 4. 'ere
are four categories which contain 25 features in this table.
We count the number of continuous packet subsequences
whose directions are “↑↑,” “↓↓,” and so on. We also derive
the statistical data (i.e., mean, standard deviation (STD), and
maximum) of the packet length and packet time interval. In
addition, we perform statistical analysis of the mean of the
length and time interval of the first 1/3 packets, the second 1/
3 packets, and the rest 1/3 packets, respectively. Finally, we

choose to employ these features and the machine learning
methods (i.e., XGBoost [11] and random forests [12]) to
identify the packet sequence of the Skype sync message.

Once the sync message is identified, we choose the
timestamp of the first packet in the preprocessed packet
sequence as the sync message timestamp. After identifying
all sync messages, we can derive a sequence of the time-
stamps of the sync messages for each device.

3.5. Correlating Devices. We formalize the cross-device
tracking problem in this section and elaborate on the theory
of correlating devices. We denote two different types of
devices (i.e., the mobile device and the personal computer)
as D1 and D2 and denote the hypothesis “two devices are
correlated” as H1 and “two devices are not correlated” as H0.
'en, we can formalize H1 and H0 as

H1: D1 ∈ Ua and D2 ∈ Ua,

H0: D1 ∈ Ua and D2 ∈ Ub,
(1)

where Ua and Ub represent different users. If two devices
belong to the same user, we accept H1; otherwise, we accept
H0.

We correlate two devices (i.e., a personal computer and a
mobile phone) by matching their sequences of the time-
stamps of the sync messages. We assume that there are
several users and they each have a personal computer and a
mobile phone, respectively. We denote sequences of the sync
message timestamps from the kth personal computer and
the ℓth mobile phone as Xk � tk

1, . . . , tk
i , . . .􏼈 􏼉 and

Yℓ � tℓ1, . . . , tℓj, . . .􏽮 􏽯, respectively. To match the sync mes-
sage transmitted to two different types of devices, we
compare the time difference between each identified sync
message from a personal computer and all identified sync
messages from all of the mobile phones. 'e ith sync
message of the kth personal computer and the jth sync
message of the ℓth mobile phone are matched
if |tk

i − tℓj|≤Δt, where Δt is an empirical value (i.e., 0.3
second) derived by our statistical analysis in Section 4. If we

Table 2: Domain names of gate servers.

Application Device type Domain names

QQ PC ∗

Mobile phone ∗

WeChat PC long.weixin.qq.com
Mobile phone ∗

Skype PC (i) ip.wusmw1-client-s.msnmessenger.msn.com.akadns.net
Mobile phone (ii) ip.ea2hk2-client-s.msnmessenger.msn.com.akadns.net

WhatsApp
PC mmx-ds.cdn.whatsapp.net

Mobile phone (i) chat.cdn.whatsapp.net
(ii) Whatsapp-chatd-edge-shv-02-hkg3.facebook.com

Facebook Messenger
PC (web) star.c10r.facebook.com

Mobile phone (i) mqtt.c10r.facebook.com
(ii) edge-mqtt-mini-shv-02-hkg3.facebook.com
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have enough samples that match the formula above, we can
correlate the two devices.

Next, we use the sequential probability ratio testing
(SPRT) algorithm to determine howmany syncmessages are
matched so that we can accept H1 and reject H0. We use a
binary decision variable Mkℓ

i to represent whether the ith
message of the kth PC is matched with a sync message of the
ℓth mobile phone. If matched, Mkℓ

i is equal to 1. Otherwise,
Mkℓ

i is set as 0. After each sync message from the kth PC and
the ℓth mobile phone is compared, we can derive a message-
matching sequence, i.e., Mkℓ

1 , . . . , Mkℓ
n􏼈 􏼉. 'en, we define

P(Mkℓ
i � 1 | H1) � θ1 and P(Mkℓ

i � 1 | H0) � θ0, i.e., the
probability of the ith message of the kth PC matched with a
sync message of the ℓth mobile phone when the hypothesis
of two devices correlated is true and false, respectively.
Intuitively, the probability of two messages matched (i.e., θ1)
is high if the two devices are correlated. On the contrary, if
the two devices are not correlated, the probability (i.e., θ0) is
low. 'en, we assume Mkℓ

i are independent and identically
distributed (i.i.d.). We can calculate the likelihood ratio ∧n:

