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,e dissemination of countermeasures is widely recognized as one of the most effective strategies of inhibiting malware
propagation, and the study of general countermeasure and infection has an important and practical significance. On this point, a
dynamical model incorporating generic nonlinear countermeasure and infection probabilities is proposed. ,eoretical analysis
shows that the model has a unique equilibrium which is globally asymptotically stable. Accordingly, a real network based on the
model assumptions is constructed, and some numerical simulations are conducted on it. Simulations not only illustrate theoretical
results but also demonstrate the reasonability of general countermeasure and infection.

1. Introduction and Model Formulation

Human society has been subjected to great financial losses
since malware constantly emerged (e.g., [1, 2]). ,e study of
modeling and understandingmalware spreading has attracted
a lot of attention in the past three decades or so, and a
multitude of propagation models capturing the behaviors of
malware have been proposed. Specifically, SIS (susceptible-
infected-susceptible) models (e.g., [3, 4]), SIRS (susceptible-
infected-recovered-susceptible) models (e.g., [5, 6]), SLBS
(susceptible-latent-breaking-susceptible) models (e.g., [7, 8]),
SICS (susceptible-infected-countermeasured-susceptible)
models (e.g., [9–11]), and SDIRS (susceptible-delitescent-
infected-recovered-susceptible) model (e.g., [12]).

In the field of malware, countermeasures such as soft-
ware patches or warnings can supply a valid approach to
helping individuals and organizations avert malware in-
fection problems (e.g., [13, 14]). In 2004, the CMC
(Countermeasure Competing) strategy is proposed by Chen
and Carley [15]. ,eir results reveal that the CMC strategy is
more effective than previous strategies by the empirical
malware data.

Inspired by this work and in order to macroscopically
describe the mixing transmission of malware and coun-
termeasures, Zhu et al. [9] presented a compartment model.
,e dynamics of the model was performed. Later, Yang and
Yang [10] simply extended this model by incorporating the
impacts of infected removable storage media and external
nodes (e.g., computers). However, these two models both
neglect two important facts. On the one hand, they ignore
the fact that the linear infection probability is a well fit for the
real-world situations only when the infected nodes are few.
On the other hand, they overlook the fact that counter-
measures may propagate through networks at different rates.
,us, the assumptions of linear infection and counter-
measure probabilities are unreasonable.

To remedy these flaws and considering the impacts of
general countermeasure and infection on the spread of
malware, this paper studies a new dynamical model (see
Figure 1), which incorporates generic countermeasure and
infection probabilities. Here, S(t), I(t), andC(t) (S, I, andC,
for short) denote the average numbers of susceptible, in-
fected, and countermeasured internal nodes (i.e., nodes on
the network) at time t, respectively. ,eir entering rates are
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μ1 > 0, μ2 > 0, and μ3 > 0, respectively. Besides, the following
basic hypotheses of the model are made:

(H1) Each internal node leaves the network with
probability δ > 0.
(H2) At time t, each susceptible internal node gets
infected by infected internal nodes with probability
β(I(t)), where β is twice continuously differentiable,
β′ > 0, β″ < 0, and β(0) � 0. ,e concavity hypothesis
fits well with the saturation property of the infection
probability.
(H3) At time t, each infected or susceptible internal
node obtains the newest countermeasure with proba-
bility c1(C(t)), where c1 is twice continuously differ-
entiable, c1′ > 0, c1″ < 0, and c1(0) � 0.
(H4) By reinstalling the operating system, each infected
(or countermeasured) internal node becomes suscep-
tible with probability c2 > 0 (or α> 0).

Combining the above hypotheses, the new proposed
model can be represented by the following system:

dS

dt
� μ1 − β(I)S − c1(C)S + c2I + αC − δS,

dI

dt
� μ2 + β(I)S − c1(C)I − c2I − δI,

dC

dt
� μ3 + c1(C)S + c1(C)I − αC − δC,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

with initial condition (S(0), I(0), C(0)) ∈ R3
+.

,e globally asymptotic stability of the unique (viral)
equilibrium of model (1) is proved and illustrated com-
pletely. Additionally, a new network is constructed based on
the above assumptions, on which some numerical simula-
tions are examined.

,e paper is organized in this fashion. Section 2 de-
termines the (viral) equilibrium and investigates its local and
global stabilities. Experimental analysis is presented in
Section 3. Finally, some conclusions and outlooks are given
in Section 4.

