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The existence of adversarial examples and the easiness with which they can be generated raise several security concerns with regard
to deep learning systems, pushing researchers to develop suitable defence mechanisms. The use of networks adopting error-
correcting output codes (ECOC) has recently been proposed to counter the creation of adversarial examples in a white-box setting.
In this paper, we carry out an in-depth investigation of the adversarial robustness achieved by the ECOC approach. We do so by
proposing a new adversarial attack specifically designed for multilabel classification architectures, like the ECOC-based one, and
by applying two existing attacks. In contrast to previous findings, our analysis reveals that ECOC-based networks can be attacked
quite easily by introducing a small adversarial perturbation. Moreover, the adversarial examples can be generated in such a way to
achieve high probabilities for the predicted target class, hence making it difficult to use the prediction confidence to detect them.

Our findings are proven by means of experimental results obtained on MNIST, CIFAR-10, and GTSRB classification tasks.

1. Introduction

Deep neural networks can solve complicated computer vi-
sion tasks with unprecedented high accuracies. However,
they have been shown to be vulnerable to adversarial ex-
amples, namely, properly crafted inputs introducing small
(often imperceptible) perturbations, inducing a classification
error [1-3]. The possibility of crafting both nontargeted and
targeted attacks has been demonstrated, the goal of the
former being to induce any kind of classification error [4, 5],
while the latter aims at making the network decide for a
target class chosen a priori [1, 6]. It goes without saying that,
in general, targeted attacks are more difficult to build.

As a reaction to the threats posed by adversarial ex-
amples, many defence mechanisms have been proposed to
increase the adversarial robustness of deep neural networks
[7-12]. However, in a white-box setting wherein the attacker
has a full knowledge of the attacked network, including full
knowledge of the defence mechanism, more powerful at-
tacks can be developed, thus tipping again the scale in favour
of the attacker [4, 13].

In this race of arms, a novel defence strategy based on
error-correcting output coding (ECOC) [14] has been pro-
posed recently in [15], to counter adversarial attacks in a
white-box setting. More specifically, given a general mul-
ticlass classification problem, error-correcting output codes
are used to encode the various classes and represent the
network’s outputs. To explain how, let us refer to the output
of the last layer of the network, prior to the final activation
layer, as logit values or simply logits. In general, the final
activation layer consists of the application of an activation
function, which maps the logits into a prescribed range, and
a normalization layer, which maps the output of the acti-
vation functions into a probability vector, associating a
probability value to each class. In the common case of one-
hot-encoding, a softmax layer is used, in which case these
two steps are performed simultaneously. During training,
the network learns to output a large logit value for the true
class and small values for all the others. With the ECOC
approach, instead, the network is trained in such a way to
produce normalized logit values that correlate well with the
codeword used to encode the class the input sample belongs
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to. In general, ECOC codewords have many nonzero values,
thus marking a significant difference with respect to the one-
hot-encoding case.

The rationale behind the use of the ECOC architecture to
counter the construction of adversarial examples [15] is that
while with classifiers based on standard one-hot-encoding
the attacker can induce an error by modifying one single
logit (reducing the one associated to the ground-truth class
or increasing the one associated to the target class), the final
decision of the ECOC classifier depends on multiple logits in
a complicated manner, and hence it is supposedly more
difficult to attack (especially when longer codewords are
used).

In [15], the authors considered nontargeted attacks in
their experiments and showed with the popular white-box
C&W attack that the attack success rate on CIFAR-10 [16]
passes from 100%, for one-hot-encoding, to 29%, for an
ECOC-based classifier.

Another alleged advantage of the ECOC architecture
proposed in [15] is linked to the way the probabilities as-
sociated with each class are computed. Rather than using a
softmax function as commonly done with one-hot-encod-
ing, first the correlation between the activated outputs and
the codeword is computed, and then a linear normalization
procedure is applied (see equation (2) in the following). In
this way, the probability assigned to the class chosen by the
classifier grows more smoothly, and samples close to the
decision region boundary (like adversarial examples are
likely to be) are classified with a low confidence. Results
presented in [15], in fact, show that the ECOC model tends
to provide sharp results for clean images, while it is often
uncertain about the (incorrect) prediction made on
adversarial examples. This behavior could be exploited to, at
least, distinguish between adversarial examples and benign
inputs.

