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With the rapid development of Internet and cloud storage, data security sharing and copyright protection are becoming more and
more important. In this paper, we introduce a robust image watermarking algorithm for copyright protection based on variational
autoencoder networks. *e proposed image watermarking embedding and extracting network consists of three parts: encoder
subnetwork, decoder subnetwork, and detector subnetwork. In the training process, the encoder and decoder subnetworks learn a
robust image representation model and further implement the embedding of 1-bit watermark image to the cover image.
Meanwhile, the detector subnetwork learns to extract the 1-bit watermark image from the embedding image. Experimental results
demonstrate that the watermarked images generated by the proposed algorithm have better visual effects and are more robust
against geometric and noise attacks than traditional approaches in the transform domain.

1. Introduction

In the era of big data and cloud computing, especially with
the rapid development of mobile edge computing (MEC)
technology, the demand for real-time services from a wide
range of mobile terminals and commercial services pro-
viders (CSPs) is more and more urgent. On the one hand,
many MEC-based services have been provided, such as
paper citation network based link prediction and paper
recommendation [1, 2], electricity load forecasting [3], and
energy efficient dynamic offloading [4]. To fulfill real-time
responses of MEC-based services, workflow scheduling and
management are very important. In [5–8], many workflow
scheduling approaches under different systems and envi-
ronments (i.e., NSGA-II, edge computing environment,
cyber-physical cloud systems, etc.) have been proposed.
However, on the other hand, whether in the stage of data
collection or application, people can access the required
multimedia resources more easily than before, which will
pose a serious threat to the privacy and copyright protection
of those multimedia resources [9].

Privacy protection and authentication technologies can
be divided into two categories. One is at the system level,
which means the recommendation algorithms deployed in
the service system (i.e., LSH-based recommender systems,
multidimensional service recommendation, etc.) can avoid
the users’ request for obtaining the privacy information
[10–13]. *e other is at the data level, known as active
authentication technology. In this kind of technology, digital
image watermarking technology has become an important
means of copyright protection of image resources. However,
the problems of geometric attack resistance and balance
between robustness and imperceptibility are still common
problems in the field of digital image watermarking research.

Traditional image watermarking algorithms are often
implemented in the transform domain; that is, image is
firstly transformed into frequency or spatial-frequency do-
main (e.g., discrete cosine transform or wavelet transform).
*en, appropriate coefficients in transform domain are
selected for embedding watermark images. Finally, the
modified transform domain coefficients, which are em-
bedded watermarking information, are transformed back to
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the spatial domain to derive the watermarked digital images
[14–16]. Although the watermarked images generated by this
kind of approaches have good visual effect, they are not
robust against geometric and noise attacks.

In recent years, some studies have introduced deep
learning and adversarial learning into the field of water-
marking and steganography. For instance, Volkhonskiy et al.
have proposed a Steganographic Generative Adversarial
Networks (SGAN) model [17], which, for the first time,
incorporates the GAN and adversarial learning with in-
formation steganography technology. In this approach, an
additional information embeddingmodule was added on the
basis of the original generative network to produce pseu-
donatural images after embedding information. Meanwhile,
a steganalysis discriminant network is trained to discrimi-
nate the original natural image and the watermarked images
generated by the generator. Under this framework, Shi et al.
used Wasserstein GAN (WGAN) to optimize the training
procedure and make the generated watermarked image
more realistic with better visual quality [18]. Based on ad-
ditive distortion cost function, Tang et al. firstly proposed the
concept of automatic steganographic distortion learning
(ASDL) model, which is called ASDL-GAN [19]. In this
algorithm, the probability matrix P of image pixel modifi-
cation is obtained by deep learning, and then the Syndrome-
Trellis Codes (STC) method is used for information em-
bedding. However, in this kind of GAN-based method, the
discriminator is only used to distinguish whether the gen-
erated image contains hidden information or not and the
quality of the generated image is not evaluated. *at means
its essence is to judge whether the probability distribution in
the parameter space of the natural image or generated image
is distinguishable. So, it cannot guarantee the visual quality
of the generated image. *erefore, Mun et al. proposed a
watermark network (WM-Net), which directly uses con-
volutional neural network (CNN) to fulfill the robust image
watermarking and improves the antiattack ability of the
watermarking embedding network by adding geometric
attacks during the training process of the network [20].
However, the proposed CNN model does not contain any
loss function to evaluate the quality of recovered watermark
image either.