2. Model Analysis

Let N � S + I + C, and μ � μ1 + μ2 + μ3. Adding up the three
equations of system (1), one can easily obtain that
limt⟶∞N � μ/δ. It follows by the asymptotically autono-
mous system theory [16] that system (1) is equivalent to the
following reduced limiting system:

dI

dt
� μ2 + β(I)

μ
δ

− I − C􏼒 􏼓 − c1(C)I − c2I − δI,

dC

dt
� μ3 + c1(C)

μ
δ

− C􏼒 􏼓 − (α + δ)C,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

with initial condition (I(0), C(0)) ∈ Ω, where

Ω � (I, C) ∈ R2
+ : I + C≤

μ
δ

􏼚 􏼛, (3)

and Ω is positively invariant for system (2).
In the following sections, we just need to investigate the

dynamical behavior of system (2).

2.1. Equilibrium

Theorem 1. System (2) has a unique (viral) equilibrium
E∗ � (I∗, C∗), where E∗ is the unique positive solution to the
following system:

μ2 + β(x)
μ
δ

− x − y􏼒 􏼓 − c1(y)x − c2x − δx � 0,

μ3 + c1(y)
μ
δ

− y􏼒 􏼓 − (α + δ)y � 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(4)

with the initial condition (x(0), y(0)) ∈ Ω.

Proof. Let us assume that E∗ � (I∗, C∗) is an equilibrium of
system (2). Clearly, E∗ satisfies system (4).

Firstly, let us prove that the second equation of system
(4) has a unique positive root. Let

f(y) � μ3 + c1(y)
μ
δ

− y􏼒 􏼓 − (α + δ)y, y ∈ 0,
μ
δ

􏼔 􏼕. (5)

γ1(C)S

γ1(C)I
β(I)S

γ2I

μ2

μ3μ1

δI

αC

δS δC

S I C

Figure 1: Transfer diagram of the new proposed model.
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As f(0) � μ3 > 0 and f(μ/δ) � − αμ/δ − (μ1 + μ2)< 0, it
follows that f has a zero located in the interval (0, μ/δ).
Furthermore, note that

f′
μ
δ

􏼒 􏼓 � − c1
μ
δ

􏼒 􏼓 − (α + δ)< 0,

f″(y) � c1″(y)
μ
δ

− y􏼒 􏼓 − 2c1′(y)< 0.

(6)

We shall proceed by distinguishing two possibilities
depending on whether f′(0) is positive or negative.

Case 1: f′(0)> 0. Let

y � max y ∈ 0,
μ
δ

􏼔 􏼕: f′(y)> 0􏼚 􏼛. (7)

,us, f is strictly increasing and decreasing in [0, y] and
[y, μ/δ], respectively, which implies that f has a single zero
in [y, μ/δ].

Case 2: f′(0)≤ 0. Hence, f is strictly decreasing and
has a single zero.

Collecting the above discussions, it can be concluded
that f does have a unique zero. ,en, y � C∗, and
f′(C∗)< 0.

Next, let us prove that the first equation of system (4) has
a unique positive root. Let

g(x) � μ2 + β(x)
μ
δ

− C
∗

− x􏼒 􏼓 − c2 + δ + c1 C
∗

( 􏼁( 􏼁x, x ∈ 0,
μ
δ

− C
∗

􏼔 􏼕. (8)

As g(0) � μ2 > 0 and g(μ/δ − C∗) � − μ1 − αC∗

− c2(μ/δ − C∗)< 0, g does have a (positive) zero located in
the interval (0, μ/δ − C∗). Besides, notice that

g′
μ
δ

− C
∗

􏼒 􏼓 � − β
μ
δ

− C
∗

􏼒 􏼓 − c2 + δ + c1 C
∗

( 􏼁( 􏼁< 0,

g″(x) � β″(x)
μ
δ

− C
∗

− x􏼒 􏼓 − 2β′(x)< 0.

(9)

We shall also proceed by distinguishing two possibilities
depending on whether g′(0) is positive or negative.

Case 1: g′(0)> 0. Let

x � max x ∈ 0,
μ
δ

− C
∗

􏼔 􏼕: g′(x)> 0􏼚 􏼛. (10)

,us, g is strictly increasing and decreasing in [0, x] and
[x, μ/δ − C∗], respectively, implying that g has a single zero
in [x, μ/δ − C∗].

Case 2: g′(0)≤ 0.,us, g is strictly decreasing and has a
single zero. ,en, g always has a unique zero x � I∗.
Besides, g′(I∗)< 0.

In conclusion, the claimed result is proved. □

2.2. Local Stability

Theorem 2. E∗ is locally asymptotically stable with respect to
Ω.

