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With the rapid development of wireless communication technology and intelligent mobile devices, unmanned aerial vehicle
(UAV) cluster is becoming increasingly popular in both civilian and military applications. Recently, a swarm intelligence-based
UAV cluster study, aiming to enable efficient and autonomous collaboration, has drawn lots of interest. However, new security
problems may be introduced with such swarm intelligence. In this work, we perform the first detailed security analysis to a kind of
flocking-based UAV cluster with 5 policies, an upgrade version of the well-known Boids model. Targeting a realistic threat in a
source-to-destination flying task, we design a data spoofing strategy and further perform complete vulnerability analysis. We
reveal that such design and implementation are highly vulnerable. After breaking through the authentication of ad hoc on-
demand distance vector (AODV) routing protocol by rushing attack, an attacker can masquerade as the first-arrival UAVwithin a
specific scope of destination and generate data spoofing of arrival status to the following UAVs, so as to interfere with their normal
flying paths of destination arrival and cause unexpected arrival delays amid urgent tasks. Experiments with detailed analysis from
the 5-UAV cluster to the 10-UAV cluster are conducted to show specific feature composition-based attack effect and corre-
sponding average delay. We also discuss promising defense suggestions leveraging the insights from our analysis.

1. Introduction

UAVs have been widely used in military and civilian fields
due to their low cost and high flexibility. With the rapid
development of wireless communication technology and
mobile devices, the unmanned aerial vehicle cluster is be-
coming increasingly popular in tasks of monitoring, search,
and rescue in a dangerous environment. Recently, swarm
intelligence in the field of AI has been employed in the UAV
cluster to provide an efficient and effective collaboration of
UAVs that does not require any external remote guidance or
any central-node UAV control, amid complex tasks difficult
for a single UAV. *us, the multi-UAV cluster aims to
realize an autonomous mechanism by imitating different
kinds of swarm including a flock of birds and a swarm of
bees. Although such swarm intelligence has shown its

potential to provide an efficient and effective UAV collab-
oration, few studies focus on the security issues brought by
swarm intelligence. *us, it is highly important to deep
assess the security of swarm intelligence-based UAV cluster
and discover a possible vulnerability that can be maliciously
exploited.

In this paper, we focus on the swarm intelligence of
flocking inspired by birds. *ere is a classical model named
Boids model [1] proposed by Reynolds in 1986, of which
there is no central node and each UAV is autonomous
through perceiving its neighbors’ information within a
certain range nearby [2, 3]. Each UAV’s decision-making is
based on three simple policies: dispersion, alignment, and
cohesion. Such a collaboration mechanism of policies de-
rives from the birds’ flocking; thus, it is also called flocking in
short. In this work, we choose the latest upgraded version of
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the Boids model including five policies: alignment, homing,
cohesion, dispersion, and following, which is more complete
for flocking [4]. In the rest of this paper, the flocking is
always referred to as this 5-policy flocking. Also, we target a
source-to-destination flying task for cluster flying and
perform the first detailed security analysis to the flocking-
based UAV cluster flying. To the best of our knowledge, no
similar work has focused on it.

Facing cyberattacks, it is highly important to firstly
understand potential security vulnerabilities so that they can
be actively resolved before real large-scale deployment. As
the first step, we implement the 5-policy flocking algorithm.
*rough tuning a set of parameters, we successfully realize
the flocking to maintain a relatively stable formation for
UAV cluster flying. *en we identify basic security chal-
lenges, involved authentication, data spoofing, and so on,
aiming to understand whether the current design or
implementation of the flocking algorithm for UAV cluster is
vulnerable and why it is vulnerable and hope to provide
insights on how to fundamentally protect it before large-
scale UAV cluster deployment.

For simplicity, we assume that the UAVs in the cluster
move at a constant speed and use the mobile ad hoc network
(MANET) [5] to exchange data with other UAVs within the
specific range of wireless sensing. *e data includes GPS
location, speed direction, and arrival status. *e only attack
requirement that we limit is that there is just one UAV
masqueraded to send spoofed data to other UAVs. *is can
be realized by a rushing attack to break through the au-
thentication of the ad hoc on-demand distance vector
(AODV) routing protocol [6, 7]. As reported in former
work, such compromise can be performed physically [8],
wirelessly [9], or through malware [10, 11]. *us, only
rushing attack one first-arrival UAV for data spoofing of
arrival status is closer to the attack reality and ensures that
our analysis has highly practical implications.