The goal of this paper is to further verify if and to which
extent the use of error correction codes to encode the output
of deep neural networks allows to increase the robustness
against targeted adversarial examples. We do so by intro-
ducing a new white-box attack, inspired to C&W attack,
explicitly thought to work not only against ECOC but also
other multilabel classifiers. In fact, the original C&W is
naturally designed to deceive networks adopting the one-
hot-encoding strategy, and it loses some of its advantages
when used against ECOC systems. We stress that, in contrast
to previous works (see, for instance, [15] and Section 10 in
[17]), we aim at developing a targeted attack, which is a more
difficult task than crafting nontargeted adversarial examples.
This is a reasonable choice for at least two reasons. First,
targeted attacks are more flexible than nontargeted ones
since they can be used in a wider variety of applications,
wherein the ultimate goal of the attack may vary consid-
erably. Secondly, being able to attack a defence under most
stringent attacking constraints illustrates better the weakness
of the defence itself.

We ran extensive experiments to evaluate the ability of
ECOC-based classifiers to resist the new attack and com-
pared the results we got with those obtained by applying a
fine-tuned version of C&W attack and the LOTS attack

Security and Communication Networks

introduced in [18]. The experiments were carried out by
considering three different classification tasks, namely,
traffic sign classification (GTSRB) [19], CIFAR-10 classifi-
cation [16], and MNIST [20]. As a result, we found that the
ECOC classifiers can be successfully attacked with a high
success rate. In particular, the new attack outperforms the
other two especially when long codewords are used by
ECOC. We also verified that, by increasing the confidence of
the attack, adversarial examples can achieve high proba-
bilities for the predicted target class, similar to those of
benign samples, hence making it difficult to use the pre-
diction confidence to detect adversarial samples. Overall, our
analysis reveals that the security gain achieved by the ECOC
scheme is a minor one, thus calling for more powerful
defences.

The rest of this paper is organised as follows: we first
briefly review the ECOC scheme presented in [15], and then
we describe the proposed attack. The setup considered for
the experiments, and the results we got are reported and
discussed in Section 4. Eventually, we review the related
work at the end of the paper.

2. ECOC-Based Classification

Let us first introduce the notation for a general multiclass
CNN. Let x be the input of the network and k the class label,
k=1,2,---,M, where M denotes the number of classes. Let
f (x) indicates the decision function of the network. We
denote by z = (z,,2,,---,), the vector with the logit values,
that is, the network values before the final activations and the
mapping to class probabilities. For one-hot-encoding
schemes, z has length M, and the logits are directly mapped
into probability values through the softmax function y as
follows:

exp (2;)
ng €xp (zi)’

fork = 1,---, M. Then, the final prediction is made by letting
S (x) = argmax; p,, (k).

The error-correction-output-coding (ECOC) scheme
proposed in [15] assigns a codeword C, of length N
(N = M) to every output class (k = 1,---, M). C denotes the
M x N codeword matrix. Each element of C can take values
in {~1,1}. In this way, the length of the logit vector z is N.
The logits are first mapped into the [-1, 1] range by means of
an activation function o(-) (e.g., the tanh function that
o(x) = (e —e ™)/ (e* +e™)). Then, the probability of class
k is computed by looking at the correlation with C,
according to the following formula:
max (0(z) - C;, 0)

by (k) = fol max (o(z) - Ci,O)’

Py (k) =y (2) = (1)

(2)

where - denotes the inner product and o(-) is a sigmoid
activation function applied element-wise to the logits. Since
C;js take values in {~1,1}, the max is necessary to avoid
negative probabilities. According to [15], the common
softmax rule (equation (1)) is able to express uncertainty
between two classes only when the logits are roughly equal
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(e, 2z, =z, and the two probabilities are close
Py (i) = Py (). In a two dimensional case, this corresponds
to a very narrow stripe, approximate to a line, across the
boundary of the decision region, while in high dimensional
spaces, the region z; ~ z; approximates a hyperplan, an M —
1 dimensional subspace of RM with negligible volume, and
hence the classifier outputs high probabilities almost ev-
erywhere. This makes it very easy for the attacker to find an
adversarial input that is predicted (wrongly) with high
confidence. With ECOC (equation (2)), instead, it is suffi-
cient that two approximate correlations express low un-
certainty (0(z)-C; = o(z)- Cj), and then a non-trival
volume is allocated to low-confidence region in the logit
space, thus limiting the freedom of the attacker to craft high-
confidence adversarial examples. An overall sketch of the
ECOC scheme is depicted in Figure 1. The logits z are first
mapped into correlation values, p := ¢(z) - C (mapping step
1), and then the vector with the correlations is normalized so
to form a probability distribution (mapping step 2) via the
normalization function in (2). The model’s final predicted
label is arg max; p,, (k). Equation (2) is a generalization of the
standard softmax activation in equation (1) and reduces to it
for the case of one-hot-encoding, that is, when C = I,;, with
N = M, and where I,; is the identity M x M matrix.

