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The application of machine learning in the security analysis of authentication and key agreement protocol was first launched by
Ma et al. in 2018. Although they received remarkable results with an accuracy of 72% for the first time, their analysis is limited to
replay attack and key confirmation attack. In addition, their suggested framework is based on a multiclassification problem in
which every protocol or dataset instance is either secure or prone to a security attack such as replay attack, key confirmation, or
other attacks. In this paper, we show that multiclassification is not an appropriate framework for such analysis, since au-
thentication protocols may suffer different attacks simultaneously. Furthermore, we consider more security properties and attacks
to analyze protocols against. These properties include strong authentication and Unknown Key Share (UKS) attack, key freshness,
key authentication, and password guessing attack. In addition, we propose a much more efficient dataset construction model using
a tenth number of features, which improves the solving speed to a large extent. The results indicate that our proposed model
outperforms the previous models by at least 10-20 percent in all of the machine learning solving algorithms such that upper-
bound performance reaches an accuracy of over 80% in the analysis of all security properties and attacks. Despite the previous
models, the classification accuracy of our proposed dataset construction model rises in a rational manner along with the increase

of the dataset size.

1. Introduction

Security protocols (cryptographic protocols) are widely used
to transport application-level data in a secure manner. These
protocols usually apply a sequence of cryptographic prim-
itives such as (a)symmetric encryption, digital signature, and
hash function. The most important goals of security pro-
tocols include key agreement or establishment, entity au-
thentication, message authentication, and nonreputation [1].
For instance, Transport Layer Security (TLS) [2] is a well-
known cryptographic protocol that is used to provide secure
web connections (HTTPS). To prove the correctness of
security protocols, various methods were developed over the
last decades. These methods can be divided into two main
categories.

Model-checking methods refer to the set of automated
tools and methods that try to find attacks which violate
security goals, rather than proving their correctness.

ProVerif [3], Scyther [4], AVISPA [5], CryptoVerif [6],
and so on are among the most well-known tools.
Theorem-proving methods are less automated methods
that consider all possible protocol behavior to check
whether the security goal is achieved or not. Although
they cannot give a security attack, they provide a proof of
the correctness of the protocol. BAN logic [7], Dolev-Yao
model [8], and strand space [9] are examples of these
methods.

1.1. Motivation and Goal of This Paper. The goal of this paper
is to develop a novel machine learning-based protocol
analysis scheme with much better efficiency that can dis-
cover more security attacks and vulnerabilities. Previously,
the application of machine learning in security analysis has
been mainly limited to side-channel attack [10, 11] and
symmetric cryptoanalysis [12, 13]. Our motivation for
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applying machine learning in protocol analysis is described
as follows:

(1) The most important limitation of classical methods is
the fact that, to a large extent, analysis results rely on
the prior knowledge and experience of the analysts. It
frequently happens that even if a security protocol is
found to be correct by a model-checking or theorem-
proving method, another more experienced re-
searcher discovers a new attack against the same
protocol. For example, Tingyuan et al. [14] proved
the security of the Otway-Rees protocol. Later, Liu
et al. [15] also used BAN logic to point out that this
protocol is vulnerable to man-in-the-middle attack
and typing flaw attack. Therefore, researchers are
trying to discover other methods to guarantee se-
curity in cyberspace.

(2) Inspired by the astonishing results of the application
of machine learning in cybersecurity [16, 17], Ma
et al. [18] designed a machine learning-based model
to master the machine in the security analysis of
protocols. They suggested a multiclassification model
in which every protocol is either secure or prone to
replay attack, lacks key confirmation, or is prone to
other attacks. Although they received remarkable
results for the first time, their analysis is limited to
only replay attack and key confirmation. In addition,
it frequently happens that a protocol is prone to two
or three attacks at the same time (e.g., replay attack
and lack of key confirmation). Therefore, multi-
classification is not an appropriate model for this
purpose. Further, their dataset size is so small, i.e.,
less than 100 instances for each category.

1.2. Contributions and Structure of This Paper. 'This paper has
three main contributions:

(1) We use a machine learning framework to analyze
more security properties such as strong entity au-
thentication and Unknown Key Share (UKS) attack,
key freshness, key authentication, and resistance to
password guessing attack.

(2) To analyze every research problem in machine
learning, the features of the problem should be first
extracted. Ma et al. [18] suggested three models,
namely, LCM, TLM, and SLM, to extract the features
of every protocol as a weighted matrix. We propose a
new model with much less number of features which
improves the convergence speed.