In this work, we find that data spoofing of arrival status is
very effective for autonomous flocking-based UAV cluster:
through masqueraded UAV sending spoofed data to the
following UAVs, the maximum percentage of delay can even
reach up to nearly 50%, which completely subverts the
advantage of the flocking, as a highly efficient algorithm.
Figure 1 shows an attack snapshot of the simulation for 8-
UAV flocking-based flying from the left sources to the right
destinations (denoted as red circles, respectively) in farm-
land. *e axes represent the flying coordinates in meters.
Figure 1(a)) shows the attack place occurring to the first-
arrival UAV. As shown in Figure 1(b)), during the attack,
some UAVs’ trajectories in the cluster have been affected
(seen in the green circle) and caused an obvious delay to
their destinations. We find that this is due to a vulnerability
in the trade-off between security and formation stability: in
the flocking algorithm, to maintain the stability of the cluster
formation, once a UAV has reached its destination, its in-
formation will not be used in the other UAVs’ decision-
making anymore.

In our experiment, we find the following: (1) fixing the
arrival determining threshold with 20 meters, the delay
percentage of smaller UAV cluster is higher than that of a

larger cluster, which appears from cluster speed 10m/s to
20m/s; (2) lower arrival determining threshold will cause an
opposite result, that is, larger cluster having higher delay
percentage; (3) fixing the cluster’s speed, whatever the
cluster size is, lower arrival determining threshold will cause
a higher delay percentage; (4) the maximum delay per-
centage of 47.84% is obtained in the occasion of cluster size
9, cluster speed 16m/s, and arrival determining threshold 12
meters.

According to our analysis, the current flocking algorithm
design is highly vulnerable to data spoofing, causing the
whole UAV cluster to delay its arrival to a large extent. We
also discuss promising defense directions leveraging the
insights from our analysis.

We summarize our contributions as follows:

(i) We perform the first security analysis of flocking-
based UAV cluster flying. We formulate the
problem with a highly realistic threat model, in-
volved AODV link authentication, rushing attack,
and data spoofing to UAV cluster and analyze the
algorithm design to identify the data spoofing
strategy.

(ii) Targeting the goal of causing unexpected arrival
delays in flying task, we first perform vulnerability
analysis to understand the attack effectiveness. We
find that the flocking algorithm design and
implementation are highly vulnerable, causing
nearly 50% arrival delay in some cases.

(iii) *rough massive experiments, we obtain detailed
attack results under different cluster features, which
helps to provide promising defense directions from
our analysis and experimental results.

2. Background

In this section, we introduce the necessary background
about the swarm intelligence in the UAV cluster and the
flocking algorithm that we target.

2.1. UAV Swarm Intelligence. Swarming behavior is a
common phenomenon in nature. Typical examples include
flocks of birds migrating in formation, schools of fish pa-
rading in groups, colonies of ants working together, and
colonies of bacteria that grow together. *e common feature
of these phenomena is that a certain number of autonomous
individuals, through mutual collaboration and self-organi-
zation, present an orderly coordinated movement and be-
havior on the collective level [12]. In the early stage of
research in this area, a lot of work focused on modeling and
simulation of natural biological populations. Scholars use a
large amount of experimental data to explore the influence
of individual behavior and the relationship between indi-
viduals on the overall behavior of the group [13, 14].

In the field of UAV, the Boids model is naturally applied
as the earliest swarm intelligence model, establishing and
maintaining collision-free cohesive flocking which requires
only three simple policies between idealistic agents: (1)
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gathering: make the agents in the entire group closely ad-
jacent; (2) keeping distance: adjacent agents keep a safe
distance; (3) motion matching: neighboring agents have the
same motion state. *is model roughly describes the
movement characteristics of swarms in nature. Lately,
Sharma and Ghose extended the Boids and proposed a
swarm intelligence algorithm to avoid cluster collisions [4].
Our work is based on Sharma et al.’s algorithm to build a
flocking-based UAV cluster as our target of security analysis.

2.2. Flocking Algorithm. In a UAV cluster, the equation of
motion in the two-dimensional plane for a UAV can be
represented as

_xi � v cos θi,

_yi � v sin θi,

_θi �
η
V

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where xi, yi, θi are the x-axis coordinate, y-axis coordinate,
and heading angle of the i-th UAV, respectively. V � |v|

means UAV’s speed and η is the acceleration. *e detailed
calculation is shown as follows:

η � kΔθi,

Δθi � w1 θreq1 − θi􏼐 􏼑 + w2 θreq2 − θi􏼐 􏼑 + · · · + wn θreqm − θi􏼐 􏼑,

(2)

where k is the acceleration constant and
θreq1, θreq2, . . . , θreqm are the desired heading angles corre-
sponding to different policies. We can vary the policy
weights w1, w2, . . . , wm to obtain different composite
policies.

We target the flocking with five basic policies including
cohesion, dispersion, following, homing, and alignment as
shown in Table 1.