The purpose of the ECOC architecture is to design a
classifier which is robust to changes of multiple logits and
then, expectedly, more difficult to attack (with standard one-
hot-encoding the adversary can succeed by altering a single
logit). For the scheme to be effective, codewords charac-
terised by a large minimum Hamming distance must be
chosen. For simplicity, in [15], the ECOC classifier is built by
using Hadamard codes taking values in {-1, 1} (when Cis a
Hadamard matrix, the Hamming distance for large M ap-
proaches the limit value N/2). An advantage with this choice
is that, since C is orthogonal, whenever the network outputs
a codeword exactly (that is when o (z) = C;), then p, (k) = 1.
The tanh function is selected as the activation function o (-).

The authors also found that, rather than considering a
single network with N outputs, a classifier consisting of an
ensemble of several smaller networks, each one outputting a
few codeword elements, permits to achieve a larger ro-
bustness against attacks. By training separate networks, in
fact, the correlation between errors affecting different bits of
the codewords is reduced, thus forcing the attacker to attack
all the bits independently. In the scheme in Figure 1, every
network outputs one codeword bit only, resulting in N
ensemble branches.

3. Attacking ECOC

We start by considering the basic C&W attack introduced in
[6]. We notice that some of the good properties of C&W do
not hold longer when the attack is applied against the ECOC
scheme since it has been originally designed to work against
networks adopting the one-hot-encoding strategy. Then, we
propose a new more effective attack, which is specially
tailored to multilabel structures like ECOC.

In general, constructing an adversarial example corre-
sponds to finding a small perturbation § (under some

distance metric) that once added to image x will change its
classification. Such a problem is usually formalised as

minD (x, x + §),

(3)
st f(x+6) =t
where D is some distance metric (e.g. the L, metric) and tisa
chosen target class. As this problem is difficult to solve,
C&W attack aims at solving its Lagrangian approximation
defined as

min [|8]l, + A - max(mzx(zi (x+9)) -z, (x+9), c), (4)

where the second term is any function such that f (x + §) = ¢
if and only if this term <c. ||-||, denotes the L,-norm, A and ¢
are constant parameters ruling, respectively, the tradeoft
between the two terms of the optimization problem and the
confidence  margin of the attack (In [6],
§ = 1/2(tanh (w) + 1) — x, and the minimization is carried
out over w to have box constraints on § when optimizing
equation (4) with a common optimizer like Adam.).
Equation (4) is designed for the common one-hot encoding
case. In fact, it is easy to see that for ECOC the motivation of
such a design does not hold anymore and ensure that the
second term is less than ¢ and does not guarantee that
f (x + 8) = t. Therefore, the C&W attack must be adjusted to
fit the ECOC framework. By noting that, in ECOC, corre-
lations are proportional to probabilities (instead of the logits
as with one-hot encoding), and C&W shall be modified as

mini&mize 61, + A - max(m:}x (pi(x+8))—p,(x+ 5),c),

(5)

where p, (x +8) = 0(z(x +§)) - C,.

A key advantage of C&W attack against one-hot-
encoding networks is that it works directly at the logits level.
In fact, logits are more sensitive to modifications of the input
than the probability distribution obtained after the softmax
activation (most adversarial attacks work directly on the
probability values obtained after the softmax, which makes
them less effective than C&W and prone to gradient-van-
ishing problems).