∧n � ln
Pr M

kℓ
1 , . . . , M

kℓ
n

􏼌􏼌􏼌􏼌􏼌 H1􏼔 􏼕

Pr M
kℓ
1 , . . . , M

kℓ
n

􏼌􏼌􏼌􏼌􏼌 H0􏼔 􏼕

� ln
􏽑

n
i�1 Pr M

kℓ
i

􏼌􏼌􏼌􏼌􏼌 H1􏼔 􏼕

􏽙
n

i�1Pr M
kℓ
i

􏼌􏼌􏼌􏼌􏼌 H0􏼔 􏼕 � 􏽐
n

i�1
ln
Pr M

kℓ
i

􏼌􏼌􏼌􏼌􏼌 H1􏼔 􏼕

Pr M
kℓ
i

􏼌􏼌􏼌􏼌􏼌 H0􏼔 􏼕
.

(2)

According to the SPRT algorithm, we calculate the
likelihood ∧i sequentially according to the values of Mkℓ

i one
by one until it reaches stopping boundaries [13, 14]. 'en,
we have

∧i �

∧i−1 + ln
θ1
θ0

, M
kℓ
i � 1,

∧i−1 + ln
1 − θ1
1 − θ0

, M
kℓ
i � 0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(3)

where 1≤ i≤ n and ∧0 � 0. It means that when Mkℓ
i � 1, we

add ln(θ1/θ0); otherwise, we add ln((1 − θ1)/(1 − θ0)). 'e
stopping rule is

∧i ≥ ηu, stop and acceptH1,

∧i ≤ ηl, stop and acceptH0,

ηl <∧i < ηu, calculate∧i+1,

⎧⎪⎪⎨

⎪⎪⎩
(4)

where ηu and ηl represent an upper boundary and a lower
boundary, respectively. 'is rule means that we need to
calculate ∧i until it reaches ηu or ηl. According to the theory
of SPRT, ηu and ηl can be defined by

ηu � ln
1 − β
α

,

ηl � ln
β

1 − α
,

(5)

where α and β are the user-chosen false-positive rate and
false-negative rate, respectively. We use α≤ 0.01 and β �

0.01 [14].
We need to calculate θ0 and θ1, respectively, to derive the

likelihood ∧n. To compute θ1, we collect the ground-truth
dataset and conduct statistical analysis to derive the value of
θ1 in Section 4. We collect the ground-truth data of sync
messages from several pairs of correlated devices and cal-
culate the ratio of successful matching sync messages to all
sync messages. 'en, we set θ1 � 0.9 in our paper.

Table 4: Features of Skype’s sync messages.

Category Features

Packet number Total packet number, ratio of outgoing to incoming packet number, number of ↑, ↓, ↑↑, ↓↓, ↑↑↑, ↓↓↓, ↓↑↓, ↑↑↑↑, ↓↓↓↓,
↓↑↑↓

Packet direction Direction of the first packet
Packet length Mean, STD, max, mean (low 1/3), mean (mid 1/3), mean (high 1/3)
Packet time
interval Mean, STD, max, mean (low 1/3), mean (mid 1/3), mean (high 1/3)

Table 3: Features of four applications’ sync messages.

Application Device type Packet direction Packet length

QQ PC ↓↑ (200, MTU)-97
Mobile phone ↓↑↓ (200, 1000)-(200, 1000)-(100, MTU)

WeChat PC ↓↑↓↑ or ↓↑↓↓↑
Mobile phone ↓↑↑↓

WhatsApp PC ↓↑ or ↓↑↓↓↑↓↑ FPL> 200
Mobile phone ↓↑↑↓ or ↓↑↑↑

Facebook Messenger PC (web) ↓↑↑↓ or ↓↑↓ (100,MTU)-(0,100)-(0,100)-(0,100) or (100,MTU)-(87 or 94)-54
Mobile phone ↓↑↑↓ or ↓↑↓ (200,MTU)-66-(54,MTU)-66 or (200,MTU)-(101 or 99)-66
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We build a model to analyze the factors which impact θ0
and then compute it. We can take time as a coordinate axis
and the sync messages’ timestamps of the devices as the
coordinates. According to our statistical analysis, the average
time interval between the user receiving sync messages
equals Tm (i.e., Tm ≥ 10), and the time gap between two
matched sync messages is less than Δt. As shown in Figure 4,
if one sync message timestamp of the mobile phone is lo-
cated near the sync message timestamps of the PC (e.g.,
[Tm − Δt, Tm + Δt]), these two sync messages are matched.
Otherwise, if it is located within the blue area, it does not
match with a sync message of the PC. 'en, we can calculate
the probability of one mobile phone’s message not matching
with the personal computer’s message, the probability being
equal to the ratio of the blue area’s length to the average time
interval (i.e., ((Tm − 2Δt)/Tm)). We denote the number of
mobile phones as |Y|, and there are |Y| − 1 mobile phones
which are uncorrelated with the PC. 'e probability of |Y| −