We use wh, wa, wc, wd, wf to represent the weight of
homing, alignment, cohesion, dispersion, and following
policies, respectively.

Figure 2 shows the heading angle computation of a UAV
in the cluster. *e above basic policies can ensure that the
self-organized UAV swarm remains stable and collision-free
during the flight. However, when the UAV swarm arrives
near the destination, if the arrived UAV is still involved in
the angle calculations for other unreached UAVs, the di-
rections of the unreached UAVs will be affected not to reach
their destinations. *us, once there is a UAV in the cluster
that has reached its destination, it has to be timely excluded
from the calculations.

Also, in general, to determine whether a UAV has ar-
rived, we calculate the distance between the current location
of the UAV and the destination, in which the specified
parameter R is defined as an arrival determining the
threshold. When the distance between the current location
of the UAV and the destination is less than R, the UAV is
determined to have reached its destination.

3. Threat Model

3.1. Communication. In the UAV cluster, MANET is a
common-used communication network to support UAVs’
communication (see Figure 3) [15]. *ere are two channels:
data channel and protocol channel. In our experiment, we
limit three data to transmit including heading angle, co-
ordinate, and arrival status.

As we can see, MANET is an ad hoc decentralized type of
wireless network that does not rely on a preexisting infra-
structure, such as routers in wired networks or access points
in managed (infrastructure) wireless networks [5]. Instead,
each node participates in routing by forwarding data to other
nodes, so the determination of which nodes forward data is
made dynamically based on network connectivity and the
routing algorithm in use [16]. Such wireless networks lack
the complexities of infrastructure setup and administration
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Figure 1: A snapshot of the simulation of 8-UAV flocking-based cluster flying. (a) *e attack place to first-arrival UAV. (b) Arrival delays
with affected trajectories in green circles.
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while enabling UAVs to create and join networks anytime
efficiently.

Due to common attacks in MANET, there is also a
communication-related threat to the flocking-based cluster
[17], such as wormhole attack, rushing attack, joint attack,
Sybil attack, denial of service attacks, and eavesdropping
attacks. In this work, we only utilize one communication
attack: the rushing attack.

*rough the rushing attack, data spoofing can be per-
formed. Previous work has demonstrated sensor spoofing
attacks to single UAV, such as GPS spoofing [18, 19] to
misguide UAV’s trajectory and optical spoofing [20, 21] to

gain an implicit control channel. *us, it is confident to as-
sume that the attacker can perform data spoofing in any type,
physically [8], wirelessly [9], or through malware [10, 11].

3.2. AODV Link Authentication. MANET is inherently
vulnerable to attack due to its fundamental characteristics,
such as open medium, distributed nodes, the autonomy of
nodes participation in a network (nodes can join and leave
the network on its will), lack of centralized authority which
can enforce security on the network, distributed coordi-
nation, and cooperation [6].

Many of the routing protocols devised for use in MANET
have their individual character and rules. *e most widely
used routing protocol is AODV, which relies on the indi-
vidual node’s cooperation in establishing a valid routing table.
However, it only enables a weak link authentication based on
all nodes trusted in the network. In the AODV protocol, each
node first establishes a valid route to the destination before
transmitting its data. Sender node broadcasts an RREQ (route
request) message to neighbors and valid route replies with
RREP (route reply) with proper route information. *e
AODV protocol uses a duplicate suppression mechanism to
limit the route request and reply chatter in the network (see
Figure 4). In Figure 4(a)), there are three RREQ messages.

Table 1: Desired heading angles based on different policies in the flocking algorithm.

Policies Desired heading angles Notation

Cohesion θCi � arctan((YCρ,i
− yi)/(XCρ,i

− xi))
(XCρ,i

, YCρ,i
): the centroid of all UAVs in
sensor range ρ

Dispersion θDi � arctan((yi − YCd,i
)/(XCd,i

− xi))
(XCd,i

, YCd,i
): the centroid of all UAVs within

the dmin range

Following
θFi � (θNi + θRi)/2

θRi � arctan((YRi − yi)/(XRi − xi))

θNi � arctan((YNi − yi)/(XNi − xi))

(XRi, YRi): the coordinate of the randomly
selected UAV

(XNi, YNi): the coordinate of the nearest
UAV

Homing θHi � arctan((YHi − yi)/(XHi − xi)) (XHi, YHi): the destination coordinate
Alignment θAi � (1/ni) 􏽐

ni

j�1 θj θj: the heading angle of j-th UAV

Combined θi
′ � θi + Δθi

Δθi � wh(θHi − θi) + wa(θAi − θi) + wc(θCi − θi) + wd(θDi − θi) + wf(θFi − θi)
wh, wa, wc, wd, wf: weights

Following
Homing
Cohesion

Alignment
Dispersion
Heading

Target

Sensor range

Figure 2: *e heading angle of a UAV in its sensor range. By combining the 5 policies’ weight, the heading angle is calculated according to
vector addition.