When C&W attack is applied against ECOC (by means
of (5)), it does not work at the output logit level, but after
that, the correlations are computed (mapping step 1) since
this is the layer that precedes the application of the softmax-
like function. The correlations between the activations of the
logits and the codewords will likely have a reduced sensi-
tivity to input modifications, and this may decrease the
effectiveness of the attack. We also found that during the
attack, it is possible to change only one bit of the output
while the others are almost unchanged. This can be
explained by observing that ECOC trains each output bit
separately, so that each bit can be treated as an individual
label. In this way, the correlation between the output bits is
significantly reduced compared to classifiers adopting the
one-hot encoding approach. We exploit this fact to design
our attack in such a way as to make it modify a single bit ata
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FiGure 1: Block diagram of ECOC architecture.

time and iteratively repeat this process to eventually change
multiple bits.

With the above ideas in mind, the new attack is for-
mulated as follows:

miniamize 61, —A- miin (2t; - z; (x + 0),¢), (6)
where (t;,t,,---,ty) = C, is the desired target codeword
(t; € {~1,1}), A is a parameter controlling the tradeoff be-
tween the two terms of the objective function, and ¢ is a
constant parameter used to set a confidence threshold for the
attack. Specifically, the attack seeks to minimize (6) until the
product between ¢; and z; reaches this threshold; thus, a
higher ¢ will result in adversarial examples exhibiting a
higher correlation with the target codeword, that is,
adversarial examples that are (wrongly) classified with a
higher confidence.

The choice of A also plays an important role in the attack,
given that a very small A would lead to a vanishing per-
turbation. On the contrary, using larger A results in a more
effective attack at the cost of a larger perturbation. To op-
timize the value of A, we use a binary search similar to the
one used in [6] to determine the optimum value of A in C&W
attack. By doing so, the parameters of the proposed attack
have the same meaning of those in C&W attack; thus, the
two methods can be compared on a fair basis under the same
parameter setting. An overall description of our attack is
given in Algorithm 1, whose goal is to find a valid adversarial
example, with the desired confidence level ¢ and with the
smallest perturbation. As a result of the optimization in
Algorithm 1, all logit values z; of the resulting adversarial
image will tend to be highly correlated with ¢;.

It is worth observing that, even if we designed the new
attack explicitly targeting the ECOC classifier, the algorithm
in (6) is generally applicable to any multilabel classification
network since it manipulates the output bits of the network,
regardless of the adopted coding strategy. This point can be
evidenced by considering two limit cases of ECOC. In the
first case, we avoid using error correction to encode the
output classes. This is equivalent to multilabel classification
problems with N labels [21, 22], and the proposed attack can
still be applied. In the second case, we may consider one-hot-
encoding as a particular way of encoding the output class.

This perspective, also been considered in [15], would de-
grade the ECOC system to a common network that uses one-
hot-encoding and softmax to solve a multiclass classification
task. Since our attack does not involve the decoding part of
the network, it can still be applied to such networks.

4. Experiments

4.1. Methodology. In [15], the authors tested the robustness
of the ECOC architecture for various combinations of
codeword matrices C, activation functions o (-), and network
structures. In particular, they considered the MNIST [20]
and CIFAR-10 [16] classification tasks (M =10 in both
cases). In the end, the best performing system was obtained
by considering a Hadamard code with N = 16 and the tanh
activation function. An ensemble of 4 (N/4) networks each
one outputting 4 bits was considered. The authors argue that
using a large number of ensembles increases the perfor-
mance of the system against attacks (by decreasing the
dependency among output bits). Then, in our experiments,
we used N ensembles, with only one output bit each. The
authors also indicate that the robustness of ECOC scheme
can be improved by using longer codewords. Then, in our
experiments, in addition to MNIST and CIFAR-10 already
considered in [15], we also considered traffic sign classifi-
cation (GTSRB dataset) [19], to test the robustness of ECOC
on a larger number of classes and with codewords of a larger
size, which potentially means higher robustness. To be
specific, for traffic sign classification, we set M = 32, by
selecting the classes with more examples among the total
number of 44 classes in GTSRB, and chose a Hadamard code
with N = M = 32, which is twice the size of the code used for
MNIST and CIFAR-10. A diagram of the ECOC scheme with
the N ensemble structure is shown in Figure 1. We used a
standard VGG-16 network [23] as the base block of our
implementation. Following the ECOC design scheme, the
first 6 layers form the so-called shared bottom part, that is,
the layers shared by all the networks of the ensemble. Then,
the remaining 10 layers (the last 8 convolutional layers and
the 2 fully connected layers) are trained separately for each
ensemble branch.

