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With the explosive growth of data generated by the Internet of Things (IoT) devices, the traditional cloud computing model by
transferring all data to the cloud for processing has gradually failed to meet the real-time requirement of IoT services due to high
network latency. Edge computing (EC) as a new computing paradigm shifts the data processing from the cloud to the edge nodes
(ENs), greatly improving the Quality of Service (QoS) for those IoT applications with low-latency requirements. However,
compared to other endpoint devices such as smartphones or computers, distributed ENs are more vulnerable to attacks for
restricted computing resources and storage. In the context that security and privacy preservation have become urgent issues for
EC, great progress in artificial intelligence (AI) opens many possible windows to address the security challenges. The powerful
learning ability of AI enables the system to identify malicious attacks more accurately and efficiently. Meanwhile, to a certain
extent, transferring model parameters instead of raw data avoids privacy leakage. In this paper, a comprehensive survey of the
contribution of Al to the IoT security in EC is presented. First, the research status and some basic definitions are introduced. Next,
the IoT service framework with EC is discussed. The survey of privacy preservation and blockchain for edge-enabled IoT services
with AI is then presented. In the end, the open issues and challenges on the application of AI in IoT services based on EC

are discussed.

1. Introduction

With the widespread deployment of sensors in the real
world, increasing physical entities are connected to the
Internet of Things (IoT) through sensors to achieve infor-
mation sharing. Currently, IoT technology has been widely
applied in various fields such as smart city, smart home,
wearable medical, and environmental perception, [1-3]. In
conventional IoT services, those sensors and devices inter-
connected with IoT need to upload the data to the cloud
servers to handle computing tasks. After the tasks are
completed, the processed data will be returned to the IoT
devices. Although the cloud reduces the computing burden
of sensors and devices, huge transmission overhead of the
data cannot be ignored. In 2018, the total amount of devices
connected to IoT around the world reached 11.2 billion, and
it is predicted to grow to 20 billion in 2020 [4], which brings
rapid data growth. However, the current growth of network

bandwidth is far behind the speed of data growth, and the
complex network environment greatly hinders the reduction
of latency. Network bandwidth has become the major
bottleneck that should be solved for the traditional IoT
services.

To solve the abovementioned bottleneck, a new computing
paradigm called edge computing (EC) has been proposed re-
cently and gets widespread attention. EC refers to the tech-
nology that deploys computing tasks to the edge of the network
[5, 6]. Compared with cloud computing, EC has many ad-
vantages, including protecting end-users’ privacy, reducing the
latency while data transmission, decreasing the burden of
network bandwidth, and lessening the energy consumption of
data center. Under EC, the raw data generated by IoT devices are
no longer required to be uploaded to the centralized cloud
platform but can be computing, stored, and transmitted at edge
nodes (ENs), reducing the latency time owing to voiding re-
dundant data transmission. Those IoT applications and mobile
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computing that have strict requirements on response time will
be better supported by EC.

However, EC is not a panacea. On the one hand, the
potential of IoT devices under the EC has been greatly
expanded in many fields (computation offloading, precise
positioning, real-time processing, etc.), giving the credit for
low-latency data processing near end-users. On the other
hand, EC introduces more security issues and widens the
attack surfaces [7] of the system from 3 aspects:

(1) Distributed layout: the ENs are distributed at various
locations on the edge of the network [8], making it
difficult to unify all equipment for centralized
management. The adversary can attack those ENs
that have security flaws and use the nodes hijacked as
a springboard to make an incursion to the entire
system.

(2) Limited computing source: unlike cloud computing,
the computational functionality of ENs is limited for
the reason of the physical structure, which means
that heavyweight security mechanisms are not
suitable for ENs and large-scale centralized attacks
such as the distributed denial of service (DDoS)
attack will cause great damage to ENs.

(3) Heterogeneous environment: a wide range of tech-
nologies are applied in EC, including wireless sensor
networks, mobile data collection, grid computing,
and mobile data collection. Under this heteroge-
neous environment, it is difficult to design a unified
security mechanism and achieve consistency of se-
curity policies between different security domains.

In order to make up for the safety hazards caused by the
characteristics of edge computing, many security methods and
algorithms come forth [9, 10]. Most of the current security
mechanisms are based on the algorithms and models that follow
a single pattern for intrusion detection, privacy preservation, or
access control. With the continuous upgrade of attack tech-
niques and methods, traditional defense mechanisms are often
quickly eliminated. However, what is exciting is that the
emergence and rise of artificial intelligence (AI) provide new
solutions to security and privacy issues:

(1) Intrusion detection: common intrusive attacks are
denial of service (DoS) attack and distributed denial
of service (DDoS) attack. DoS makes frequent re-
quests to the server, which increases the burden on
the server and affects the server’s response to normal
requests, and DDoS refers to controlling the multiple
compromised ENs to attack the server. The intrusion
detection system (IDS) identifies attacks from the
hijacked ENs by monitoring anomalous traffic on the
network and cut off access from them. Machine
learning (ML) extracts malicious access patterns
through the training of the previous data sets, which
can help IDS to quickly and accurately identify in-
trusions, greatly improving the detection efficiency
compared with traditional recognition methods
[11, 12].
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(2) Privacy preservation: the IoT devices exist in every
aspect of our lives, which contains much privacy-
sensitive information as well [13]. Most existing
privacy preservation methods encrypt the trans-
mitted data to ensure data security, such as ano-
nymization, cryptographic methods, and data
obfuscation. Nonetheless, the above methods gen-
erally require high computational overhead, making
it difficult to deploy on resource-constrained ENs.
Compared to common encryption methods, dis-
tributed machine learning (DML) makes the ENs
only need to pass the parameters to other ENs for
cooperative learning after each training, instead of
directly passing the original data, reducing the risk of
data leakage and network burden during transmis-
sion [14].