(3) We propose a binary classification model for each
category in which each instance of the dataset either
violates one security property or is secure against
that. Further, we develop more than 1000 datasets for
each category, which is 10 times more than the
previous work [18]. Inspired by Ma et al.’s scheme,
we also use XGBoost [19] to estimate the classifi-
cation accuracy of the analysis. In addition, a dense
neural network (DNN) was deployed to integrate the
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deep learning approach to the protocol analysis
problem.

The rest of the paper is organized as follows. In Section 2,
we briefly introduce authentication and key agreement
protocol along with their security goals and attacks. Section
3 discusses the application of machine learning in the se-
curity analysis of protocols. In this section, we propose our
model to analyze more security properties, that is, strong
entity authentication and Unknown Key Share (UKS) attack,
key freshness, and so on. The experimental results of the
analysis are described in Section 4. Finally, a conclusion is
given in Section 5.

2. Authentication and Key
Establishment Protocols

Authentication and key establishment protocols are the
backbone of any secure electronic communication. Cryp-
tographic algorithms such as AES and DES [20, 21] cannot
be implemented unless common secret keys are preshared
(key establishment) and communication parties know who
owns such keys (authentication). Authentication and key
establishment protocols achieve these goals by using a set of
messages consisting of random numbers, identities, time-
stamps, hash function, and so on. For example, consider the
ISO symmetric key two-pass unilateral authentication and
key establishment protocol [22] between two parties like
Alice and Bob in Figure 1.

Here, Alice sends a random number N, to Bob. The
secret key K, is preshared between Alice and Bob. When
Bob sends message Ex, (N ,) to Alice, she makes sure that it
was sent by Bob because he only has the key K 45. In other
words, she authenticates Bob. Authentication protocols are
widely used in different applications such as wireless net-
works [23], smart city [24], and Internet of Things (IoT)
[25]. Authentication and key establishment are the two main
goals of cryptographic protocols [1]. In the following, we
describe more detailed security goals based on authentica-
tion and key establishments. Then we present the most
common attacks that try to violate these goals. Figure 2
shows the set of security attacks and goals of authentication
protocols.

2.1. Authentication Goals. According to ISO security ar-
chitecture [26], authentication is defined as the “assurance
that an entity is the one who claims to be.” More precisely,
two kinds of authentications can be distinguished as follows.

2.1.1. Entity Authentication. Entity authentication is the
process whereby one party is assured of the identity of the
second party in the protocol and that the second party has
actually participated [27]. This definition assures one party
(e.g., A) that the other party (B) has participated in the
protocol. It does not provide assurance for A that B also
recognized A as his/her peer entity. For example, suppose
the protocol of Figure 3(a).



Security and Communication Networks

N, A
Ex,, (N4, B)

FIGURE 1: ISO symmetric authentication protocol.
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FIGURE 2: Security goals and attacks in cryptography protocols.
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FIGURE 3: Strong authentication in security protocols. (a) A security protocol without strong authentication, (b) an attack against strong

authentication and (c) improved protocol with strong authentication.

In this protocol, since B signs the nonce N ,, the entity A is
assured that B has participated in the same protocol running as
entity A. However, the entity B may suppose another entity like
C, as his/her peer identity. Figure 3(b) shows an attack against
this protocol. In this attack, the adversary C masquerades
himself as entity B to A. At the same time, he begins a parallel
session with entity B and forwards the response of Bto A. As a
result of this attack, entity A believes that he/she is contacting
with entity B, while B assumes C as his peer entity.

2.1.2. Strong Entity Authentication. Strong entity authen-
tication of A to B is provided if B has a fresh assurance that
A has knowledge of B as his/her peer entity [1]. Based on this

property, the adversary C has no way to convince B that he/she
is in contact with C. Figure 3(c) shows an enhanced version of
the protocol of Figure 3(a). In this protocol, the entity B signs
his peer identity (ID,) to make A sure that he recognizes A as
his peer entity. As another example, consider protocol SPLICE/
AS in Figure 4(a), designed by Yamaguchi et al. [28] to provide
mutual authentication between client A and server B. However,
Clark and Jacob [29] reported that this protocol cannot provide
strong mutual authentication. As shown in Figure 4(b), the
attacker C can replace the signature of A with C’s signature. As
a result, the entity A believes that the protocol has been held
with entity B, while B assumes C as his peer entity. To prevent
this attack, Clark and Jacob proposed to include the encrypted
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FIGURE 4: Strong authentication in SPLICE/AS protocol. (a) SPLICE/AS protocol. (b) Clark and Jacob’s attack against SPLICE/AS protocol.

(c) Clark and Jacob’s improved protocol.

identity of initiator (1D ,) in the message sent to responder (B).
A modified version of this protocol is shown in Figure 4(c).

2.2. Key Establishment. Key establishment is the process
whereby a shared secret (session key) becomes available to
two or more parties, for subsequent cryptographic use [30].
In this regard, the following goals are assumed for cryp-
tographic protocols.