*erefore, in this paper, we propose a robust image
watermarking embedding algorithm based on cycle varia-
tional autoencoder (Cycle-VAE) networks. One advantage
of VAE model is that it can learn an abstract representation
of a particular kind of images (such as face images). Fur-
thermore, we use a convolution network similar to that in
[20] to embed a 1-bit watermarking image into the cover
image in the representation space. Although this strategy is
similar to the WM-Net, they have two main differences. On
the one hand, in the WM-Net, quaternion discrete Fourier
transform (QDFT) is used before the watermark embedding,
which is a fixed transform. But in the Cycle-VAE model, the
network tries to learn an image transform that is more
suitable for information embedding. On the other hand, in
the WM-Net, the images should be partitioned into image
blocks before performing the QDFT, like DCT-based wa-
termark techniques. *is will affect the ability of watermark

algorithm for antigeometric attack. However, our proposed
network can deal with the image entirely. In addition, be-
cause the dimension of image in the abstract representation
space is usually not too high, the embedding and extraction
network of watermark can also be small. Finally, to ensure
the balance between the reality of the watermarked image
and the reliability of the extracted watermark, we adopt a
similar mechanism as Cycle Generative Adversarial Network
(CycleGAN) [21]. In cycle A, an image is transformed to the
representation space via encode network, after watermark
embedding, and then transformed back to the image space
via decode network. *e loss function constrains the con-
sistency between the input and watermarked image.
Meanwhile, in cycle B, a watermark is embedded in the
representation space by the embedding network, after
transforming to the image space and back to the repre-
sentation space again, and then extracted by the detection
network. *e loss function constrains the consistency be-
tween the input and recovered watermark. A demonstration
of the above flow chart is shown in Figure 1.

*is paper will be presented by the following parts.
Section 2 gives an overview of the related works about
CycleGAN and VAE approaches. Next section describes the
proposed Cycle-VAE model for image watermarking, in-
cluding the network structures, loss function, and imple-
mentation details. Section 4 has shown the results of
robustness of our proposed Cycle-VAE model under geo-
metric and noise attacks. In the end, the conclusion is
presented in Section 5.

2. Related Works for VAE and CycleGAN

Currently, there are mainly two popular generation models:
Generative Adversarial Nets (GAN) [22] and Variational
Automatic Encoder (VAE) [23] and variants based on these
two models. In GAN model, a generative model G and a
discriminant model D are trained simultaneously. *e
generative model G captures the distribution of data, while
the discriminant model D distinguishes the probability that
the sample comes from the training data set rather than from
the model G generated. However, there are some drawbacks
in the GAN model. For example, it needs to find Nash
equilibrium in the training process, which is much more
difficult than optimizing an objective function. In addition,
it uses a noise z as a prior, but the generative model G cannot
control the noise z. *at is, the training procedure of GAN is
too free, which makes the training process and results of
GAN uncontrollable with lack of robustness. In order to
stabilize the training process of GAN, researchers have
proposed many training techniques from the perspective of
model improvement and theoretical analysis, such as
Wasserstein GAN (WGAN) [24] and Least Square GAN
(LS-GAN) [25].

In addition to the GAN model, Automatic Encoder
Neural Network (AENN) is another unsupervised learning
algorithm which can be trained by Back Propagation (BP)
algorithm [23]. Its biggest characteristic is that the input and
output are constrained to be consistent. In fact, a simple self-
encoder is a low-dimensional representation of learning data
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sets, which is similar to Principle Component Analysis
(PCA), except that PCA is linear, while self-encoder is
nonlinear. However, the performance of standard automatic
encoder is limited, mainly because the distribution of output
vectors in the hidden layer is unknown and chaotic.
*erefore, Kingma and Welling introduced the Variational
Automatic Encoder (VAE) [23, 26]. It introduced a hidden
variable Z in the hidden layer of standard autoencoder.
*rough the hidden variable Z, it can generate data auto-
matically and combine the viewpoint of deep learning with
that of statistical learning. Besides generating data, VAE can
also provide an effective nonlinear data representation
approach.