(3) Access control: when multiple IoT devices work
together in the same environment, access control
becomes a key issue. Each authenticated node can
only access the nodes and data within their au-
thorities and cannot perform other operations be-
yond their access authorities [15, 16]. ENs need to be
classified into different categories according to
permissions, which coincides with the classification
algorithm under ML [17]. The algorithm classifies
the ENs connecting to the network to low-privileged
IoT devices and high-privileged IoT devices. Access
to those high-privileged devices will be strictly
controlled to prevent potential attacks.

As the investigations of Al continue to advance, Al
has gradually been applied to many fields of edge security
[18, 19]. However, there are still many challenges in the
realization of related theories on ENs. For instance, large
amounts of clear data are important to the training ef-
ficiency of ML, but the premise of sufficient data is that
the system has received mass attacks and can accurately
identify these malicious behaviors [20]. Meanwhile, the
attacks against the training set also need to be vigilant,
which will reduce the performance of the model by
tampering the parameters [21]. The lightweight AI al-
gorithm is also needed because of the restricted com-
puting resource and storage at ENs, but it will bring a
drop in accuracy.

Although lots of investigations on the combination of Al
and EC have been carried out, there is still little discussion
and inquiry of Al in the security of IoT based on EC.
Therefore, a comprehensive review which focuses on state-
of-the-art technology and achievements about the above-
mentioned field is presented.

The remaining parts of this paper are organized as
follows. Section 2 introduces the basic definitions of IoT and
EC. In Section 3, the IoT service framework with EC is
discussed, followed by the survey of privacy preservation in
EC enabled IoT with Al in Section 4. Section 5 presents the
AT for blockchain in EC enabled IoT. Finally, Section 6 talks
about the open issues and challenges of the application of Al
in IoT security based on EC.
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2. Basic Concepts and Definitions

2.1. IoT Service. Literally, IoT is to construct a global net-
work of things where everything is connected to the Internet,
thus realizing the interconnection of all objects using In-
ternet technologies. With IoT technology, devices are able to
transmit information to each other and several devices work
together to complete a task without the intervention of
humans. IoT can be applied in various industries by em-
bedding sensors into objects such as medical equipment,
home equipment, transports, implementing the integration
of human society, and physical world.

IoT architecture is comprised of perceptual layer, net-
work layer, and application layer [22], and each layer has its
own specific function. The perceptual layer is employed to
perceive the environment and obtain data by virtue of sensor
technology, RFID, wireless communication technology, etc.,
acting as the indispensable foundation of IoT. The network
layer is responsible for data transmission from the per-
ceptual layer to the application layer. Besides, cloud platform
serves as a vital component of this layer to store and analyse
substantial perceived data. The application layer is the top
layer of IoT architecture. This layer provides specific services
for users based on processed and analysed data. Through the
three layers, IoT devices can understand users’ needs and
accordingly give them the services they want, improving
their living quality.

Next, we will illustrate three typical [oT services and their
respective specific application scenarios which are intro-
duced in Table 1 as follows:

(1) Remote monitoring and control: IoT allows users to
control the devices connected to the Internet and
monitor a scenario remotely, which brings generous
convenience to our life. Users are enabled to monitor
the condition of their babies anywhere with the help
of the sensors installed at home that collect data on
the baby’s health status at any time. Furthermore,
cameras can transfer baby’s video to users timely.
When it comes to logistics, customers can easily
know about the condition of products in transit.
Information about the quality statue and current
location of goods they purchased online can be
queried regardless of time.

(2) Smart home: smart home [27] has developed several
years so that it is not a novel concept for us.
However, what deserves our attention is that with the
usage of IoT, smart home products contain a huge
potential to become more intelligent and versatile,
able to serve users better. Suppose that as soon as you
enter your room from the outside, the air condi-
tioner is turned on and adjusted to a comfortable
temperature automatically for you. Many other
products such as sweeping robots will free you from
housework, and even lights can be switched on/oft by
themselves without any manual operation. Thus, it
can be seen that smart home is one of the most direct
manifestations of how IoT services make our lives
easier and more comfortable.

(3) Natural disaster prediction: IoT plays an important
role in the prediction of disasters such as earth-
quakes, floods, drought, and tsunami [28]. Sensors
deployed outside are appointed to gather data from
the ambient environment, and the processed data
may reveal crucial information about the coming
natural calamity, thus saving up enough time for us
to remove people away from the disaster area and
avoid property loss as much as possible.