1 phones’ message not matching with the personal com-
puter’s message is

Tm − 2Δt
Tm

􏼠 􏼡

|Y|− 1

. (6)

Furthermore, we can calculate the maximum value of θ0
which means the probability of at least one mobile phone’s
message matching with the personal computer’s message:

θ0 max � 1 −
Tm − 2Δt

Tm

􏼠 􏼡

|Y|− 1

. (7)

According to this equation, if Tm is the minimum value
(i.e., 10), θ0 max gets the maximum value. And we have
θ0 ≤ θ0 max normally.

In addition, as different networks have different laten-
cies, we also find that most of time gaps between two sync
messages may be bigger than Δt in some network envi-
ronments. In order to deal with this situation, we define a
time offset Toffset, which equals the average time delay of the
syncmessages between two devices.We require to collect the
ground-truth dataset in the native network to measure Toffset
in advance. 'en, the sync message-matching interval
converts to [Toffset − Δt, Toffset + Δt]. Specifically, Toffset has
no effect on the calculation of θ0 max.

To show the matching rounds in one correlation, we can
compute the expected number of sync message-matching
with reference to Gu et al. [14] and Wald [5]. When we want
to make a decision that two devices are correlated, the
expected number of sync message-matching rounds we need
to observe is

E N | H1􏼂 􏼃 �
β ln(β/(1 − α)) +(1 − β)ln((1 − β)/α)

θ1 ln θ1/θ0( 􏼁 + 1 − θ1( 􏼁ln 1 − θ1( 􏼁/ 1 − θ0( 􏼁( 􏼁
.

(8)

If we want to make a decision that two devices are not
correlated, the expected number of matching rounds is

E N | H0􏼂 􏼃 �
(1 − α)ln(β/(1 − α)) + α ln((1 − β)/α)

θ0 ln θ1/θ0( 􏼁 + 1 − θ0( 􏼁ln 1 − θ1( 􏼁/ 1 − θ0( 􏼁( 􏼁
.

(9)

'e detailed calculation process of these two formulas is
in [5]. We analyze the possible values of the four parameters
and substitute them into the formula and then we plot
Figure 5 to show how E[N | H1] changes with the parameter
change. When we fix β � 0.01 and vary α, θ0, and θ1, we can
see that if θ0 increases or θ1 decreases, it demands more
messages to make a decision of whether two devices are
correlated. We assume that there are 8 people in one cor-
relation (i.e., |Y| � 8), and we have θ0 max ≈ 0.35. 'erefore,
when we set θ1 � 0.9, θ0 � 0.35, and α � 0.01, we can get
E[N | H1] ≈ 7 and E[N | H0] ≈ 5. It means that, after ob-
serving an average of 7 rounds of sync message-matching,
we can make a decision H1 (correlated); otherwise, we can
accept H0 (uncorrelated) after observing 5 rounds of sync
message-matching.

Although the SPRT algorithm can help us to make a
quick decision, there are still two cases that cannot be solved
by employing it. One case is that if we detect more than one
mobile phone correlated with a computer, then how to
distinguish the right mobile phone?'e other case is that the
number of the sync messages of one device is not sufficient
enough to make a decision (i.e., correlated or not). In order
to deal with these cases, we employ the Jaccard index [15].
We denote the matched sync message set of the kth PC and
the ℓth mobile phone as Zkℓ and the size of this set as |Zkℓ|.
As mentioned before, the sync message set of the kth per-
sonal computer and the ℓth mobile phone is denoted as Xk

and Yℓ, respectively, and their size is denoted as |Xk| and
|Yℓ|, respectively. According to the definition of the Jaccard
index, we have

J X
k
, Y

ℓ
􏼐 􏼑 �

Z
kℓ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

X
k

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + Y
ℓ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − Z
kℓ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
. (10)

In order to ensure that the two devices have sufficient
correlation, we only calculate the value of the Jaccard index if
Zkℓ ≥ 10 and choose the biggest one as the final matching
result.

4. Evaluation

In this section, we introduce the settings of our experiments
and evaluate the performance of our cross-device tracking
approach. We also perform the experiments to discuss the
factors which can affect the performance of our approach.