For each task, we first trained one M-class classification
network, and then we fine-tuned the weights to get the N
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ensemble networks. The error rates of the trained models on
clean images are equal to 2.14% for MNIST, 13.9% for
CIFAR-10, and 1.28% for traffic sign (GTSRB) classification.

In addition to the extended C&W attack described in
Section 3, we also considered a new attack named layerwise
origin-target synthesis (LOTS) introduced in [18]. In a few
words, LOTS aims at modifying the deep representation at a
chosen attack layer, by minimizing the Euclidian distance
between the deep features of the to-be-attacked input and a
target deep representation chosen by the attacker. In our
tests, we applied LOTS to the logits level, and we obtained
the target deep representation (logits) by randomly choosing
50 images belonging to the target class.

4.2. Results. We attacked 300 images randomly chosen from
the test set of each task. For each attack, we carried out a
targeted attack with the target class chosen at random among
the remaining M — 1 classes (i.e., all the M classes except the
original class of the unperturbed image). The label ¢ of the
target class was used to run the C&W attack in equation (5)
and LOTS, while the codeword C, associated to t is con-
sidered in (6) for the new attack. We use the attack success
rate (ASR) to measure the effectiveness of the attack, i.e., the
percentage of generated adversarial examples that are
assigned to the target class, and the peak signal-to-noise ratio
(PSNR) to measure the distortion introduced by the attack,
which is defined as PSNR = 20*log,, (255* VN /||8l,), where
[S1l, is the L,-norm of the perturbation and N is the size of
the image.

As the parameters of the new attack have the same
meaning as those of C&W attack, we first compare the C&W
and the new attack with several settings of the input pa-
rameters. The results we got are shown in Tables 1-3, for
GTSRB, CIFAR-10, and MNIST, respectively. In all the
cases, ¢ was set to 0. The results obtained by using the C&W
attack against the standard one-hot-encoding VGG-16
network with M classes are also reported in the last column.
By looking at the different rows, we can first see that when
the strength of the attack is increased, e.g., by using a larger
number of iterations or a larger number of steps during the
binary search, the ASR of both attacks increases, at the price
of a slightly larger distortion. For instance, for CIFAR-10,
the ASR of the proposed attack increases from 69.3% to
98.6%, with a decrease in the PSNR of less than 1 dB, and the
ASR of the C&W attack increases from 53.6% to 92.6% with
an extra distortion of 3dB. Then, by comparing different
columns, we see a clear advantage of the proposed attack
over C&W attack since the former achieves a higher ASR for
the same parameter settings.

By comparing the different tables, we see that the ad-
vantage of the new attack is more evident with GTSRB than
with CIFAR-10. The use of longer codewords in GTSRB, in
fact, makes it harder to attack this classifier; however, the
new attack can still achieve an ASR=93.3% with a PSNR
equal to 39 dB.

For MNIST dataset, the ASR is lower compared to the
CIFAR-10 and GTSRB. This result agrees with the results
reported in [15]. One possible explanation of this fact is
advanced in [10] where the peculiarities of the MNIST

dataset are highlighted and used to argue that high ro-
bustness can be easily reached on MNIST.

The comparison with LOTS must be carried on a dif-
ferent ground since such an attack is designed in a different
way, and the only parameter shared with the new attack is
the maximum number of iterations allowed in the gradient
descent. For this reason, we applied LOTS by allowing a
maximum number of iterations equal to 2000, which is the
same number we have used for the other two attacks. We
have verified experimentally that LOTS converges within
1000 iterations 92% of the times (The convergence is de-
terminate by checking whether the new loss value is close
enough to the average loss value of the last 10 iterations.),
thus validating the adequacy of our choice. Then, we
measured the ASR for a given maximum PSNR, thus
allowing us to plot the ASR as a function of PSNR. The
results we got are shown in Figure 2. Upon inspection of the
figure, we observe a behavior similar to Tables 1-3. The
proposed attack greatly outperforms LOTS and C&W on
GTSRB when longer codewords are used. The ASR of the
new attack, in fact, achieves nearly 100% for smaller PSNR’s,
while LOTS and C&W stop at 42% and 42.3%, respectively.
For the other two datasets, the gap between the different
attacks is smaller than in the GTSRB case. Specifically, the
proposed attack and LOTS perform almost the same on
CIFAR-10, while LOTS provides slightly better results on
MNIST. This observation can also be verified in Figure 3,
where we show some images that are successfully attacked by
all the attacks. We can see from the figure that the proposed
attack requires less distortion to attack the selected exam-
ples, producing images that look visually better than the
others. The advantage is particularly evident for the GTSRB
case, but is still visible for the CIFAR-10 and MNIST images.