So far, on the topic of benefits IoT brings about, we have
only referred to the tip of the iceberg. Undeniably, IoT has
served as a powerful engine driving revolutions in many
traditional offline industries. Though IoT is still in its initial
state, it has a wide application range which is just limited by
humans’ imagination and it is bound to influence almost
every aspect of our life in the near future.

2.2. Edge Computing. EC is a new computing mode that
processes and stores data at the edge of the network in close
proximity to mobile devices and users [29]. In Table 2, we
describe the definition of EC from two different angles.

With the advent of the IoT era, the scale of mobile
devices is expanding incredibly and the high volume of
data is produced by terminal devices every day [35-37]. It
is unwise to transmit all data to the cloud center con-
sidering the excessive burden of bandwidth and massive
energy consumption in the cloud. Besides, traditional
cloud computing cannot process such a huge amount of
data efficiently, which extends latency time and reduces
response speed [38, 39]. At the same time, certain
emerging technologies such as AR and VR [29] have
higher requirements for low latency and fast response
time. The contradiction between our growing need for
higher computing efficiency as well as better privacy
security and the limitations of cloud computing calls for a
decentralized computing mode that can complement the
cloud computing and push the future development of the
IoT industry. Naturally, EC’s advantages begin to be
valued by humans under this circumstance.

Three outstanding advantages of EC are introduced as
follows:

(1) Low latency: instead of transmitting all data to cloud
center, data computations are completed at the edge
of the network closer to mobile devices, thus in-
creasing the response speed and declining the latency
[40].

(2) Privacy and security: thanks to EC, data are allowed
to be stored locally or in ENs and privacy infor-
mation does not have to be transmitted to cloud
center so that the threat of privacy leakage has been
effectively reduced [40].

(3) Decrease energy consumption in cloud center: in EC,
part of computing tasks is oftfloaded to several ENs,
which not only relieves the burden of bandwidth [29]
but also helps reduce the energy consumption in the
cloud center.
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TaBLE 1: Three typical IoT services and their specific application scenarios.

IoT services Application scenarios

(1) A greenhouse system based on IoT can monitor and control environmental parameters to facilitate plant growth
and production [23].
(2) Cold chain logistics [24] can depend on IoT to maintain suitable storage and transportation temperature,
ensuring the quality of goods.

Application
scenarios

(1) Users can easily control devices inside the home via smart home systems to avoid unnecessary energy waste [25].
(2) With the usage of smart home and various devices connected to the Internet, users can enjoy the convenience of
controlling the house at any time [25].

Smart home

Disaster management systems based on IoT can be deployed in buildings of seismic areas to monitor the conditions

Disaster prevention

of buildings of seismic areas, providing earthquake early warning [26].

TaBLE 2: Two angles to define edge computing.

Definition of edge computing

Advantages

Related work

Better privacy
protection
Relieve bandwidth

A distributed computing mode that offloads

computation tasks to different edge nodes burden

A dispersed edge cloud infrastructure called Nebula [30] is
presented.

Cloudlet, an edge computing platform is introduced in [24, 31].

Save energy in the A lightweight differential privacy-preserving mechanism used

cloud

in edge computing is proposed in [32].

A new paradigm where computational resources
are placed closer to data sources
speed

Low latency

Fast response

LAVEA [33] is a system designed to provide low-latency video
analytics at places in close proximity to users.

The impact of both latencies in MEC architecture with regard to
latency-sensitive services is researched in [34].

Today’s IoT services are mostly cloud-based and cen-
tralized so that all data processing and analyses have to be
completed in cloud [41]. With the prosper of IoT, more IoT
devices demanding low latency and high response spring up
[42]. However, cloud computing has encountered its bot-
tleneck, unable to provide support for the sharp develop-
ment of IoT continuously. Only making best of advantages of
EC can IoT services be blessed with a bright outlook.

3. 10T Service Framework with EC

IoT service framework with EC can be divided into four
major layers: device layer, network layer, edge layer, and
cloud layer. Figure 1 shows the basic diagram of the IoT
service framework with EC.

3.1. Device Layer. Various objects or electronic devices such
as mobile phones, computers, cars, and even humans (in
IoMT [43]) are equipped with different kinds of sensing
devices such as RFID, intelligent sensors, and QR code. With
them, ‘things’ in the IoT have the ability to provide context-
based information about themselves or their surroundings
in real-time, thus generating a large amount of real-time
data. These data vary greatly due to different processing
requirements, but most of them are fast, instantaneous, and
frequent.

3.2. Network Layer. This layer can be seen as a channel
among cloud, edge, and end. On the one hand, the layer is
the transition between the device layer at the bottom and the
edge layer at the upper end. It is the nervous system of the
IoT service framework, connecting the sensing devices all

over the IoT and undertaking the task of transmission. The
data obtained from sensing devices are transmitted through
different communication technologies [44] such as cellular
networks composed of base stations, WiFi, ZigBee, Blue-
tooth, etc., which follow various IoT protocols or data
transmission protocols, such as Hypertext Transfer Protocol
and Message Queuing Telemetry Transport.