2.2.1. Good Key. Usually, a session key is only useful if it is
known to be fresh and shared to only authenticated and
trusted parties. We call it a good key, if it achieves both
requirements. More formally, the shared session key is a
good key for A to use with B only if A is sure that the
following requirements are both satisfied [1]:

(1) Key Freshness. Key freshness is achieved when the
communicating parties are able to verify and make sure that
the session key they agree with each other is fresh (new) and
not replayed from an old session. This is usually achieved by
a freshness value. There are two main freshness values used
in cryptography protocol: timestamps and nonce [31].

(2) Timestamps. In this method, the current time of the sender
is added to the key. As the receiver obtains the message, if there
is an acceptable delay, the key is accepted. Otherwise, it aborts.
The difficulty of using this method is clock synchronization
requirements of sender and receiver. For example, consider the
Denning and Sacco protocol [32] depicted in Figure 5. In this
protocol, if the timestamp T’ is in a reasonable delay, the parties
A and B make sure of the freshness of key K 4.

(3) Nonce. In this method, before the sender sends the key, the
recipient, for example, A, generates a nonce, N 4, and transfers it
to party B. Then, the nonce, N 4, and the session key K ,5 are
both encrypted and sent to recipient, A. For example, consider
the improved MSR protocol of Figure 6. In this protocol, the
party B transfers K, to party A. In addition, it encrypts the
nonce N , with the session key K , 5. As the party A decrypts the
message with the session key K 45 and obtains N 4, it makes sure
of the freshness of the key.

(4) Key Authentication. Key authentication is defined as
follows: the key should only be known to A and B and any

1.A— S:ID,, IDy
2.8 — At Eg, (IDg, Kyp, To)
3.8 — B: E, (IDy, Kyp, To)

FIGURE 5: Using timestamp as freshness value in Denning and
Sacco protocol.

mutually trusted parties (Gollmann [33] points out that this
property can be regarded as the confidentiality of the key).
For example, consider the Otway-Rees protocol of
Figure 7(a). In this protocol, the server S distributes the
session key K, to A and B. However, as pointed out by
Boyd and Mao [34], the attacker can easily mount the attack
of Figure 7(b). As a result of this attack, A believes that the
key K45 is shared with B, while it is shared with the ad-
versary C. This is a violation of key authentication, as the
adversary has access to session key K ,;. Abadi and Need-
ham prevented this attack by proposing the protocol shown
in Figure 7(c).

2.2.2. Key Confirmation. Key confirmation of A to B is
provided if B has assurance that key K is a good key to
communicate with A and that principal A has possession of
K [1]. Key confirmation provides evidence for a party that his
peer partner has received the same key. However, it does not
imply entity authentication, as the key may be assumed to be
shared with somebody else. In addition, this property cannot
be provided for both parties, as one party should finish the
protocol.

2.3. Security Attacks. There are many attacks that try to
violate the security goals of cryptographic protocols. The
most common attacks are described as follows. For more
information about other types of attacks, refer to [1].

2.3.1. Unknown Key Share (UKS) Attack. As defined by
Blake-Wilson and Menezes [35], an Unknown Key Share
(UKS) attack is an attack whereby an entity A ends up
believing that she shares a key with B and although this is in
fact the case, B mistakenly believes the key is instead shared
with entity E+# A. This attack targets strong authentication
and key freshness of the protocol. For example, consider the
Helsinki Protocol in Figure 8(a). A UKS attack on Helsinki’s
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FIGURE 6: Using nonce as freshness value in MSR protocol.

protocol was published by Horng and Hsu [36]. As shown in
Figure 8(b), B ends up believing she shares a session key
f(Kgy, Klyp) with A. However, A assumes C as his peer
entity whom he shared the key f (K3, Kg,) with. Mitchell
and Yeun [37] proposed to improve this protocol by adding
B’s identity to message 2 (Figure 8(c)).

2.3.2. Replay Attack. Replay attack occurs whenever the
adversary interferes with the protocol run by inserting a
message which has been captured in previous sessions of the
protocol. Usually, this attack is used to mount other types of
attacks, as well. A detailed taxonomy of replay attacks is
described by Syverson [38].

2.3.3. Password Guessing Attack. Another common attack to
compromise the authentication of legitimate users is
through oftline guessing of users’ passwords. Passwords are
generally used to encrypt messages or to authenticate one
party to another. In this attack, the adversary needs to access
some public parameters and messages, which are usually
captured by eavesdropping. If the parameters that are
coupled with the password are known to the adversary, he/
she can guess the password (as they are usually of low
entropy) and check the correctness of his/her guess. For
example, if the password of user A is transmitted as
h(Password ), the attacker can easily guess Password 4 and
check its correctness by taking a hash of it as h (Password ,)
and see if it is equal to the transmitted message
(h(Password,)? = h(Password,)). However, if the
Password, is coupled with unknown and high entropy
parameters like random number N ,, the attacker has no way
to check the correctness of his guess [39].