Furthermore, in the image watermarking task, besides an
effective data representation approach, we also need to
transform the image from the spatial domain to the
transform domain that fits for embedding watermarks,
which is similar to the image transfer between different
domains. *e concept of image-to-image translation was
first proposed by Hertzman et al. [27]. For pair-matched
dataset, several approaches have been proposed to learn a
parametric translation function with the help of deep
convolutional neural networks in recent years. However, for
most real application scenarios, pair-matched data is scarce.
To deal with this lack, CycleGAN is a famous model for
unpaired image-to-image translation [21]. It is developed
from the Conditional GAN (cGAN) [28] and Coupled GAN
(CoGAN) [29] with the cycle-consistency loss and its ability
of unpaired translation has been proved by many experi-
ments. UNIT-like models [30, 31] are another series of
unsupervised image-to-image translation models. *ey
observe the hypothesis of latent space, combine the VAE
with CoGAN, and use different codes to represent images
content or style. In addition, for another kind of image
translation when images are translated from simple to
complex or vice versa, Dou et al. proposed an Asymmetric
CycleGAN model [32, 33] for improving the CycleGAN
model on image translation between domains with different
complexity.

*is kind of model improves the interpretability of
translation model, but it also brings about higher optimi-
zation complexity. *erefore, in this paper, we propose a
cycle variational autoencoder model to translate spatial
domain images into a representation domain and fulfill the
watermark embedding, which have low optimization

complexity and are robust against noise and geometrical
attacks.

3. Proposed Cycle-VAE for
Image Watermarking

In this section, we demonstrate our proposed Cycle-VAE
model whose goal is to learn a representation space that is
suitable for image watermark embedding. To facilitate
further illustration of our model, we denote the transfor-
mation from image domain to the representation domain as
encoder EI and the transformation from representation
domain back to image domain as decoder DI. *e “repre-
sentation space” or “representation domain” mentioned
here denotes the representation feature space in the encoder
or decoder network because the explicit explanation of
features extracted by the networks is really difficult. In
addition, for watermark embedding and detection, we de-
note the embedding network as EW and the detection
network as DW. We use x, y, and m to denote the original
image, representation coefficients, and the watermark, re-
spectively. Also we use 􏽢x, 􏽢y, and 􏽢m to denote the water-
marked image, the watermarked representation coefficients,
and the detected watermark, respectively. *at is, during
each step of embedding and detection of the watermark, we
have 􏽢m, 􏽢y � EW(m | y), 􏽢x � DI(􏽢y), and 􏽢m � DW(EI(􏽢x)). As
illustrated in Figure 1, our model includes two cycle-con-
sistency losses to constrain the distortion between the
original and watermarked images, as x and 􏽢x, and between
the original and detected watermarks, as m and 􏽢m, re-
spectively. More detailed discussion about the model
structure and implementations is in the following
subsections.

3.1.Model Structure ofCycle-VAE. As shown in Figure 2, our
watermarking framework consists of two cycles: an image
transformation cycle with encoder and decoder networks, EI

and DI, respectively, and a watermark embedding cycle with
embedding and detection networks, EW and DW, respec-
tively. In [34], some theoretical analyses and suggestions on
disentangling factors of variation with cycle-consistent
structures for variational autoencoders have been provided.
Here, in the image transformation cycle (denoted as cycle
A), we use VAE loss and identity loss to train EI and DI to be
an image representation that is suitable for hiding water-
mark information. In the watermark embedding cycle
(denoted as cycle B), we use image and watermark identity
loss to enforce the ability of EW and DW for watermark
hiding and detection, respectively.

In cycle A, our image encoding and decoding networks
roughly follow the architectural guidelines set forth by [35].
We replace the pooling layers in [35] by using strided
convolutions for in-network downsampling and upsam-
pling. Our encoder network EI comprises five residual
blocks [36] with stride 2 convolution, and all nonresidual
convolutional layers are followed by batch normalization
[37] and ReLU activation layers. All the convolutional layers
use 3 × 3 kernels. *erefore, for the encoder network EI, the
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Figure 1: Framework of Cycle-VAE model for image
watermarking.
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input and output are color images with shape of 3 × 128 ×

128 and representation coefficients with size of 36 × 32 × 32,
respectively. Furthermore, the corresponded decoder net-
work DI consists of 6 upsampling blocks, and each block
contains an upsampling layer and a convolutional layer,
followed by batch normalization, except for the final output
layer, which uses scaled tanh to ensure that the output image
has pixels with value between 0 and 255. For the upsampling
layer, we use bilinear upsampling with the parameter of scale
factor set to be 2. For the convolutional layer, the stride and
kernel size are set to be 1 and 3 × 3, respectively. So, the
output of decoder network is a three-channel color image
with size of 128 × 128.