In order to adapt to the new computing model of EC and
meet the requirements of establishing computing path and
dynamically realizing computing services and data migration,
named data networking (NDN [45]), a data network that
names and addresses data and services, is applied to the
context of edge computing. Besides, software-defined net-
working (SDN [46]), a programmable network that separates
the control plane from the data plane and can perform simple
network management, is paid attention to. As a result, through
the combination of the two, data migration and transmission
can be well-realized, and service organizations can be carried
out quickly, so as to meet the requests of service discovery and
rapid configuration in the network layer under the back-
ground of EC. On the other hand, the layer also links up the
edge layer and cloud layer composed of cloud-data centers. It
takes on the task of transmitting the data organized or con-
cluded by the edge layer and transferring orders or feedback
from the cloud layer to the edge layer.

Moreover, the safety of the network layer cannot be
neglected. Physical isolation design and logical security
design are two main approaches to securing the layer.
Specifically, Air Gap that makes use of physical isolation
technology and high-strength protocol analysis function to
isolate the inside and outside network, routing attack pro-
tection design, and denial of service protection design is
usually used.
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Cloud-data centers

Cloud layer

Edge layer

(8
4

Device layer

Network layer

FIGURE 1: IoT service framework with edge computing.

3.3. Edge Layer. Compared to the conventional IoT service
framework, this layer is the main characteristic of the IoT
service framework with EC, which solves the problems of
insufficient bandwidth and high delivery delay, to a certain
extent. To processing a great number of data from IoT
devices efficiently and accurately, partial computing re-
sources are shifted from cloud to edge which is much closer
to data sources.

As core compositions in edge layers, edge servers are
principal undertakers of data processing, data management,
and data storage. The results are transmitted to corre-
sponding devices or uploaded to the cloud layer for further
analysis or storage through the network layer. The de-
ployment of edge servers which needs to satisfy the re-
quirements of users under resource constraints has a
significant impact on computing efficiency and computing
resources utilization. Edge servers are usually deployed in
cellular base stations’ vicinity. Besides, they are often
deployed in a single entity rather than multitenant [47]. In
2018, Zhao et al. proposed an innovative three-phase de-
ployment way [48] that takes traffic diversity and wireless
diversity of IoT into consideration in large-scale IoT, which
greatly promotes the reduction of ENs.

To ensure the smooth and efficient operation of com-
puting tasks, some core technologies such as edge operating
systems, isolation techniques, and data processing platforms
boost the development of the edge layer.

3.4. Cloud Layer. The layer is the brain of the IoT service
framework with EC. It is usually composed of large cloud-
data centers with extraordinary computing power. In the IoT

service framework with EC, the cloud layer tends to be
applied to further processing data from the edge layer,
storing or updating significant information and carrying out
advanced deployment.

Nonetheless, in some special situations, the importance
of cloud-edge collaboration is highlighted. Cloud-edge
collaboration includes resource collaboration, management
collaboration, safety collaboration, and so forth, which think
of cloud and edge as all in one to reinforce each other and
schedule dynamically. Specifically, when computing re-
sources in the edge layer are insufficient, the cloud layer can
offer computing support with virtual machines and con-
tainers. When a certain edge layer appears malicious traffic,
the relevant cloud layer which is equipped with better se-
curity policy has the ability to discover and block it so as to
prevent it from continuing spreading. The establishment of
cloud-edge collaboration has aroused wide concern. A few
cloud-edge collaboration platforms such as KubeEdge, Edge
Tunnel, and AWS Wavelength are pushing ahead with the
prosperity of cloud-edge collaboration.

The application of IoT service with EC is booming and
hot. Table 3 shows some typical examples of IoT service with
EC.

4. Privacy Preservation for Edge-Enabled IoT
Services with Al

The privacy protection methods in ML can be generally
divided into two kinds, namely, training schemes and in-
ference schemes in [54]. The privacy-preserving training
schemes target to use encryption methods to ensure the
security of sensitive privacy information during the
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TaBLE 3: Typical examples of IoT service with edge computing.

Reference Application field Author Specific design

[49] Smart cities Saglearll.za Make use of mobile edge computmi rtczi ;151;;1;2;’ critical events (e.g., terrorist attack

[50] Smart farms Caria et al. Propose a smart farm animal welfare monitoring system based on edge computing

(e.g., collecting and processing data from animals and surroundings)

[51] Connected an'd Liu et al.
autonomous vehicles

Create an edge-based attack detection (e.g., detecting speech, video data, and driving

behavior)

[52] Smart home Cao et al.

Implement a home operating system named EdgeOSH which includes various
modules (e.g., data management, communication, and self-management)

[53] Public safety Zhang et al.

Present an AMBER alert assistant (A3) based on extended firework (e.g., following

an illegal vehicle)

transmission. The privacy-preserving inference schemes
focus on protecting the privacy data in the inference phase.
Usually, in preserving inference schemes, a well-trained
model receives the unclassified data sent by the EN for
inference [54]. The common encryption methods include
anonymization, cryptographic method, data obfuscation,
and so on. However, the above methods for encryption
always require different levels of computing overheads and
communication overheads. It hinders the implementation of
encryption methods on resource-limited ENs. As Figure 2
shows, the following parts of this section will talk about
existing basic encryption approaches firstly and then fur-
therly discuss proper privacy-preserving methods for edge-
enabled IoT service.