Protocol
Data

UAVi
Data transmitted from UAVi
Heading angle θi
Coordinate (xi, yi)
Arrival status (T/F)

Figure 3: *e MANET-based UAV communication. *e trans-
mitted data is limited to the heading angle, coordinate, and arrival
status.
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Due to the first arrival of the blue path, the duplicate sup-
pression is triggered to ensure that the blue path is a valid link-
authenticated one as the right subfigure shows.

Although AODV has high efficiency and complexity,
AODV does not have heavy node authentication.*us, once
a malicious node can join and disrupt the network by
hijacking the routing tables or bypassing valid routes, then it
has a chance to eavesdrop on the network if the node can
establish the shortest route to any destination by exploiting
the unsecured routing protocols [6].

As shown in Figure 5, the attacker joins the network easily
using a rushing attack. *e attacker quickly forwards a
malicious RREP. Due to duplicate suppression, an actual valid
RREP message from the valid node will be discarded and
consequently, the attacking node becomes part of the route.
After that, the attacker can change the data from the initiator
node. To maximize the realism of our threat model, in this
paper we assume that only one heading UAV is attacked.

4. Attack Construction

In this section, we describe the attack goal and present the
data spoofing attack to affect the flocking.

4.1. Attack Goal: Arrival Delay. As the first security study on
the flocking-based UAV cluster, our analysis in this paper
focuses on interfering with the UAV cluster’s normal flying
paths to the destination, causing unexpected delays. More
specifically, the attacker aims to pretend to be the first ar-
rived UAV to further send spoofed data to the following
UAVs and interferes with their heading angles (see Figure 6).

Such an attack can cause economic losses and affect
production work. For example, one of the most potential
applications of UAV cluster is for monitoring, search, and
rescue in a dangerous environment. Using UAVs to do such
a task can reduce unnecessary casualties, and thus, it is
highly important to ensure that such flying is well protected
and functions correctly and efficiently. Of course, the at-
tacker can also attack multiple heading UAVs at the same
time.

4.2. Security Analysis and Attack Flow. Our security analysis
consists of the following key steps:

(1) Data spoofing strategy identification: before ana-
lyzing the vulnerability of the flocking algorithm, we
first need to identify meaningful data spoofing
strategies. We analyze the parameter data flow to
understand how the spoofed data can potentially
influence the UAV cluster.

(2) Vulnerability analysis: with the data spoofing
strategy identified, we then further perform vul-
nerability analysis to reveal the attack conse-
quences. To ensure the generality of this analysis, we
choose the most potential application of UAV
cluster in flying tasks for monitoring, search, and
rescue in a dangerous environment and compare
the flying trajectory and total time of the task with
and without attack.

(3) Cause analysis and exploit construction: with the
attack effectiveness for data spoofing quantified, we
perform cause analysis for the successful attacks to
understand why the current flocking algorithm is
vulnerable. Leveraging the insights, we construct
corresponding exploits.

Figure 7 shows the attacked data flow. An attacker can
masquerade as the first-arrival UAV within a specific scope
of destination and generate data spoofing of arrival status to
the following UAVs. Note that GPS and gyroscope are not
spoofed. Due to the affected heading angle computed based
on weights set of policies, the attacker can interfere with
normal flying paths of destination arrival, causing unex-
pected arrival delays.

*e detailed data spoofing attack process is shown in
Algorithm 1.

5. Attack Evaluation

5.1. Setup. We perform a real-world source-to-destination
flying task in a simulation environment. *e swarm consists
of five to ten UAVs and uses the flocking algorithm. *is
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Figure 4: *e duplicate suppression mechanism in AODV protocol, only with a weak link authentication. (a) RREQ process. (b) RREP
process.
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paper uses a laptop computer as the simulation experiment
platform to match the real attack scene, and the software
platform is MATLAB R2019b. *e experimental environ-
ment configuration is shown in Table 2.

5.2. Feature Computation. We hope to bring a delay of the
UAV swarm arriving at the target points. When the cluster is
about to reach the target, we launch a rushing attack to the
arrived UAV in the MANET, by changing the arrival status
data from T (arrived) to F (not arrived), and send the arrival
status data to other UAVs. In this way, the following UAVs
will calculate to get a wrong heading angle which will in-
crease the length of their trajectories to the target points and
cause arrival delay. In the analysis, we use the increased delay

time under attack as a percentage of the original time of the
flying task to quantify the effectiveness of our attack.