Time

0 2TmTm

2Δt2Δt

…

Figure 4: Sketch map of message matching.
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4.1. Experimental Setup. We recruit 23 participants and set
up an experimental platform to connect their devices to the
internet and capture the traffic. 'e experimental setup is
shown in Figure 6. Desktops used by the participants are
connected to a switch that connects to the internet via our
campus network. We configure a mirror port of the switch
which is connected by the first Ubuntu server used to
capture traffic of the desktops. 'e mobile phones or laptops
of the participants are connected to a wireless route that is
set as a bridge mode.'en, the wireless route is connected to
another Ubuntu server which has two network cards con-
figured with a bridge mode. Since the traffic of the wireless
devices passes through the second Ubuntu server, the server
can capture all traffic of the wireless devices. 'e IP ad-
dresses of all the devices are assigned from a Dynamic Host
Configuration Protocol (DHCP) server in the campus
network. 'erefore, we can use the IP addresses to identify
each device in advance so as to collect the ground-truth
traffic. We also install a Network Time Protocol (NTP)
server [16] in the first Ubuntu server and synchronize the
second Ubuntu server’s time with that of the first one.

We require the 23 participants to use the five IM ap-
plications on their own devices so as to derive the ground-
truth and testing traffic. All of the mobile phone OSes used
by the participants are Android OSes, and all of the PC OSes

are Windows OSes. 'e participants are required to chat
with each other by logging in the same IM application both
on a mobile phone and a computer. 'e IM applications
include WhatsApp, Facebook Messenger, WeChat, QQ, and
Skype. Four of the applications, except FacebookMessenger,
have both Android and Windows versions. 'e participants
use the Facebook Messenger chat widget on the Facebook
website through a browser on their PCs. We capture the
network traffic and save it in the pcap format.

4.2. Experimental Results. We first collect ground-truth data
to derive the parameters which are mentioned in our ap-
proach. 'en, we perform experiments to evaluate the ef-
fectiveness of different apps’ sync message identification.
After that, we implement device correlation experiments to
verify our approach’s ability in cross-device tracking. We
also discuss the factors which can affect the results.

4.2.1. Parameter Settings. We first collect sync message
ground-truth data and conduct experiments to derive the
optimally empirical packet interval time threshold Tinterval so
as to accurately segment the sync message from the traffic.
We invite 10 participants who are divided into five groups,
and each participant has the same IM account logged in on
two devices (e.g., a mobile phone and a personal computer).
We let each participant employ each app to send 10messages
to their partner and let the receiver record the timestamps of
the messages. At last, we obtain a ground-truth dataset of
100 pairs of IM sync messages with receiving time for each
IM application. We locate the IM sync message packet se-
quences based on the recording timestamps and employ the
time threshold to segment the traffic flow. We denote the
correct segmentation as the sync message packet sequence is
not separated, and the background traffic is separated from
the sync message packet sequence. Figure 7 illustrates the
relationship between different time intervals and the accu-
racy of the sync message segmentation. 'e accuracy is
calculated by the number of correctly segmented sync
messages divided by the number of all sync messages. As we
can see from the figure, the accuracy approaches around
100% when Tinterval is equal to 1.2 s. 'erefore, we choose
Tinterval � 1.2.

We perform statistical analysis on the ground-truth data
and derive an appropriate threshold Δt which is used to
determine whether a sync message of a mobile phone is
matched with a specific syncmessage of a PC and then derive
θ1 � 0.9 in terms of Δt. To evaluate the value of Δt, we
calculate the time gap between the timestamps of a pair of
two sync messages from two devices according to the
messages’ timestamp in the network traffic. Figure 8 shows
the cumulative distribution function (CDF) of 500 pairs of
syncmessages’ time gaps collected from five IM applications.
Since large Δt can lead to a number of false matches, we
choose Δt � 0.3. 'en, about 90% of the sync message pairs
can be matched using this threshold, and we, therefore, can
derive θ1 � 0.9.

Ubuntu server

Ubuntu server
Internet

Figure 6: Experimental setup.
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4.2.2. Sync Message Identification. In the next step, we
collect testing data and evaluate the performance of sync
message identification. In this set of experiments, we divide
10 participants into 5 groups and let them chat with his
partner in the same group. We ask them to send 10 messages
to their partner with a time interval (e.g., 10 seconds), which
ensures that the network traffic of two sequential messages
does not interfere with each other. 'e receivers record the
timestamps of the received messages as the ground truth.
'en, we obtain a dataset of 100 pairs of IM sync messages
with receiving time for each IM application. At last, we
evaluate our sync message identification method mentioned
in Section 3.