4.1. Existing Basic Encryption Methods

4.1.1. Anonymization. Anonymization techniques are applied
to anonymize participants’ identities in a group of people, by
removing some obvious characteristics such as a user’s name,
sex, and ID number. Since the loss information is related to the
user’s specific identity, the most valuable data we need will not
be ruined during the transmission. Many privacy preservation
models using anonymization technology have been proposed,
such as k-anonymity, [-diversity [55], and #-closeness [56]
models. In the k-anonymity model, the participants’ attributes
are generally classified into three categories: explicit identifiers,
the quasi-identifier attribute set, and sensitive attributes. Before
the data are released, the explicit identifiers will be removed and
the data in the quasi-identifier attribute set will be generalized to
ensure that there are at least k records with the same quasi-
identifier. However, the k-anonymity technique is flawed. The
attacker can reidentify victims by linking or matching the data
to other background data or by looking at unique attributes
found in the released data [57]. Later, some researchers pro-
posed I-diversity and t-closeness models based on the k-ano-
nymity technique to defend against the above attacks. The I-
diversity model requires that the diversity of sensitive attributes
should not be less than I in each quasi-identifier class, thus
reducing the matching probability between sensitive attributes
and their owners. The f-closeness module requires that the
distance between the distribution of sensitive attributes in each
equivalence class and the general distribution of sensitive at-
tributes do not exceed the upper limit ¢.

4.1.2. Cryptographic Method. Cryptographic methods en-
crypt the context of the data before uploading them to the
cloud servers. However, cryptographic methods incur high
compute overhead (millions of times higher than multi-
plicative projection) and require reliable and effective key
management [58]. Homomorphic encryption (HE) can
entrust third parties, such as various applications of cloud
computing, to process the data without revealing the in-
formation. HE technology is secure in that they generate a
key pair based on some mathematical problems which are
difficult to be solved by the computer. The key pair includes a
public key and a private key. The public key and some
operation measures will be published to third parties. Then,
the third parties carry out all the operations on the encrypted
data and send back the results, which can only be decrypted
by the private key; thus, the information is confidential
throughout the whole process. The common homomorphic
encryption algorithms include the RSA algorithm and the
ECC algorithm. The later one has a lower computing
overhead.

4.1.3. Data Obfuscation. Obfuscation methods perturb the
data samples used for training a global module. The methods
include additive perturbation and multiplicative perturba-
tion. Additive perturbation is always related to differential
privacy (DP), which is used to aggregate information
without revealing any special entry [59]. Under the mech-
anism of DP, the adversary cannot tell the difference be-
tween the output of neighboring datasets, thus protecting the
safety of different records of neighboring datasets. DP ob-
fuscates the data by adding noises through some mecha-
nisms such as Laplacian [60], exponential [61], and median
mechanisms [62]. Laplacian mechanism realizes the DP
protection by adding random noise with Laplacian distri-
bution to the exact query outputs. Different from the
Laplacian mechanism, the exponential mechanism selects
the optimal output according to the probability after each
query. The randomize multiplicative data perturbation
technique is a type of multiplicative perturbation. The
random projection scheme tries to create a new data rep-
resentation with fewer dimensions through randomize
multiplicative matrices [63]. Generally, data obfuscation has
been widely applied in data mining to protect the users’
privacy while obtaining high-quality data.
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FIGURE 2: Structure of this section.

4.2. Lightweight Al Privacy-Preserving Methods in ENs.
The booming development of IoT encourages a new com-
puting paradigm “edge computing,” which leverages the
computing and storage capability of device nodes between
the cloud center and terminal devices. Compared with
traditional cloud computing, EC pushes the process of data
close to the data sources, reducing the data required to be
sent to the data center originally. It provides real-time
services with low latency and reduces communication
bandwidth usage. The attention has concentrated on the
privacy problems not only in the training of the module but
also in tasks offloading schemes [64]. Conventional en-
cryption methods such as anonymization, cryptographic
method, and data obfuscation have been requested in
computing power and they are originally implemented in
the cloud center. Thus, it is hard for conventional encryption
methods to work effectively on the resource-constrained
ENs. Recently, some research studies have focused on cre-
ating lightweight privacy preservation methods combined
with Al technologies such as convolutional neural network
(CNN) and deep neural network (DNN) models and other
ML technologies to optimize the traditional encryption
methods.

4.2.1. Privacy Preservation Using CNNs. The following
context will introduce two schemes: LAYENT and the
modified CNN inference module. The former scheme op-
timizes the basic framework to make the module privacy-
aware and the later uses the trained module for privacy
preservation.

(1) LAYNET. LAYENT is a new privacy-preserving algo-
rithm in machine learning. Compared with most related
algorithms based on cloud computing’s processing power,
LAYRNT not only has a very high accuracy up to 91% but
also well protects the privacy incurring a low computing
overhead [61]. Before the data are transmitted to the po-
tential unsafe third party, the data will be perturbed. To

achieve this function, the algorithm LAYENT improves the
original CNN framework, by adding a new layer—the
randomization layer between convolution layers and full
connected layers. Moreover, the randomization layer em-
ploys a new unary encoding protocol to enhance the flex-
ibility of randomization when encoding the context.