5.3. Influence from Speed. We first evaluate the impact of
UAV speed on our attack. We take six different UAV speeds
from 10m/s to 20m/s to study the effect of speed changes on
the delay under a fixed arrival determining threshold
R� 20m. In order to have universal applicability, we con-
duct experiments in the case of 5–10 UAV clusters. In the
experiments, the initial coordinates of UAVs are random
points within five to ten ranges (to ensure the initial safety
distance). *e target points are 1000m away from the initial
coordinates and the structure of target points is consistent
with the initial points’ structure. *e velocity of UAVs is

Initiator

Attacker node
(rushing)

Packet sent-Forward

Figure 5: Rushing attack launched by the attacker node.

Swarm centroid calculated with the arrived UAVt

Swarm centroid calculated without the arrived UAVt

θi calculated with the arrived UAVt

θi calculated without the arrived UAVt

UAVt

∆θ

Figure 6: *e illustration of attack for interfering heading angle by comparing different centroids.
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from V � 10m/s to V � 20m/s, the maximum communi-
cation range among UAVs is ρ � 150m, the threshold for
the application of the cohesion policy is dmax � 120m, and
the threshold for the application of the dispersion policy is
dmin � 30m. *e threshold for judging whether the UAV
has reached the target point is R � 20m; that is, when the
distance between the location of the UAV and its target point
is less than 20m, it can be regarded as having arrived. *e
weight of 5 policies is wh � 0.9, wa � 0.5, wc � 0.2, wd � 0.4,
and wf � 0.1. *is set of weights can ensure that the UAV
cluster can fly smoothly to the destination when it is not
attacked.

*e experiment results are shown in Figure 8.
Figures 8(a)–8(f)) are corresponding to different UAV
numbers of the cluster from 5 to 10. We can see that the
medium numbers in each experiment are over 10% and tend
to increase first and then decrease with the speed of the
cluster. *e corresponding average percentage of delays
increment is summarized in Table 3. We use the increased

delay time as a percentage of the original time of the task to
quantify the effectiveness of our attack. In these columns,
each value is the average delay increment under attack as a
percentage of the average task completion time without
attack.

In this experiment, we fix the arrival determining the
threshold at 20 meters. We find the following: (1) from the
general trend, the delay increment percentage of a smaller
UAV cluster is higher than that of a larger cluster; (2) for a
given cluster size, the average percentage of delay increment
first increases with cluster speed and then decreases; (3) the
maximum delay increment percentage of 27.76% is obtained
in the occasion of cluster size 8 and cluster speed 16m/s.

5.4. Influence from9resholdR. *en, we evaluate the impact
of arrival determining threshold R on our attack. We took
five different arrival determining threshold from 12m to
20m for experiments to study the effect of arrival deter-
mining threshold R on the delay under different UAV
speeds. In order to have universal applicability, we con-
ducted experiments in the case of 5–10 UAV clusters. In the
experiment, the initial coordinates of UAVs are random
points within five to ten ranges (to ensure the initial safety
distance). *e target points are 1000m away from the initial
coordinates and the structure of target points is consistent
with the initial points’ structure. *e velocity of UAVs is
from V � 10m/s to V � 20m/s, the maximum communi-
cation range between UAVs is ρ � 150m, the threshold for

Table 2: Experimental environment configuration.

Experimental environment Environmental configuration
Operating system macOS
CPU 2.4GHz Intel Core i5
Memory 16GB
Hardware 500G
Main tools MATLAB R2019b

Input: R (arrival determining threshold), UAVi(i-th UAV)
Output: θ’,attacki (desired combined heading angle of the i-th UAV after the attack)

(1) //normal
(2) when the first-arrival UAVt is within R scope of its destination then:
(3) UAVt sends arrival status (T) to the following UAVs;
(4) UAVi flies along its desired combined heading angle θi

′ calculated by flocking algorithm without UAVt;
(5) //with attack
(6) when the first-arrival UAVt is within R scope of its destination then:
(7) Attacker masquerades as UAVt exploiting rushing attack;
(8) *e attacker generates data spoofing of arrival status and sends the malicious arrival status (F) to following UAVs;
(9) UAVi flies along its desired combined heading angle θ′,attacki calculated by flocking algorithm including UAVt;
(10) return θ′,attacki

ALGORITHM 1: Data spoofing attack algorithm.