To evaluate the performance of our sync message
identification method, we define some evaluation indicators
(i.e., precision, recall, and F1-score). Precision is equal to the
number of correctly identified sync messages divided by the
number of all identified sync messages. Recall is equal to the
number of correctly identified sync messages divided by the
actual number of sync messages. F1-score is

F1 − score �
2∗ precision∗ recall
precision + recall

. (11)

Table 5 illustrates the F1-score of the sync message
identification method of QQ, WeChat, WhatsApp, and

Facebook Messenger. As we can see from this table, QQ and
WhatsApp have better performance on the PC version, while
WeChat and Facebook Messenger have better performance
on the phone version. From the perspective of the appli-
cation type, the sync message identification performance of
QQ is the best due to its special protocol and stable features.
On the contrary, we find that the sync messages of What-
sApp are more difficult to be distinguished from background
traffic which leads to a lower F1-score. 'e other two apps
have similar identification performance.

Table 6 depicts the F1-score of the Skype sync message
identification method. In order to identify Skype sync
messages, we collect 400 sync messages of the PC and 400
sync messages of the mobile phone to train models. In
addition, we preprocess our data used for XGBoost by a data
standardization function “scale” in Python scikit-learn li-
brary. 'en, we employ XGBoost and random forest as the
classification methods. 'e performance of XGBoost is
better than that of random forest, and we therefore choose
XGBoost as the Skype sync message identification method in
device correlation experiments.

4.2.3. Correlation Results. We evaluate our cross-device
tracking approach and compare several scenarios to analyze
different factors. Considering the situation of wireless router
capacity and network speed, we set one experiment con-
sisting of 8 people and 16 devices. When doing experiments,
all participants connect their devices to our network and log
in the designated apps. After they chat with each other for a
while (e.g., 30 minutes), we analyze their network traffic to
correlate their devices. In order to make a decision of
whether two devices are correlated or not correlated (i.e.,
make a decision of accepting H1 or H0), we require to set
four parameters (i.e., α, β, θ0, and θ1). Here, 8 people (i.e.,
|Y| � 8) lead to θ0 max � 0.352. 'en, we set θ1 � 0.9,
θ0 � 0.35, α � 0.01, and β � 0.01, and after the calculation,
we have ln(θ1/θ0) ≈ 0.944, ln((1 − θ1)/(1 − θ0)) ≈ −1.872,
ηu ≈ 4.595, and ηl ≈ −4.595. In addition, we count the time
length of correlating devices in our experiment to evaluate
the speed of our approach.We also discuss some factors such
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Figure 7: 'e result of segmenting sync messages at different time
intervals.
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Table 5: Sync message identification result of four applications.

Device type Indicator QQ WeChat WhatsApp Facebook
Messenger

PC
Precision 94.3% 81.4% 95.3% 86.8%
Recall 99.0% 96.0% 82.0% 92.0%

F1-score 0.966 0.881 0.882 0.893

Mobile
phone

Precision 88.2% 90.5% 80.3% 88.3%
Recall 97.0% 95.0% 94.0% 98.0%

F1-score 0.924 0.927 0.866 0.929

Table 6: Sync message identification result of Skype.

F1-score PC Mobile phone

XGBoost 0.820 0.892
Random forest 0.786 0.796
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as different users, message frequency, and user amount
which can make an influence on the result.

At last, we get 30 sets of data, with each app having 6
datasets. For each app, we have 8 device pairs in one ex-
periment, and totally, we have 240 device pairs in these
experiments. Every set of the experiment lasts dozens of
minutes so that we can have enough time to correlate each
device pair. 'e first row of Table 7 shows the correlation
result of each application, noting a 12.5% baseline with 8
participants.'e correlation accuracy is equal to the number
of correctly correlated device pairs divided by the number of
all device pairs. We can find that WeChat achieves the best
performance with only one device pair matching failure in
48 pairs. QQ and WhatsApp achieve about 90% correlation
accuracy. We also notice that the lowest correlation accuracy
of Skype is more than 80%. Moreover, in these experiments,
we let participants chat with other participants freely. It
means the message-receiving frequency is not under control,
and the traffic of sequential messages may mix with each
other. 'is phenomenon results in the decrease of the sync
message identification accuracy which further leads to the
decrease of the correlation accuracy. From the result, we can
conclude that WhatsApp, Facebook Messenger, and Skype
are impacted by the factors mentioned above.