(2) Modified CNN Inference Module. An energy theft de-
tection scheme is proposed to detect the unusual behavior of
the smart meters in the smart grid. The scheme combines the
modified convolutional neural network (CNN) module in
the framework. The data generated by the smart meter are
used to train the CNN module, and then the trained module
can detect the abnormal data by making reasonable infer-
ences after training. The scheme combined the modified
CNN module has excellent behavior in the experiment in
that the accuracy of the inference has reached up to 92.67%
[62].

4.2.2. Privacy Preservation Using DNNs. Deep neural net-
work is a framework in deep learning, and it has been widely
applied in many areas such as the understanding of natural
language, speech recognition, and image recognition. The
training of DNN modules needs to consume large com-
puting power. The following context is two lightweight
schemes:

(1) ObfNet. An obfuscation neural network (ObfNet) ap-
proach is proposed to obfuscate the inference data before
being transmitted to the backend [63]. ObfNet is an ap-
proach that realizes lightweight and unobtrusive data ob-
fuscation for remote inference. The lightweight and
unobtrusive characters refer that the ENs only need to
implement a small neural network and do not need to in-
dicate whether the data are obfuscated.

There are two issues in the implementation of the edge-
enable IoT. One of them is the separation of information
sources and computer power, and the other is the privacy



preservation of inference models. Remote inference can
overcome the above issues. In remote inference, the collected
data will be sent to the backend and then the inference
results will be returned.

ObfNet is a light neural network suitable to be deployed
in ENs. The training process is designed as follows. The
backend connects the untrained ObfNet with the trained in-
service inference model (named InfNet) in the center,
forming a concentrated DNN module. In the DNN module,
the output of ObfNet is the input of InfNet. The backend
uses the part random data which are used for the training of
InfNet to train ObfNet. Meanwhile, only the ObfNet’s
weights are sent to the backend until convergence. Repeating
the procedure, the backend can generate a group of ObfNets.
Due to the random data sources and random original
weights of ObfNets, all the ObfNets are different from each
other. Finally, EN chooses an ObfNet randomly and
dynamically.

(2) Privacy Partition. A practical method named privacy
partition for privacy preservation in ML is presented in
[65, 66]. Privacy partition is a privacy-preservation frame-
work for deep neural networks, and the basic structure of the
framework is made up of a bipartite topology network and
an interactive adversarial network [65].

A bipartite deep network topology is made up of two
partitions: a trusted local computing context and the
untrusted remote computing context, forming a neural
network. The output of the last transformation in a trusted
local computing context will be processed by a learning
module. After that, the processed information will be the
input of the first transformation layer in remote computing
context [65]. Under the architecture of the edge network,
privacy partition provides an optional choice to some
centralized deep learning frameworks. Users can limit access
to the sensitive data stream for privacy preservation.

The interactive adversarial network provides a practical
solution when the ENs need to use remote services and
computing. It can attenuate the capacity of the adversary
who has access to deep network intermediate state to learn
privacy-sensitive input.

5. Blockchain for Edge-Enabled IoT
Services with Al

Blockchain is a distributed computing and storage paradigm
with a variety of existing technologies. The distributed
consensus algorithm is used to generate and update data,
transmits data between nodes by a peer-to-peer network and
keeps the stored data immutable by a distributed ledger. It
also uses an automated script code or smart contracts to
implement upper-layer application logic [67]. In short,
blockchain provides a new approach to preserve and
transmit data safely against attack or bug and gives a
decentered environment.

Part 1 includes the method of most urgent security
problems in IoT services by blockchain. Part 2 discusses the
sharing of data resources which is from one mechanical
device to another mechanical device and provides many
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communication facilities. Part 3 includes the improvement
of efficiency in the environment based on the IoT networks.
Besides, the hierarchical taxonomy of the section is shown in
Figure 3 and the research studies we discuss are listed in
Table 4.

5.1. Blockchain for IoT Services’ Security. In order to build
an IoT network that can be in use, massive terminal
devices will be set and any device in IoT network can get
the data from the whole IoT network. Due to the number
of devices, the weakness of a single device cannot be
avoided. If the device is hacked into, massive data in IoT
services will be leaked out which may result in disastrous
consequences [80]. Therefore, improving the security of
IoT services becomes unavoidable.

The connection of these IoT devices is not safe due to the
quantity of the devices. As a result, it is easy for ill-disposed
people to steal the data which are transmitted between
devices. Although there are some ways to solve the unsafety
such as CAPTCHAs, it still has the limitation in the pro-
tection of data. So, blockchain technology and Al technology
are introduced to solve them. There are two aspects which
will be introduced below: (1) access control and authenti-
cation management and (2) confidentiality and reliability of
data.

5.1.1. Access Control and Authentication Management.
Access control is to provide a set of methods to identify,
organize, and host all functions in the system, organizing
and identifying all data, and then provide a simple and
unique interface [81]. Authentication is to identify the access
by verification tools such as passwords and decide whether
to give the interface of the system.