*e loss function in cycle A contains a VAE loss and an
identity loss of images. Considering some dataset
X � x(i)􏼈 􏼉

N

i�1 consisting of N i. i. d samples of some con-
tinuous or discrete variable x, we assume that the data are
generated by some random process, involving an unob-
served continuous random variable y. From a coding theory
perspective, the unobserved variables y have an interpre-
tation as a latent representation or code. In this paper, VAE
is specified by a parametric generative model (as decoder)
pDI

(x | y) of the visible variables given the latent variables, a
prior p(y) over the latent variables, and an approximate
inference model (as encoder) qEI

(y | x) over the latent
variables given the visible variables. *en, the marginal
likelihood logpDI

(x) can be rewritten as [26]

logpDI
(x) ≥ − KL pEI

(y | x), p(y)􏼐 􏼑

+EqEI
(y | x)logpDI

(x | y),
(1)

where the right-hand side is called the variational lower
bound or evidence lower bound (ELBO). However, in
general, this lower bound is unattainable. So, when per-
forming maximum-likelihood training, our goal is to op-
timize the marginal log-likelihood.

argmax
DI,EI

E logpDI
(x)􏽨 􏽩. (2)

Unfortunately, computing logpDI
(x) requires margin-

alizing out y in logpDI
(x, y), which is usually intractable.

*us, based on the inequality in equation (1) and the as-
sumptions used in [23], with the variational Bayes algorithm,
our VAE loss can be converted to the following optimization
problem:

min
DI,EI

ℓVAE(x, y) � E KL pEI
(y | x), p(y)􏼐 􏼑􏽨

−EqEI
(y | x)logpDI

(x | y)􏼕.

(3)

Because of inequality (1), we still optimize a lower bound
to the true maximum-likelihood objective (2). In addition to
the VAE loss, which is used for training a good represen-
tation of images, we hope that the decoder network DI can
also have the ability of hiding watermarks. So, the identity
loss between decoded image and decoded watermarked
image is used, which is the squared Frobenius norm of the
difference between these two images:

min
DI,EI

ℓIdent−I1(x,m) � x − DI EW m | EI(x)( 􏼁( 􏼁
����

����
2
. (4)

*erefore, during the training process in cycle A, the
encoder and decoder networks, EI and DI, are generated by
solving the problem

􏽢EI,
􏽣DI􏽮 􏽯 � argmin

DI,EI

ℓVAE(x, y) + λ1ℓIdent−I1(x,m)􏼈 􏼉. (5)

In cycle B, for the embedding network EW, we simply
use 3 blocks, and each contains a 3 × 3 convolutional layer
with padding and stride of 1 and a 1 × 1 convolutional layer.
*e input of embedding network includes an image rep-
resentation coefficients vector with size of 36 × 32 × 32 and a
1-bit watermark image with size of 32 × 32. *e 1-bit

Cycle B: Image identity loss

Cycle B: Watermark identity loss
Cycle A: Identity loss

DW

Cycle A: VAE loss

EI

DI

EW

Figure 2: A detailed framework of Cycle-VAE model structure for image watermarking.
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watermark imagemeans the value of pixels in watermark can
only be 0 or 1. So, we concatenate the watermark to the
image coefficients as an additional channel. *en, the wa-
termark and coefficients are sent to the embedding network
with an output with size of 36 × 32 × 32 as the watermarked
coefficients. For the detection network DW, we also use a 3-
block convolutional neural network but with each block
containing a 1 × 1 convolutional layer, a 3 × 3 transpose
convolutional layer, and a batch normalization. Finally, to
keep the output pixel at 0 or 1, we add a sigmoid activation at
the last layer of the detection network. *e output of de-
tection network is a one-channel binary image with size of
32 × 32.