(1) Time Length. In order to study the distribution of
matching time, we draw a boxplot of different device pairs’
matching time of different applications in Figure 9. In this
diagram, we can see that QQ and WeChat require less
matching time compared with the other three applications
and also have a relatively average time distribution, which is
caused by two factors from our point of view. One is sync
messagematching accuracy; highmatching accuracy leads to
less matching time. 'e other is receiving message fre-
quency, which is related to the number of user’s friends. In
our experiments, participants have more friends in QQ and
WeChat, so they can receive more messages within the same
length of time. 'e average matching time of QQ is about
290 seconds and WeChat is around 340 seconds, which
means our cross-device tracking approach is fast enough. In
addition, according to the theoretical expected number of
matching rounds, the actual matching time is longer. We
think there are two reasons: one is the actual message-re-
ceiving time interval is longer, and the other is mis-
recognition of sync messages leading to a lower message
synchronization probability.

(2) Different Users. To make a comparison, when doing
experiments, we group participants randomly, and each
group consists of 8 people with 16 devices. 'e results of
different groups are shown in Figure 10, with different colors
meaning different groups; in a word, the differences between

the groups are not significant. 'erefore, our approach is
generally applicable to different users.

(3) Message Frequency. In this experiment, we try to identify
the impact of different message-receiving frequencies. Here,
we chooseWeChat and Skype as the apps to be tested.We do
an 8-people experiment and let participants send messages
to their partner in 5 minutes with different message fre-
quencies (i.e., 15, 20, 25, and 30). Altogether, we have four
groups of statistics from both WeChat and Skype. 'e
correlation result is shown in Table 8. ForWeChat, when the
sync message frequency is relatively low (i.e., 15 and 20), we
can correlate all 8 device pairs successfully, and while the
sync message frequency is comparatively high (i.e., 25 and
30), there is one device pair linking failure. For Skype, the
increasing message frequency decreases the correlation ac-
curacy too. As far as we know, an increase in the message
frequency leads to a rise in the probability of mismatching
messages, which further results in the decrease of the cor-
relation accuracy.

(4) User Amount. In this set of experiments, we simulate a
scenario with more people to make a comparison with the 8-
people experiment. In order to simulate the tracking sce-
nario of more device pairs, we subtract each message list’s
initial time from the total message time and then put data
from different batches together to link. To make a com-
parison with the 8-people experiment, we do new 8-people
experiments and combine two of them to form a 16-people
experiment; then, we also derive 30 datasets of the 16-people
experiment and totally 480 device pairs in this experiment.
In this set of experiments, 16 people (i.e., |Y| � 16) lead to
θ0 max ≈ 0.606.'erefore, we set θ0 � 0.6, θ1 � 0.9, α � 0.01,

Table 7: Correlation result of five applications.

Correlation accuracy QQ WeChat WhatsApp Facebook Messenger Skype
8 people 91.7% 97.9% 89.6% 85.4% 83.3%
16 people 80.2% 86.5% 80.2% 77.1% 72.9%
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Figure 9: Matching time length of different applications.
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and β � 0.01, and thus, we have ln(θ1/θ0) ≈ 0.405,
ln((1 − θ1)/(1 − θ0)) ≈ − 1.386, ηu ≈ 4.595, and
ηl ≈ − 4.595 after the calculation. 'e correlation results are
shown in Table 7, the statistics of the second row indicating
that the accuracy of each app decreases about 10 percent
compared with the first row. It is due to that, with the in-
crease of the user amount, the possibility of sync message
mismatching will increase, which results in the decrease of
the linking accuracy.

5. Discussion and Future Work

In this section, we put forward some measures to promote
our approach in the future and give some countermeasures
for users to avoid devices being correlated.

5.1. Ways of Promoting Our Approach. In our experiments,
we ask participants employing the same app to send mes-
sages over the same period of time, the purpose of which is to
ensure the sufficient quantity of equipment so as to evaluate
the performance of our approach. However, people are not
likely to employ the same app to send instant messages at the
same time in the real world. 'erefore, we can separate
different devices which do not have time overlap of network
traffic and classify the devices which run different IM apps
during the preprocessing period. After that, devices will be
divided into different groups, which reduce the device
number of one matching group, thus improving the cor-
relation accuracy. It is important to note that our approach is
universal for apps which have message synchronization

function. 'erefore, as long as the other IM app synchro-
nizes messages between devices, our approach can correlate
them. In particular, if the suspect employs a niche app which
is out of our chosen apps and unpopular, it may cause the
suspect’s devices, generating the rare network traffic of the
niche app in a local area network. In that case, we can
correlate his different devices by identifying the network
traffic of the niche app.