As for time complexity, we observe that though our
attack aims at modifying fewer bits each time, its complexity
is very similar to that of C&W attack. Specifically, if we allow
2000 iterations (10 binary searches) for each attack, for
CIFAR-10, the new attack and C&W attack require about
800 seconds and 1000 seconds to attack an image, respec-
tively (The times are measured using one NVIDIA RTX2080
GPU without paralleling.). On the other hand, LOTS is
considerably faster since it needs about 80 seconds to attack
an image. The reason behind the high computational
complexity of C&W and our new attack is the binary search
carried out at each step. In fact, we verified that, by reducing
the number of steps the binary search consists of, the speed
of both attacks improves greatly. However, since our main
purpose is to test the robustness of the ECOC system, we did
not pay much effort to optimize our attack from a com-
putational point of view, all the more that its complexity is
already similar to that of C&W attack.

As an overall conclusion, the experimental analysis re-
veals that, in the white-box scenario, the security gain that
can be achieved through the ECOC scheme is quite limited
since by properly applying existing attacks and especially by
using the newly proposed attack, the ECOC classifiers could
be attacked quite easily.

Another expected advantage of ECOC is that adversarial
examples tend to be classified with a lower probability than
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Input:
The start point and number of binary search A,, n;
The step size and max iteration of gradient descent, ¢, m;
To be attacked image, x;
Output:
Adversarial perturbation &
(1) upper bound «— oo
(2) lower bound «—0
(3) fori € [1,n] do
(4) §,—0
(5) found adv «— False
(6) for je [1,m] do
(7) if x + 8]- is adversarial and ||8j|| <|14] then
(8) found adv «— True
9) end if
(10) 8; —38; —ex (V/IIV;ll), where V; is the gradient of equation (6) with current A; w.r.t. the perturbation J;
(11)  end for
(12)  if foundadv = True then
13) upper bound «— A,
(14)  else
15) lower bound «— A,
(16) end if
(17)  if upper bound = co then
as) A —10x A,
(19) else
(20) A; «— (upperbound + lowerbound)/2
(21) end if
(22) end for
ALGORITHM 1: Solving optimization in (6).
TaBLE 1: Results of the attack against ECOC for GTSRB classification.
Proposed (ECOC) C&W (ECOC) C&W (one-hot)
Parameters
ASR (%) PSNR ASR (%) PSNR ASR (%) PSNR
(1e—4, 5, 100, 0) 40.3 41.43 7.0 48.80 255 46.82
(1e—4, 5, 200, 0) 45.6 41.58 8.6 48.48 37.5 4573
(1e—4, 5, 500, 0) 53.3 41.65 113 48.03 475 46.07
(1e-2, 5, 500, 0) 70.6 39.85 20.0 43.94 61 4341
(le—1, 10, 2000, 0) 93.3 38.97 423 39.20 81.5 42,51

Reported parameters indicate, respectively (start point, number of steps of binary search, max iterations, and confidence).

clean images. Here, we show that such a behavior can be
inhibited, at the price of a slightly larger distortion, by in-
creasing the confidence of the attack. If a larger confidence
margin c¢ is used, in fact, the model becomes more certain
about the wrongly predicted class. To back such a claim, in
Table 4, we report the results of the new attack for different
confidence values c for the CIFAR-10 case (To clearly show
the effect of confidence, we did not consider adversarial
examples that do not reach the chosen confidence margin c,
which leads to a slight drop of the ASR.). The table shows the
average probability assigned by the ECOC model to the
original class (Prob. true class) and to the target class of the
attack (Prob. targ class), before and after the attack.

From the table, we see that, by increasing c, the
adversarial examples are assigned higher and higher

probabilities for the target class, getting closer to those of the
benign samples. In particular, the average probability for the
target class passes from 0.546 (with ¢ = 0) to 0.993 (with
¢ = 5), which is even higher than the average probability of
the clean images before the attack (0.908), and the proba-
bility of the original (true) class decreases from 0.194 (with
¢ =0) to a value lower than 0.001 (with ¢ =5). A similar
behavior can be observed for the C&W attack when c is
raised from 0 to 15.