Proof. Let S∗ � μ/δ − I∗ − C∗. ,e corresponding Jacobian
matrix of system (2) at E∗ is given as follows:

β′ I
∗

( 􏼁S
∗

− β I
∗

( 􏼁 − c1 C
∗

( 􏼁 − c2 − δ − β I
∗

( 􏼁 − c1′ C
∗

( 􏼁I
∗

0 c1′ C
∗

( 􏼁
μ
δ

− C
∗

􏼒 􏼓 − c1 C
∗

( 􏼁 − (α + δ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (11)

and its two eigenvalues are

λ1 � β′ I
∗

( 􏼁S
∗

− β I
∗

( 􏼁 − c1 C
∗

( 􏼁 − c2 − δ � g′ I
∗

( 􏼁< 0,

λ2 � c1′ C
∗

( 􏼁
μ
δ

− C
∗

􏼒 􏼓 − c1 C
∗

( 􏼁 − (α + δ) � f′ C
∗

( 􏼁< 0.

(12)
,us, the claimed result follows from the Lyapunov

stability theorem [17]. □

2.3. Global Stability

Lemma 1. System (2) admits no periodic orbit.

Proof. Let

h1(I, C) � μ2 + β(I)
μ
δ

− I − C􏼒 􏼓 − c1(C)I − c2 + δ( 􏼁I,

h2(I, C) � μ3 + c1(C)
μ
δ

− C􏼒 􏼓 − (α + δ)C,

D(I, C) �
1

IC
.

(13)

In the interior of Ω, it is easily obtained that
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z Dh1( 􏼁

zI
+

z Dh2( 􏼁

zC
� −

β′(I)

C
−

c1(C)

I
+

1
I
2
C

μ
δ

− C􏼒 􏼓 β′(I)I − β(I)( 􏼁 +
μ

δIC
2 c1′(C)C − c1(C)( 􏼁 −

μ2
I
2
C

−
μ3

IC
2. (14)

Let

k1(x) � β′(x)x − β(x). (15)

As k1(0) � 0 and k1′(x) � β″(x)x< 0 for all x> 0,
k1(I)< 0.

Let

k2(x) � c1′(x)x − c1(x). (16)

As k2(0) � 0 and k2′(x) � c1″(x)x< 0 for all x> 0,
k2(C)< 0. ,us, we have z(Dh1)/zI + z(Dh2)/zC< 0.

Hence, it follows from the Bendixson–Dulac criterion
[17] that system (2) admits no periodic orbit in the interior
of Ω.

On the boundary of Ω, let (􏽥I, 􏽥C) denote an arbitrary
point. ,us, three possibilities can be considered.

Case 1: 0< 􏽥C< μ/δ, 􏽥I � 0. ,en, dI/dt|
(􏽥I,􏽥C)

� μ2 > 0.
Case 2: 0< 􏽥I< μ/δ, 􏽥C � 0. ,en, dC/dt|

(􏽥I,􏽥C)
� μ3 > 0.

Case 3: 􏽥I + 􏽥C � μ/δ, 􏽥C≠ 0, 􏽥I≠ 0. ,us,

d(I + C)

dt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌(􏽥I,􏽥C)
� − μ1 − c2

􏽥I − α􏽥C< 0. (17)

Hence, system (2) has no periodic orbit across (􏽥I, 􏽥C). In
conclusion, the claimed result is proved.

By ,eorems 1 and 2, Lemma 1, and the generalized
Poincare–Bendixson theorem [17], we can easily obtain the
main result of this paper as follows. □

Theorem 3. E∗ is globally asymptotically stable with respect
to Ω.

In Figures 2 and 3, six orbits of system (1) are examined
with different system parameters and different initial con-
ditions, respectively.,e illustrated results are in accordance
with the main theoretical result (i.e., ,eorem 3).

3. Model Simulation

In Section 2, some orbits for system (1) have been examined
in Figures 2 and 3. In order to further show the main result
and the impacts of nonlinear countermeasure and infection
probabilities, some simulations will be made on a con-
structed network, which is based on the model assumptions.
For brevity, a computer is called as a node.

As was treated in the work [18], let si(k) denote the state
of node i at time k, where k is a nonnegative integer. Let
Se(k), Ie(k), and Ce(k) denote, at time k, the numbers of
susceptible, infected, and countermeasured nodes, respec-
tively. Now, let us introduce the network iterative rules.

Rule 1. Each internal node at time k would be disconnected
from the network with probability δ at time k + 1.

Rule 2. μ external nodes, including μ1 susceptible nodes, μ2
infected nodes, and μ3 countermeasured nodes, would be
connected to the network at the next time.