In the traditional IoT service which is without AI or
blockchain, the way of identity authentication is to au-
thenticate the combination of the user name and password
for each device. This way will cost a lot of energy and have
difficulty in extension, so it can be used in IP cameras. Single
sign-on protocols can simplify identity authentication,
which is to provide a reliable third-party organization to give
the user access to multiple devices by authenticate identity
for a single device. Although it can accelerate the authen-
tication, it will result in a horrible consequence to the whole
IoT system if the account of users is destroyed or one device
is broken down.

To solve these problems, a new design has been
proposed in the article [68]. In this design, the users only
need to authenticate identity to the blockchain (such as
Ethereum) once then use the smart contract token to
access the system. Smart contact will broadcast the token
and the Ethereum address when authenticating identity,
and the IoT service will receive the package which in-
cludes the user’s public key, IP, and token to authenticate
the package. Besides, fingerprint information collection,
storage, and verification can be completed by blockchain
to solve the falsify problem in the access authentication
technology at present [69].
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Blockchain for edge-enabled
IoT services with Al

Service security

Access control & authentication

Confidentiality & reliability of data

Data sharing
L Service efficiency
FiGure 3: Hierarchical taxonomy of blockchain for edge-enabled
IoT services with AL

5.1.2. Confidentiality and Reliability of Data. The applica-
tion of the IoT continues to grow in various fields such as
healthcare, finance, and agriculture. In the field of health
care, with the application of IoT, different kinds of physical
sensors are be in use to record the body data, which can
help the doctors to improve the methods of medical
treatment for patients. These personal data need to be
protected safely.

Rui et al. [70] propose a method which realizes dis-
tributed storage and tampers resistance of data in data
blockchain and improves the utility Byzantine fault-tolerant
(PBFT) mechanism consensus algorithm to store IoT data
safely. Xu et al. [71] propose a blockchain-powered
crowdsourcing method. They design a mobile crowd-
sourcing architecture based on blockchain to keep players’
data private and complete. They generate service policies by
density-based spatial clustering of applications with noise
and improved dynamic programming. Besides, they judge
the polices by using simple additive weighting and multiple
criteria decision making.

5.2. Blockchain for Edge-Enabled IoT Data Sharing. Data are
the basis of the IoT network, more data can be collected, and
the research results and the improvement of the application
are more accurate. At present, IoT data are collected by lots
of different types of ways in many fields such as agriculture,
industry, healthcare, and automatic drive. This shows that
the sensors collecting different kinds of data are heteroge-
neous, and the database is owned by different companies,
organizations, or governments. The isolation of data costs a
large cost of energy and time because of collecting repetitive
data. Therefore, sharing data from the IoT services in the
database can assign the resource properly and reduce the
avoidable cost.

However, massive data, heterogeneous devices, lack of trust,
security problem, and some other problems become barriers to
safe data sharing. In order to build a platform which can share
data safely, blockchain becomes a good choice. We can build a
distributed platform with trust way without central support by
blockchain technology.

Zheng et al. [72] propose an architecture called Micro-
thingsChain. In this architecture, they proposed an EC network
based on blockchain and every point’s data are untamable and

traceable. By designing Proof-of-Edge Computing Node which
is based on Proof-of-Authority, data can be shared fairly. Be-
sides, Truong et al. [73] propose an architect called Sash which
transmits more data to the back end of blockchain to avoid
malicious action by its own resilience. They also use smart
contact to put Policy Decision Point into blockchain and an-
alyse requests by access control which can both benefit the
owners and the costumers to share data. In the field of Industry
Internet of Things (IToT), Liu et al. [74] propose an architecture
which can collect and share data by blockchain and deep re-
inforcement learning. It divides points in private blockchain
networks into computing and sharing and uses DRL to collect
distributed data in IIoT.

Moreover, knowledge just as data in IoT networks can be
shared safely and equally. Lin et al. [75] propose a market
based on edge-enabled IoT with AI by blockchain. Con-
sortium blockchain and smart contract from blockchain are
used to keep knowledge such as data trading fairly, effi-
ciently, and safely. They design a new consensus mechanism
called Proof-of-Trading which can reduce the cost of
computing resources.

5.3. Blockchain for Edge-Enabled IoT Services’ Efficiency.
Application of blockchain for IoT can effectively ensure the
safety of IoT services’ data just as mentioned in part 1 and 2
before, but with the expansion of IoT services, the demand
for computing sources will easily exceed the resources that
the Internet can provide which impact the efficiency of IoT
service. If this kind of situation happens, it may result in data
overflow, service delay, and so on. However, it is impractical
for now to solve the fundamental problem by only updating
the computing ability of IoT devices. We introduce some
research studies from different aspects below which help
improve the efficiency of IoT services.