UAV individual

UAV swarm
Arrival
status

GPS

Gyroscope

Policy
weights set

Policy set

UAV individual

UAV individual

Communication

Self-status
information

collection

Calculate
heading angle

Figure 7: *e attacked data flow in the UAV swarm.
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Figure 8: Delay increment for multi-UAV clusters of different sizes at a speed from 10 to 20m/s and with R� 20. (a) Boxplot for 5-UAV
clusters. (b) Boxplot for 6-UAV clusters. (c) Boxplot for 7-UAV clusters. (d) Boxplot for 8-UAV clusters. (e) Boxplot for 9-UAV clusters. (f )
Boxplot for 10-UAV clusters.
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the application of the cohesion policy is dmax � 120m, and
the threshold for the application of the dispersion policy is
dmin � 30m.*e arrival determining threshold R is between
12m and 20m. *e weight of 5 policies is
wh � 0.9, wa � 0.5, wc � 0.2, wd � 0.4, and wf � 0.1.

*e experiment results are shown in Figure 9. *e
corresponding average percentage of delays increment is
summarized in Tables 4–9. In this experiment, we find that
when fixing the cluster’s speed, lower arrival determining
threshold R will cause a higher delay increment percentage
no matter what the cluster size; the maximum delay in-
crement percentage of 47.84% is obtained in the occasion of
cluster size 9, cluster speed 16m/s, and arrival determining
threshold 12 meters.

6. Defense Suggestion

As our research shows, even though the swarm intelligence
algorithm shows high effectiveness under a benign set of
weights, the current algorithm design is still very vulnerable
to data spoofing attacks. In order to proactively solve these
problems before large-scale deployment, this section dis-
cusses the defense direction based on the insights derived
from our analysis.

From our experimental analysis, compared with the
higher arrival determining threshold R, a lower Rwill cause a
higher delay percentage because it is difficult to fly very close
to the destination especially at a highly fast speed and under
the data spoofing attack. *us, we suggest increasing R in a
reasonable practical range to match the speed. But it is a
trade-off between accuracy and safety because if we use a too
high value of R, the cluster will lose its accuracy and stop too
far away from the destination.

Similarly, UAVs at a constant higher speed will not
steadily fly to the destination when it approaches the des-
tination and under the attack. To ensure the efficiency of
performing tasks, the speed setting can be divided into two
stages. In the beginning, UAVs fly at a higher speed. When
they approach their destinations, a lower speed should be
adopted for a steady fly towards the destination.

Another possible defense is increasing the weight of
homing policy and decreasing the weight of cohesion, fol-
lowing, and alignment policies especially when the swarm
approaches the destination. In this case, although the first-
arrival UAV is attacked, the following UAVs will still fly
towards their destination due to the enhanced homing force
and thus can decrease the influence of attack. *us, it is
highly important to adjust policy weights and speed

dynamically and timely according to the current state to
achieve a robust, conflict-free, and efficient UAV swarm.

*e data spoofing attack against UAV clusters is rooted
from the attacker breaking through the vulnerable au-
thentication of AODV exploiting a rushing attack. Several
robust defenses against rushing attack can be introduced in
the multi-UAV cluster communication network [7], such as
secure neighbor detection which allowed the sender and the
receiver to verify that the other party is within the normal
direct wireless communication range because the attacker
often forwards an RREQ beyond the normal radio trans-
mission range to achieve faster transit; randomized RREQ
forwarding allowed a node first to collect a number of
RREQs and select one at random to forward to replace
traditional duplicate suppression mechanism in AODV
which could be exploited by rushing attackers and blacklist
mechanisms using the property of nonrepudiation to spread
information about identified malicious nodes. Also, there is
always a trade-off issue between strong authentication and
flocking efficiency, requiring further light authentication
study.

7. Related Works

7.1. Data Spoofing in UAV. In [8, 9], the authors demon-
strated the feasibility of infiltrating internal networks to
launch data spoofing through the network node. Lately, a lot
of studies show the sensor’s attack to launch data spoofing.
More specifically, the GPS spoofing [18, 22] by sending
interfering signals is very common. In addition to GPS
sensors, other sensors including optical sensors [20, 21] and
context-aware services [23–26] can also be threatened to
cause data spoofing physically [8, 19, 20, 27–29], wirelessly
[9, 30, 31], or through malware [10, 11]. Similar to previous
work, our data spoofing is launched through a node in the ad
hoc network. Some attacks have been revealed involving
wormhole attack, rushing attack, joint attack, Sybil attack,
denial of service attacks, and eavesdropping attacks [17].
Prior to our work, there are some related works to attack
UAV. *e detailed comparison is given in Table 10. We can
see that our work focuses on attacking the swarm algorithm
as our directed target, compared to those physical sensors or
software modules. In addition, compared to the Partial
Differential Equation (PDE) algorithm [31], the flocking
algorithm enables more control policy that is more practical
in real applications. As to the attack effect, general effects
include position error, crash, unstable flight, path deviation,
and time delay. Although without a crash, our method
discovers the attack to cause a heavy time delay of swarm

Table 3: Average delay increment comparison with R� 20.