During our study, studying different message types is
also helpful to promote our approach. As we know, the
instant messaging app can send messages in various forms
such as text, voice, picture, and file. If we can utilize the
message type as an attribute in the period of sync message
matching, it can reduce message mismatching. However,
after analyzing the features of different messages, we find
that there are some difficulties to employ them. One diffi-
culty is that delivering a file or a picture message requires
more than one server to work, i.e., one server sends a
message notification first, and then another server sends the
message content. Apart from that, different message-re-
ceiving strategies of devices also make them difficult to
utilize these types of messages. For example, when the
mobile phone version of QQ receives a voice message, it
starts to receive the moment when the sender starts to record
the voice. However, the PC version of QQ starts to receive
when the sender stops the recording process. 'ese diffi-
culties will result in more complex identification of various
messages and poorer message synchronization. In the future,
we will figure out how to utilize different message types to
correlate devices.

5.2. Countermeasures. In this paragraph, we give some
advices to prevent the devices from being correlated. First,
IM application manufacturers can modify message deliv-
ering packets to interfere sync message identification. 'ey
can add useless messages to the gate server’s flow, add
random packets to the message packet sequence, or add
random padding to the message packets. Second, users can
avoid using two devices to log in the same account, which is
the simplest method from the aspect of users. However,
users sometimes have to log in two devices at the same time.
In that circumstance, they can choose not to keep online for
a long period of time so that there will not be enough
messages to correlate devices. Moreover, another way is
choosing a suitable network connection mode, which means
mobile phones can use 3G/4G to connect the internet to
avoid their network traffic being captured.

6. Related Work

Cross-device tracking is developed from device tracking. In
this section, we will introduce related research development.

According to the techniques employed in device
tracking, there are two main categories, which are network
traffic analysis-based tracking and web-based tracking. In
the field of network traffic analysis, researchers devote to
extracting attributes from network traffic to identify the
device or users even though the device IP changes. In the
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Figure 10: Matching result of different groups.

Table 8: Correlation result of different frequencies.

Correlation accuracy 15 20 25 30
WeChat 100% 100% 87.5% 87.5%
Skype 100% 87.5% 87.5% 75%
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physical layer, Polcak et al. [17] proposed a kind of attribute
to identify computers by their clock skew computed from
TCP timestamps. In the operating system layer, Franklin and
McCoy [18] found that the 802.11 probe request time in-
terval can reveal the active scanning algorithms employed by
wireless derivers. In the network layer, the traffic bursts of
mobile devices are counted to analyze the running appli-
cations [19]. In the application layer, the fields of unen-
crypted network traffic such as user-agent, IP address,
cookies, and user IDs [20] are abstracted to identify devices.
Furthermore, Gu et al. [21] found that the search history of
the shopping website can also be used to track users. In
addition, the DNS traffic can be used to analyze the device
user’s activities which can be used to track users [22].

Web tracking is based on acquiring attributes from the
browsers to identify devices. It is widely used to serve the
websites for statistics, tracking, and advertisement recom-
mendation [23, 24]. Eckersley [25] first proposed this
method in 2010 PETS. 'e author extracted the user-agent,
HTTP header, screen size, fonts, and plugins from the
browsers. Some researchers are interested in analyzing the
tracking mechanism of commercial websites; Acar et al. [26]
found that the canvas fingerprint is the most widely used
web-tracking technique. Besides, Diaz et al. [27] proposed
that the Battery Status API of HTML5 can be used to identify
the browser. Compared to desktop browsers, the mobile
device browsers, which lack plugins and some functions,
therefore, achieve less information. It is not until in 2016
S&P conference that Laperdrix et al. [28] applied fingerprint
identification technology to mobile terminal browser
identification on a large scale.'e results show that although
plugin list and font information are lacking, the recognition
rate still reaches 81%. With the further improvement of
browser functions, Bojinov et al. [29] presented a method of
achieving accelerometer data from the mobile device
browser to realize identification. 'en, Das et al. [30]
employed the gyroscope and microphone to evaluate the
effect of utilizing sensors to identify mobile devices.