Khanji et al. [76] discuss the balance between cache
capacity and computing ability to improve the efficiency of
the whole system. They desired a mechanism by Geometric
Programming which combines each data point of IoT
networks to exchange data which can disperse a single
device’s cache to others. Fu et al. [77] introduce a method to
solve the problem by cooperative computing which virtu-
alizes the servers of data points into computation-intensive
virtual machines and design a three-level cache to assign the
computing properly. Chen et al. [78] design an algorithm
based on game theory to solve the multihop computing
offloading problems with normal and mining tasks in
blockchain IoT services.

When discussing the offloading problem in edge IoT, Xu
et al. [79] design an algorithm called BeCome which is
monitoring EC devices’ resource by blockchain ledgers and
allocating computing resources by nondominated sorting
genetic algorithm III (NSGA-III).

6. Open Issues and Challenges

Though the application of Al is expected to enhance the
security of IoT services in EC, many serious problems should
be wiped out before AI can finally be used to secure IoT.
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TaBLE 4: Current research studies in blockchain for edge-enabled IoT services with Al
Reference Problem addressed Technique used
[68] Access control, authentication management Blockchain
[69] Authentication management Blockchain, HTTPS protocol, and HMAC technology
[70] Confidentiality and reliability of IoT data ECC asymmetric encryption, DH key ethange, RAF consensus protocol,
blockchain
[71] Integrality and confidentiality of IoT data Crowdsourcing, blockchain, DBSCAN
[72] IoT data sharing Blockchain, edge computing
[73] IoT data sharing Smart contact
[74] Collection and share of IIoT data Blockchain, deep reinforcement learning
[75] Knowledge sharing P2P networks, smart contact, consortium blockchain
[76] The balance between cac}}e. capacity and computing Blockchain
ability
[77] IoT cache offloading and computing Cooperative computing, blockchain
[78] Multihop computing offloading Game theory, blockchain
[79] Edge computing offloading Blockchain ledger, NSGA-III

6.1. ML-Based Security Schemes. ML is an advisable choice to
secure IoT services because of its ability to augment the
analytical capabilities of IoT devices and there actually exist
security schemes based on ML. However, most of these
schemes have fatal defects that make it impractical to adopt
them into IoT systems at present.

6.1.1. High Computation and Communication Cost.
Many ML-based security schemes have an obvious defi-
ciency that a flood of training data is required by machines in
order to deduce a feasible model to tackle practical issues
and the feature-extraction [82] process is very complicated
as well. Worse still, its computation and communication cost
[82] is very high. So, it is an urgency for us to devise a new
ML-based security scheme with low computation and
communication costs.

6.1.2. Backup Security Solutions. Deep learning (DL) and
reinforcement learning (RL) are two different types of ML
and they have shortcomings, respectively. DL may fail to
detect attacks precisely due to overfitting or insufficient
training data. Hence, a suitable training dataset is a key
for DL to reducing error rates. Then, let us talk about RL.
Existing RL-based schemes are feasible merely on the
premise that the intelligent agent knows the accurate state
and is capable of evaluating the feedback of each action
timely [82]. However, in fact, RL usually learns from
scratch so that security schemes based on RL often lack
the capability to handle attacks at the very beginning of
the learning process, which increases the risk of IoT being
attacked. So, to further secure IoT services, reliable
backup security solutions should be designed in case of
failures of ML-based schemes.

6.2. Adopt ML in Blockchain Technology. IoT is maturing
rapidly, and IoT services are gradually infiltrating into
every aspect of our life. However, IoT is doomed to
encounter cyber-attacks and undergo a security threat in
its developing process. Moreover, trust problems hin-
dering the information exchange among different IoT

devices also act as obstacles to IoT’s future advancement.
Fortunately, blockchain technology can be used in IoT to
facilitate security and resolve trust problems thanks to its
nature of decentralization [83], ultimately optimizing IoT
services.

Meanwhile, new security problems such as double
spending and majority attack [28] come with the application
of blockchain. Therefore, the help of ML technologies is
instrumental in preventing underlying attacks to block-
chains, but there is still much work to be done before we can
successfully integrate ML and blockchain to enhance the
security of IoT.

In view of the fact that data stored in the blockchain can
be accessed by all blockchain nodes, privacy problems are
worthy of our great attention. Private blockchains [27] and
encryption have been utilized to solve privacy problems, but
paradoxically, this will inevitably lead to limited and even
insufficient training data for ML, making it difficult to ac-
quire a satisfactory model for privacy protection [28]. When
used in real scenarios, chances are that the performance of
these models may fail to live up to our expectations and
finally let us down.

7. Conclusions

As a new computational paradigm which provides the
various solutions to the challenges of traditional cloud faces,
EC will greatly promote the development of the IoT field and
enrich the diversity of the IoT application ecosystem. Re-
liable privacy protection and security mechanisms are in-
dispensable for high-quality IoT services, putting strict
requirements on the privacy and security of EC. In this
paper, the survey of the combination of Al and EC in IoT
security is presented. Firstly, the basic concepts and defi-
nitions are introduced. Then, the IoT service framework with
EC is summarized. Afterward, conventional and Al-driven
privacy preservation of edge-based IoT are compared and
the latter are elaborated. The collaboration of blockchain and
AT on IoT security is also discussed. Finally, the paper talks
about the open challenges and issues on Al for securing IoT
services in EC.
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