*e loss function in cycle B contains two identity losses:
one is for watermarked image and the other is for detected
watermark. *e identity loss for images is used to train the
embedding network EW for hiding the watermark to a
specified image, which is the squared Frobenius norm of the
difference between the images with and without a
watermark:

min
EW

ℓIdent−I2(y,m) DI(y) − DI EW(m | y)( 􏼁
����

����
2
. (6)

*e identity loss for watermark is used to train the
detection network DW for detecting the watermark from
embedded image representation coefficients, which is the
squared Frobenius norm of the difference between the
original watermark and the detected watermark:

min
DW

ℓIdent−W(􏽢x,m) m − DW EI(􏽢x)( 􏼁
����

����
2
. (7)

*us, in the training process of cycle B, the embedding
and detection networks, EW and DW, are generated by
minimizing the following objective function:

􏽣EW, 􏽣DW􏽮 􏽯 � arg min
EW,DW

ℓIdent−I2(y,m) + λ2ℓIdent−W(􏽢x,m)􏼈 􏼉. (8)

3.2. Implementation Details. Since we use an image rep-
resentation model, as EI and DI, to fulfill our watermark
imbedding task, the images should belong to one category
rather than any kinds of natural images. So, we study em-
bedding 1-bit QR-code watermark into a specified kind of
images, that is, face images. For the image training data, we
use 200, 000 24-bit images with size of 128 × 128 from
CelebA dataset. For the QR-code watermark data, we also
randomly generated 200, 000 1-bit binary images. However,
it should be noted that the image and QR-code are not in
one-to-one correspondence; they are randomly selected and
matched.

For the parameters setting, we set λ1 � 0.001 and λ2 �

0.2 in equations (5) and (8), respectively, in our training
process. We use adaptive moment estimation (Adam)
solver [38] with a batch size of 64. All networks were
trained from scratch with a learning rate of 0.0001.
We keep the same learning rate for the first 100 epochs
and linearly decay the rate to zero over the next 100
epochs.

4. Experimental Results and Discussions

To show the effectiveness of our method, we give some
comparison results on face image watermarking in this
section. We randomly selected 10 face images from CelebA
dataset, which were not in the training set. Five of these
testing images are shown in the top row in Figure 3. Our
watermark images are randomly generated binary QR-code
images with size of 32 × 32, which were also not used in the
training process. *e network was trained using a GPU,
NVIDIA GTX 1080Ti, under the PyTorch 0.4.1 environment
for two days followed by the instructions as in Section 3.2.
*e performance of our proposed watermark algorithm is
measured from two aspects: visual imperceptibility and
robustness against noise and geometric affine transform
attack. We compared our algorithm to the state-of-the-art
block-based watermark algorithm in the quaternion discrete
Fourier transform (QDFT) [39].

For a good watermarking algorithm, the embedded
watermarking information should not be visible. So, we use
peak signal-to-noise ratio (PSNR) and Structural Similarity
(SSIM) [40] to measure the invisibility of the watermarked
image, which are defined as

PSNR(x, 􏽢x) � 10 log10
2552 × 3 × M × N

‖x − 􏽢x‖
2 , (9)

SSIM(x, 􏽢x) �
2μxμ􏽢x+c1􏼐 􏼑 2σ

x􏽢x+c2􏼐 􏼑

μ2x + μ2􏽢x+c1􏼐 􏼑 σ2x + σ2􏽢x+c2􏼐 􏼑
, (10)

respectively. In equations (9) and (10), x, 􏽢x, μx, and σx denote
the original image, the watermarked image, the mean, and
the standard deviation of the image, respectively. From
equations (9) and (10), we can find that these two indices,
that is, PSNR and SSIM, can reflect, respectively, the pixel
level and structural difference of two images, which means
the higher PSNR and SSIM values, the smaller the difference
between two images and the better the visual invisibility of
watermarks. Ordinarily, when the PSNR (resp., SSIM) value
is greater than 35 dB (resp., 0.95), we cannot distinguish the
difference between two images by our naked eyes directly.
Figure 3 shows five original images (top row) and their
watermarked equivalents (bottom row), from which we can
find that, in the watermarked images, the embedded
watermarking information is invisible; that is, our proposed
algorithm has strong imperceptibility. For quantitative
comparison, the PSNR and SSIM values of ten watermarked
test images embedded by our proposed model and the
QDFT algorithm are shown in Table 1. Note that the PSNR
and SSIM values of these ten test images in Table 1 are
derived by averaging watermarked images with embedding
five different watermarks as shown in Figure 4. Besides the
index comparison about the visual imperceptibility, the
computational efficiency is another important index for
practical applications. Since the QDFT is a traditional
transform based algorithm, its computational complexity is
P(n2), where n is the number of pixels of an image.
However, our proposed watermark algorithm is a deep
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neural network based model whose computational com-
plexity is hard to calculate explicitly. But, for numerical
evaluation, our model can process images with size of 128 ×

128 pixels at 40 FPS (frames per second) under our ex-
perimental environment (NVIDIA GTX 1080Ti, PyTorch
0.4.1). Although the computational time of the proposed
model will increase linearly according to the size of input
images, with the help of CUDA and AI chip technology, the
proposed model is still possible for practical applications.