Figure 4 shows the distribution of the probabilities
assigned to the most probable class for clean and adversarial
images generated by the proposed attack. The plot confirms
that the ECOC classifier assigns low probabilities only in the
presence of adversarial examples obtained with a low
confidence value c. When ¢ grows, in fact, the probability



Security and Communication Networks 7

TABLE 2: Results of the attack against ECOC for CIFAR-10 classification.

Proposed (ECOC) C&W (ECOC) C&W (one-hot)

Parameters

ASR (%) PSNR ASR (%) PSNR ASR (%) PSNR
(le—4, 5, 100, 0) 69.3 38.59 53.6 39.71 92.5 40.03
(le—4, 5, 500, 0) 88.0 38.52 62.3 39.94 100 40.27
(1e—4, 10, 200, 0) 90.6 37.84 79 37.32 100 40.18
(1e—4, 10, 500, 0) 95.0 38.39 82.6 37.55 100 40.30
(1e-1, 10, 2000, 0) 98.6 38.41 92.6 36.97 100 39.99

Reported parameters indicate, respectively (start point, number of steps of binary search, max iterations, confidence).

TaBLE 3: Results of the attack against ECOC for MNIST classification.

Proposed (ECOC) C&W (ECOC) C&W (one-hot)

Parameters

ASR (%) PSNR ASR (%) PSNR ASR (%) PSNR
(1e-3, 10, 100, 0) 29.3 21.26 26 21.19 1.5 32.48
(1e-3, 10, 200, 0) 43.6 21.49 35.6 20.73 8 27.69
(1e-3, 10, 500, 0) 55.6 21.91 43.6 20.37 40.5 24.29
(1e-3, 10, 1000, 0) 64.6 22.23 49 20.56 66.5 24.97
(le—1, 10, 2000, 0) 72.3 22.35 57.6 20.35 78 25.29

Reported parameters indicate, respectively (start point, number of steps of binary search, max iterations, confidence).
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FIGURE 2: Performance of different attacks against the ECOC system. The x-axis indicates the PSNR(db) and y-axis indicates the ASR. (a)
GTSRB. (b) CIFAR. (c) MNIST.
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MNIST

FiGure 3: Examples of attacked images for different attacks. Besides the first row of clean images, the green number locates at the top left of
each attacked image indicates its PSNR value.

TaBLE 4: Output of probability values by the ECOC classifier on CIFAR-10 for different confidence margins of the attack.

C&W attack (le-4, 5, 500, 0) (le-4, 5, 500, 8) (le—4, 5,500, 12)  (le—4, 5,500, 14)  (le—4, 5, 500, 15)
ASR 62.3% 44.6% 44.6% 42.6% 42.3%
PSNR (dB) 39.94 40.78 39.57 39.00 38.40

(B) 0.881 (A) 0.251
(B) 0.013 (A) 0.328

Prob. true class
Prob. target class

(B) 0.881 (A) 0.153
(B) 0.013 (A) 0.534

(B) 0.881 (A) 0.084
(B) 0.013 (A) 0.721

(B) 0.881 (A) 0.043
(B) 0.013 (A) 0.843

(B) 0.881 (A) 0.021
(B) 0.013 (A) 0.914

(le-4, 5, 500, 0)
88.0%
38.53
(B) 0.908 (A) 0.194
(B) 0.009 (A) 0.546

Proposed attack
ASR

PSNR (dB)
Prob. true class
Prob. target class

(le-4, 5, 500, 1.5)
87.6%
37.48
(B) 0.908 (A) 0.063
(B) 0.009 (A) 0.824

(le-4, 5, 500, 2.5)
86.3%
37.02
(B) 0.908 (A) 0.024
(B) 0.009 (A) 0.923

(1e-4, 5, 500, 4.0)
85.1%
36.07
(B) 0.908 (A) 0.005
(B) 0.009 (A) 0.981

(le-4, 5, 500, 5.0)
82.7%
35.40
(B) 0.908 (A) 0.001
(B) 0.009 (A) 0.993

The parameters of the attacks are indicated according to the following format: (starting point, number of steps of binary search, max iterations, confidence).