Rule 3. ,e state of each susceptible internal node i at time
k + 1 is determined by the following rule:

si(k + 1) �

susceptible with probability 1 − β Ie(k)( 􏼁 − c1 Ce(k)( 􏼁,

infected with probability β Ie(k)( 􏼁,

countermeasured with probability c1 Ce(k)( 􏼁.

⎧⎪⎪⎨

⎪⎪⎩
(18)

Rule 4. ,e state of each infected internal node i at time
k + 1 is determined by the following rule:

si(k + 1) �

susceptible with probability c2,

infected with probability 1 − c2 − c1 Ce(k)( 􏼁,

countermeasured with probability c1 Ce(k)( 􏼁.

⎧⎪⎪⎨

⎪⎪⎩
(19)

Rule 5. ,e state of each countermeasured internal node i at
time k + 1 is determined by the following rule:

si(k + 1) �
susceptible with probability α,

countermeasured with probability 1 − α.
􏼨 (20)
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Example 1. Consider system (1) with μ1 � 11.01, μ2 � 7.02,
μ3 � 5.11, c2 � 0.021, α � 0.012, δ � 0.048,
β(I) � 0.115I0.552, and c1(C) � 0.015C0.498. ,ree initial
conditions are (S(0), I(0), C(0)) � (325, 55, 10),
(S(0), I(0), C(0)) � (225, 200, 50), and (S(0), I(0),

C(0)) � (80, 135, 15), respectively. Figure 4 shows that the
results of theoretical prediction quite agree with the ex-
perimental ones.

Example 2. Consider three sets of parameters for system (1):
(a) μ1 � 3.51, μ2 � 1.52, μ3 � 1.03, c2 � 0.0201, α � 0.112,
δ � 0.012, β(I) � 0.0423I0.252, and c1(C) � 0.029C0.153; (b)
μ1 � 11.01, μ2 � 7.02, μ3 � 5.11, c2 � 0.021, α � 0.012,
δ � 0.048, β(I) � 0.115I0.552, and c1(C) � 0.015C0.498; (c)
μ1 � 9.2, μ2 � 4.5, μ3 � 2.9, c2 � 0.0263, α � 0.0153,
δ � 0.0171, β(I) � 0.0981I0.472, and c1(C) � 0.0456C0.398.
,e common initial condition is (S(0), I(0),

C(0)) � (325, 55, 10). Figure 5 reveals that the results of
experiment and theoretical predictions are almost identical.

Example 3. Consider two systems induced by system (1)
with μ1 � 11.01, μ2 � 7.02, μ3 � 5.11, c2 � 0.021, α � 0.012,

and δ � 0.048, where one system is with β(I) � 0.115I and
c1(C) � 0.015C and the other with β(I) � 0.115I0.552 and
c1(C) � 0.015C0.498. ,e common initial condition is
(S(0), I(0), C(0)) � (325, 55, 10). Figure 6 demonstrates
that the new model with nonlinear infection and counter-
measured probabilities is more reasonable than the original
model [9] because malware would be always there and would
not go extinct.
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Figure 2: Six orbits of system (1) for different system parameters.
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Figure 3: Six orbits of system (1) with different initial conditions.

0 20 40 60 80 100
0

50

100

150

200

250

300

350

400

V
al

ue
s o

f I
e a

nd
 I

Time t

Ie [(S(0), I(0), C(0)) = (325, 55, 10)]
I [(S(0), I(0), C(0)) = (325, 55, 10)]
Ie [(S(0), I(0), C(0)) = (225, 200, 50)]
I [(S(0), I(0), C(0)) = (225, 200, 50)]
Ie [(S(0), I(0), C(0)) = (80, 135, 15)]
I [(S(0), I(0), C(0)) = (80, 135, 15)]

Figure 4: Comparisons between simulated time plot and predicted
time plot with different initial conditions.
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4. Summary and Outlook

In order to investigate the impacts of general counter-
measure and infection on the diffusion of malware, a new
propagation model, which incorporates nonlinear generic
infection and countermeasure probabilities, has been pre-
sented and analyzed.,e global stability of the unique (viral)
equilibrium has been proved. Additionally, some simula-
tions have been examined on a constructed network, whose
iterative rules are consistent with the model assumptions.
,e simulation results show the main result and the effects of
general countermeasure and infection.

Additionally, the follow-up work arrangement is as
follows. Firstly, time delays (e.g., [19, 20]), pulses (e.g.,
[21, 22]), random fluctuations (e.g., [23, 24]), and optimal
control strategies (e.g., [25–27]) can be considered in the
new model. Secondly, the new model may be extended on
wireless sensor networks (e.g., [28–30]) and social networks
(e.g., [31]). Finally, the new proposed model can be for-
mulated for cloud computing security (e.g., [32]).
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