Speed (m/s) 5-UAV cluster (%) 6-UAV cluster (%) 7-UAV cluster (%) 8-UAV cluster (%) 9-UAV cluster (%) 10-UAV cluster (%)
10 15.70 12.79 10.37 13.08 9.76 10.90
12 13.77 14.47 11.72 17.74 11.55 12.42
14 12.83 17.33 15.53 19.10 9.52 11.01
16 25.00 15.97 23.69 27.76 12.83 11.52
18 22.39 22.22 11.17 18.29 13.66 13.76
20 15.64 16.17 15.67 21.66 13.70 17.03
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Figure 9: Continued.
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Figure 9: Average delay increment comparison for multi-UAV clusters of different sizes at a speed from 10 to 20m/s and with R from 12 to
20m. (a) Result for 5-UAV clusters. (b) Result for 6-UAV clusters. (c) Result for 7-UAV clusters. (d) Result for 8-UAV clusters. (e) Result for
9-UAV clusters. (f ) Result for 10-UAV clusters.

Table 4: Average delay increment for 5-UAV clusters at a speed of 10–20m/s and with R of 12–20m.

*reshold R (m) V� 10m/s (%) V� 12m/s (%) V� 14m/s (%) V� 16m/s (%) V� 18m/s (%) V� 20m/s (%)
12 26.58 25.71 28.74 34.21 43.24 36.23
14 24.35 22.00 25.61 31.51 31.58 25.59
16 12.15 14.74 18.75 30.99 23.68 26.98
18 8.93 10.64 17.72 27.54 23.29 26.23
20 9.70 11.03 10.39 14.90 13.78 15.60

Table 5: Average delay increment for 6-UAV clusters at a speed of 10–20m/s and with R of 12–20m.

*reshold R (m) V� 10m/s (%) V� 12m/s (%) V� 14m/s (%) V� 16m/s (%) V� 18m/s (%) V� 20m/s (%)
12 31.84 34.76 28.65 28.14 29.95 33.85
14 23.18 29.47 22.75 21.79 28.17 21.67
16 25.71 20.83 22.49 20.01 22.31 16.39
18 19.63 13.71 18.99 14.09 15.05 14.88
20 12.20 11.38 13.75 12.06 14.29 10.34

Table 6: Average delay increment for 7-UAV clusters at a speed of 10–20m/s and with R of 12–20m.

*reshold R (m) V� 10m/s (%) V� 12m/s (%) V� 14m/s (%) V� 16m/s (%) V� 18m/s (%) V� 20m/s (%)
12 28.46 30.70 32.11 31.25 37.35 40.30
14 19.84 21.36 26.84 25.00 31.43 28.48
16 14.57 18.90 19.10 15.29 20.00 24.65
18 10.37 11.96 13.22 15.19 20.59 10.63
20 10.73 7.78 11.75 8.44 11.76 7.46
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flight, which is still unacceptable in emerging tasks of
monitoring, search, and rescue.

7.2.AutonomousUAVCluster and Security. Privacy leak and
collision are two common security issues for the UAV
cluster. In the works [32–35], researchers studied privacy
issues in UAV clusters, such as privacy refers to preventing
the inference of the leader’s identity in leader-follower
structure swarms. Our work belongs to the latter security
issue of flocking-based cluster and collision. Reynolds
proposed the Boids model in 1986, which is the earliest
flocking model [1]. Zaera et al. intended to develop neural
network-based controllers for schooling behavior in three

dimensions, using realistic Newtonian kinematics, such as
inertia and drag [36]. Vicsek et al. proposed a particle swarm
model [37], in which each particle moves at the same unit
speed, and the direction is the average of the direction of its
neighbor particles. Although this model only achieves the
overall direction consistency of the particle swarm and ig-
nores the collision avoidance of each particle, it still makes
an important contribution to the modeling of swarm agents.
Sharma and Ghose extended the Boids model and proposed
a swarm intelligence algorithm to avoid cluster collisions [4].

One of the recent applications of the self-organized
swarm intelligence algorithm is collective UAVs [38], where
decentralized control algorithms for groups of autonomous

Table 7: Average delay increment for 8-UAV clusters at a speed of 10–20m/s and with R of 12–20m.

*reshold R (m) V� 10m/s (%) V� 12m/s (%) V� 14m/s (%) V� 16m/s (%) V� 18m/s (%) V� 20m/s (%)
12 24.50 44.71 28.72 41.93 46.56 46.22
14 21.48 33.62 28.98 32.51 23.56 38.63
16 16.64 14.48 20.41 30.47 15.99 25.43
18 10.20 17.21 18.67 7.76 20.32 8.83
20 9.35 10.44 8.09 9.82 11.84 10.47

Table 8: Average delay increment for 9-UAV clusters at a speed of 10–20m/s and with R of 12–20m.