Prob. true and target class indicate the probabilities of the original (true) and target classes, before (B) and after (A) the attack.
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F1GURE 4: Distribution of probabilities assigned to the most probable class of the attacked examples with the proposed attack on CIFAR-10.
The x-axis indicates the probability, and the y-axis indicates the number of examples classified with such a probability.
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distribution of adversarial examples get closer and closer to
that of clean images, and when ¢ = 5, it becomes impossible
to distinguish clean images and adversarial examples by
setting a threshold on the probability assigned to the most
probable class.

5. Related Works

Adversarial examples, i.e., small, often imperceptible, ad hoc
perturbations of the input images, have been shown to be able to
easily fool neural networks [1, 2, 5, 24] and have received great
attention in the last years.

Different attacks have been proposed to obtain adver-
sarial examples in various ways. Some works focus on di-
minishing the computational cost necessary to build the
adversarial examples [2, 25], while others aim at lowering the
perturbation introduced to generate the adversarial exam-
ples [1, 6, 26]. There are also some works whose goal is to find
adversarial examples that modify only one pixel [27] and
adversarial perturbations that can either fool several models
at the same time [28], or can be applied to several clean
images at the same time [4].

As a response to the threats posed by the existence of
adversarial examples and by the ease with which they can be
created, many defence mechanisms have also been proposed.
According to [29, 30], defences can be roughly categorized
into two branches, which either work in a reactive or
proactive manner. The first class of defences is applied after
the DNNs have been built. This class includes approaches
exploiting randomization, like, for instance, stochastic ac-
tivation pruning, in which node activations at each (or
some) layers are randomly dropped out during the forward
propagation pass [31], and, more recently, model switching
[32], where random selection is performed between several
trained submodels. Other approaches attempt to inten-
tionally modify the network input to mitigate the adversarial
perturbation, e.g., by projecting the input into a different
space [33] or by applying some input transformations [34].
Other approaches attempt to reject input samples that ex-
hibit an outlying behavior with respect to the unperturbed
training data [35]. The second branch of defences aims at
building more robust DNNs. One simple approach to im-
prove the robustness against adversarial example is adver-
sarial training, which consists in augmenting the training set
with adversarial examples [10-12, 36]. More recently, as
more attention has been paid to hidden layers with respect to
the robustness of DNNs [37], it has been proven that rather
than augmenting the training set, the robustness of DNNs
can be improved by directly injecting adversarial noise into
the hidden nodes, thus improving the robustness of single
neurons [38, 39].

The ECOC scheme considered in this paper, belongs to
the second class of defences and is derived from similar
attempts made in the general machine learning literature to
improve the robustness of multiclass classification problems
[14, 40, 41]. The robustness of ECOC against adversarial
examples is assessed in [15] by considering conventional
adversarial attacks like [6, 42], which have not been explicitly
designed for multilabel classification. As suggested in [17],

however, in order to properly assess the effectiveness of a
defence mechanism, the case of an informed attacker should
be considered, and then the robustness should be evaluated
against attacks targeting the specific defence mechanism.
Following the spirit of [17], in this paper, we developed a
targeted attack against the ECOC system, which exploits the
multiclass and multilabel nature of such a system. We ob-
serve that the capability of ECOC to hinder the generation of
adversarial examples has already been challenged in [17]
(Section 10); however, the analysis in [17] is carried out
under the more favourable (for the attacker) assumption of a
nontargeted attack, thus marking a significant difference
with respect to the current work [4, 43].

6. Conclusion

In order to investigate the effectiveness of ECOC-based deep
learning architectures to hinder the generation of adversarial
examples, we have proposed a new targeted attack explicitly
thought to work with such architectures. We measured the
validity of the new attack experimentally on three common
classification tasks, namely, GTSRB, CIFAR-10, and MNIST.
The results we have got show the effectiveness of the new
attack and, most importantly, demonstrate that the use of
error correction to code the output of a CNN classifier does
not increase significantly the robustness against adversarial
examples, even in the more challenging case of a targeted
attack. In fact, the ECOC scheme can be fooled by intro-
ducing a small perturbation into the images, both with the
new attack and, to a lesser extent, by applying C&W and
LOTS attacks with a proper setting. No significant advantage
in terms of decision confidence is observed as well, given
that, by properly setting the parameters of the attack,
adversarial examples are assigned to the wrong class with a
high probability.
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