To show the robustness of our proposed watermark
approach, we also conduct the noise and geometric attacks
experiment. For noise attacks, we add two kinds of noise,
that is, Gaussian noise and pepper noise, to the watermarked
images. For geometric attacks, we apply two types of affine
transformations, that is, rotation and resize, to the water-
marked images. After these attacks, we use the detection
network DW to extract the 1-bit watermark image from the
attacked images. Figure 5 shows an example of noise and

Figure 3: Visual impact comparison before and after watermark embedding. (a) *e top row shows the original test images from CelebA
dataset and (b) the bottom row shows the watermarked test images.

Table 1: Comparison of PSNR and SSIM of watermarked images derived by different methods.

Image ID 200863 201822 200364 200528 200292 200273 201739 201160 201100 200290

QDFT PSNR 32.09 33.52 37.10 31.59 33.95 32.09 36.01 33.73 32.74 34.33
SSIM 0.948 0.932 0.978 0.956 0.955 0.925 0.959 0.935 0.938 0.965

Proposed PSNR 32.91 33.99 37.91 32.54 34.44 32.97 36.85 34.14 33.23 34.79
SSIM 0.952 0.942 0.979 0.976 0.964 0.936 0.974 0.951 0.959 0.979

QDFT Proposed

Figure 4: Comparison of the robustness of QDFTand our proposed algorithm against the noise and geometric attacks. From top to bottom
are attacks including Gaussian noise, salt and pepper noise, rotation 10°, rotation 45°, and zooming 20%. In each side of the image, from left
to right are images with ID 200273, 200290, 201100, 201160, and 201739.
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geometric attack to the test image. *e parameters of
Gaussian noise and pepper noise are set to be 0.05 and 0.02
under the scale with image pixel values normalized between
0 and 1. *e extracted watermark images derived by QDFT
and our proposed algorithm are shown in Figure 4.

From Figure 4, we can find that both QDFT and our
proposed algorithm are quite robust against the Gaussian
noise and salt & pepper noise attacks. But it seems that our
proposed algorithm can extract more clean watermarks
compared to the QDFTalgorithm.*is might be because the
autoencoder network itself has a certain ability of image
denoising. *en, for the geometric attacks, including rota-
tion and zooming, our proposed algorithm can still extract
the correct watermark images, while QDFT algorithm
cannot derive satisfactory results. *is is because we use the
entire image as the input to train our autoencoder and
embedding network, but QDFT algorithm is a block-based
watermark algorithm. *us, our proposed algorithm is also
quite robust against the geometric attacks.

As shown in Table 1, we can find that, compared to the
QDFT method, the proposed approach can achieve an av-
erage 0.5 ∼ 1.0 dB improvement in PSNR in the aspect of
visual quality of watermarked images. Meanwhile, as shown
in Figure 4, the proposed approach is more robust than the
QDFT method in the aspect of geometric attacks for
watermarked images. *erefore, the proposed approach is
more robust to attacks and better for watermark information
hiding, which means that it has great potential value for
practical applications.

5. Conclusion

We propose a new framework for robust image watermarking
embedding using cycle variational autoencoder networks. Since
the VAEmodel can learn an abstract representation of a specific
kind of images, we use face images to validate our proposed
algorithm in this paper. In addition, we train a convolution
network to embed a 1-bit watermarking image into the face
image in the representation space. Unlike block-based algo-
rithm, that is, QDFT, andDCT-based techniques, our algorithm
processes the input image entirely.*erefore, as validated in the
experimental section, the proposed algorithm can preserve a
better visual quality and is more robust against the noise and
geometric attacks compared to those block-based algorithms.
However, since we process the input image as a whole, the size
of our network will be too big to be practically used for large
images directly. So, developing lightweight autoencoder

network for large images is an important issue that warrants
further study. Moreover, in many real applications, we need to
embed watermark information to many different kinds of
images, not just face images. *at means, compared to the
traditional transform-basedwatermark algorithm, the versatility
of our proposed deep learning based model needs to be tested
and discussed. To extend our watermark embedding approach
to natural images is another issue that merits further study.
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