Based on device tracking, cross-device tracking aims to
correlate different types of devices to the same person. A
recent study showed that most people operate multiple
devices in daily use, and they often accomplish a task by
switching devices (https://www.thinkwithgoogle.com/
research-studies/the-new-multi-screen-world-study.html).
'e advertising companies need to collect the browsing
history from different devices, which can help to recom-
mend more comprehensive advertising. Cross-device
tracking can be divided into two categories, which are de-
terministic tracking and probabilistic tracking [1]. Deter-
ministic tracking requires the user to log in the same account
on different devices. 'en, the service provider is able to
correlate different devices by the explicit identifiers such as
account number and cookies. However, many apps can be
used without logging in a user account, and the cookies
probably cleared by users cannot be obtained each time.

Most researchers focus on probabilistic cross-device
tracking. 'e feasibility of these methods is based on the
similarity of user interests and activities when they operate
different devices. For example, Kane et al. [2] found that

97.1% domains browsed on the mobile devices are also visited
on the desktop. Also, 13.1% domains visited on the desktop
are browsed on the mobile devices. During ICDM 2015 [3]
and CIKM 2016 [4], the participants were asked to propose
machine learning methods to do cross-device tracking. 'e
datasets included many users’ devices, cookies, IP addresses,
and browsing history. 'ese two competitions only focused
on the algorithm design, such as using pairwise ranking [6, 7].
In the 2017 USENIX Security International Conference,
Zimmeck et al. [1] indicated that online tracking is evolving
from browser- and device-tracking to people-tracking. As one
user tends to operatemultiple devices, a person-centric view is
established for cross-device tracking. In this paper, 126 users’
browsing history of mobile devices and desktops was col-
lected. 'e results showed that the IP address plays an im-
portant role in cross-device tracking. Choo [31] proposed a
method of utilizing users’ social media feeds to realize cross-
device tracking. 'is method is based on the idea that each
person has a distinctive social network, and thus, the links
appearing in one’s social media feeds are unique. However,
this approach only works for a small number of social net-
works, which makes it impractical to be widely analyzed. In
addition, there are some cross-device tracking approaches
that do not analyze web communication, such as detecting
inaudible ultrasonic sound embedded in websites [32].
Considering that using mobile phone’s microphone demands
user permission, Matyunin et al. [33] found that the gyro-
scope has a reaction to resonance frequencies in the frequency
domain which means it is zero-permission tracking. Never-
theless, these approaches can only detect different devices
which are physically close, and the devices are not necessarily
owned by the same user. Moreover, some researchers paid
attention to measure the cross-device tracking activity of
commercial websites [34, 35] and found that cross-device
tracking is widely used in many websites. Our work, which
does not need long-time historical data, is a novel cross-device
approach that is based on the network traffic analysis and
easier to implement.

7. Conclusion

In this paper, we propose a novel cross-device tracking ap-
proach based on network traffic analysis. 'e premise of our
approach is that users log in two devices with one IM account,
and the two devices will receive messages simultaneously. We
analyze the mechanism of devices’ receiving sync messages
and find that we can identify sync messages to correlate
devices. In our scenario, we assume the law enforcement can
sniff users’ network traffic without users’ active participation
or long online time. 'en, we extract features of five popular
IM apps’ received messages. In network traffic processing, we
filter out useless flow and identify gate server’s flow according
to the server IP. After that, we employ rule matching and
machine learning to identify sync messages. At last, we
employ the SPRTalgorithm to determine whether two devices
are correlated according to the sync message-matching re-
sults. To evaluate our approach, we design contrast experi-
ments with an 8-participant experiment and a 16-participant
experiment. We find that the increasing participant amount
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will decrease the matching accuracy, and different apps
achieve different matching accuracies, with WeChat getting
the highestmatching accuracy, which is 97.9% (8 participants)
and 86.5% (16 participants) and Skype receiving the lowest
matching accuracy, which is 83.3% (8 participants) and 72.9%
(16 participants).We also study different users whomake little
impact on the results, while the increase of the message
frequency will reduce the correlation accuracy. At the end of
this paper, we discuss how to promote our approach in the
future, and we give some advice to overcome this cross-device
tracking problem.
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Société Vaudoise des Sciences Naturelles, vol. 37, pp. 241–272,
1901.

[16] D. Mills, Computer Network Time Synchronization-He Net-
work Time Protocol, CRC Press, Boca Raton, FL, USA, 2006.

[17] L. Polcak, J. Jirasek, and P. Matousek, “Comment on “remote
physical device fingerprinting”” IEEE Transactions on De-
pendable and Secure Computing, vol. 11, no. 5, pp. 494–496,
2014.

[18] J. Franklin and D. McCoy, “Passive data link layer 802.11
wireless device driver fingerprinting,” in Proceedings of the
15th USENIX Security Symposium, Vancouver, Canada, 2006.
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