*reshold R (m) V� 10m/s (%) V� 12m/s (%) V� 14m/s (%) V� 16m/s (%) V� 18m/s (%) V� 20m/s (%)
12 25.44 29.77 23.68 47.84 38.94 28.74
14 17.04 18.07 19.67 26.66 27.97 19.34
16 15.41 13.16 18.34 22.55 20.16 15.64
18 14.10 11.95 16.67 19.52 12.80 12.85
20 8.13 10.73 13.37 8.90 12.92 10.60

Table 9: Average delay increment for 10-UAV clusters at a speed of 10–20m/s and with R of 12–20m.

*reshold R (m) V� 10m/s (%) V� 12m/s (%) V� 14m/s (%) V� 16m/s (%) V� 18m/s (%) V� 20m/s (%)
12 37.84 38.24 39.15 42.36 35.38 35.93
14 34.16 34.43 37.08 30.53 33.18 35.19
16 25.70 19.29 23.54 11.17 9.40 16.29
18 7.87 12.04 10.12 8.76 10.09 9.39
20 5.79 12.15 3.71 7.61 8.46 6.14

Table 10: Comparison of different attack methods.

Method Target Attack effect

Physically

Son et al. [27] Gyroscopic sensor Crash
Choi et al. [28] GPS sensor Path deviation
Trippel et al. [29] Accelerometers Unstable flight
Davidson et al. [20] Optical flow sensor Position error

Tippenhauer et al. [19] GPS sensor Position error

*rough malware Dash et al. [11] Software stack Unstable flight
Mazloom et al. [10] Software stack Unstable flight

Wirelessly
Highnam et al. [30] Wireless channel Disrupted communications
Ghanavati et al. [31] PDE algorithm Time delay

Our method Flocking algorithm Time delay
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UAVs can be developed on the basis of interactions as a
prerequisite for safe operation. In comparison, our attack
target is based on the 5-policy flocking algorithm, which has
more widespread applications.

*e largest UAV cluster so far was developed by Ehang
with more than 1000 UAVs. However, these UAVs were
individually programmed for predefined trajectories or were
centrally controlled and did not satisfy the autonomy with
swarm intelligence [39]. *e US military had an experiment
with fixed-wing drone swarms called Perdix [40, 41]. Un-
fortunately, there is no public information about its control
mechanisms, communication schemes, or possible collision
avoidance behaviors to reliably evaluate. In comparison, we
target a lab-level UAV cluster with 10 UAVs.

A previous related work is the intrusion detection-based
multi-UAV mission execution [42]. In their method, a
subflight area is demarcated by the coordinates of the
waypoints in the assigned tasks of the UAV. According to
the UAV’s GPS coordinates, if the current UAV exceeds this
area, it is considered suspicious and will cut off the con-
nection with other UAVs, and the others reconnect. In
comparison, our method focuses on flocking-based UAV
collaboration, and we do not perform GPS spoofing but
arrival status spoofing, which is a special parameter in the
swarm intelligence of flocking.

8. Conclusions

In this work, we perform the first security analysis of the
flocking algorithm that is most widely used in UAV clusters.
Targeting a highly realistic threat model in AODV link au-
thentication through rushing attack-based data spoofing, we
perform vulnerability analysis and find that the current
flocking algorithm design is highly vulnerable to data
spoofing attacks. *e evaluation results in the simulation
environment validate the effectiveness of the attack and show
that the attack can even cause nearly 50% arrival delay.
Defense directions are then discussed leveraging the insights.

*is work serves as a first step to understand the new
security problems and challenges in the flocking, a main
kind of swarm intelligence algorithm of UAVs. It is expected
to inspire a series of follow-up studies, including but not
limited to (1) more extensive evaluation with UAV clusters
with different formation structures, (2) more extensive
analysis considering other swarm intelligence algorithms,
such as the one imitating bees or ants, and (3) more concrete
defense approach and evaluation.
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Supplementary Materials

We provide a video file to show a simulated attack in
MATLAB. In this attack scenario, there is a cluster of 8
UAVs with an applied flocking algorithm, keeping a for-
mation from the left source to the right destination. A data
spoofing through masquerading as the first-arrival UAV is
performed at a location of 20-meter distance away from the
destination, and then a heavy delay occurred among the
following UAVs.*rough the video supplementarymaterial,
we reveal the whole flying and attacking process. (Supple-
mentary Materials)
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