3. Application of Machine Learning in Security
Analysis of Authentication and Key
Agreement Protocols

The idea of using machine learning to analyze authentication
and key agreement protocols was first presented by Ma et al.
[18], who suggested training the network by designing a
classification problem. Similar to any classification problem
in machine learning, we need a set of datasets and their
corresponding categories (labels) to train the network. Here,
every protocol is an instance of the dataset and the attack
that the protocol is vulnerable to is its label. After training
the network with a set of protocols and the attacks (cate-
gories) that they are vulnerable to, we expect the network to
analyze unseen and new protocols and find what kind of
attack they are prone to. In this regard, we need a model to
map every protocol to an instance of the dataset. In the
following, we discuss the dataset model and the categories
(labels) of the problem.

3.1. Dataset Construction Model. Dataset construction
model is a mapping relation between protocol messages and
instances of the dataset. Ma et al. suggested two approaches
to convert every protocol to an instance of the dataset. Here,
every protocol P = m,,m,,...,m; corresponds to a matrix
in the dataset and every message m; of the protocol cor-
responds to a vector of the matrix. Before the description of
Ma et al’s dataset models, some definitions are given as
follows. Firstly, a message parameter set SP and a parameter
property set PP are defined for every message of the
protocol:

SP ={sp,, 5Py, -»SPpks
PP ={ppi, ppss---» PPul}-

Here, sp; denotes any message parameter such as
timestamp, participant identity, and random number. Also,
pp; denotes message attributes such as index of parameters,
encryption key, and signature key. For example, consider the
protocol of Figure 1. This protocol consists of messages 11,
and m,. For each message, the set of message parameters SP
and parameter property sets PP are as follows:

(1

SP ={N,,ID,},

(2)
PP ={K p}.

In addition, the lengths of SP and PP are assumed to be
fixed (N and M, resp.). If the lengths of the SP and PP are less
than N and M, zero values are added to the set. As a result,
every message is described by an N % M vector. To reduce
the dimension of the message vector, a normalization
function is defined as follows:

fu(spi) = fu(PP;) = fu(PP1> PP2> - > PPw) =X (3)

In the following, after reviewing Ma et al’s dataset
model, we describe our proposed dataset model followed by
its comparison with Ma et al.’s dataset model.

3.1.1. Review of Ma et al.’s Model. Ma et al. developed three
models, namely, TLM (two-layer model), LCM (literal
conversion model), and SLM (single-layer model), to con-
vert every protocol message to a message vector. LCM and
SLM models are almost the same. Further, their subtle
differences are not clearly explained in [18]. In the following,
we only describe TLM and SLM models:

(1) Two-Layer Model (TLM). In TLM, an empty message
vector m; = sp;1,5p;,,-..>Sp;y is predefined. Here, N is
the maximum number of message parameters in the whole
dataset. Here, sp; ; is a predefined zero vector of size M.
Every dimension of this vector corresponds to a specific
property such as plaintext index, encryption key index,
and signature key index. For every message parameter sp;,
the property parameters are filled according to the actual
protocol. As a result, every message is represented as an
N = M vector. Figure 9 shows an example of the TLM
conversion model of ISO symmetric authentication
protocol in Figure 1.
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FIGURE 7: Key authentication in Otway-Rees protocol. (a) Otway-Rees protocol. (b) Boyd and Mao’s attack against Otway-Rees protocol. (c)
Abadi and Needham’s improved protocol.
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(2) Single-Layer Model (SLM). Similar to TLM model, an
empty message vector m; = {sp,-)l,spi’z, c. ,spi)N} is pre-
defined, where N is the maximum number of message pa-
rameters in the whole dataset. However, in this model, the
normalized function f, is applied to every message pa-
rameter sp; ;. Thus, every message m; is represented as
follows:

m; = fn(spi,l)’fn(spi,Z)’ e ’fn(spi,N) =(ApAgy. Ay,
(4)

As a result of applying the normalization function,
the number of data dimensions is reduced from N * M to
N. A schematic of this conversion model is shown in
Figure 10.

3.1.2. Our Proposed Model. Despite Ma et al.’s models that
consider each message component individually, our pro-
posed model is closer to the real representation of protocols.
In this model, every parameter property, pp;, is represented
by a corresponding index, that is, encryption index, sig-
nature index, and so on. Then, the indices of the set of
message parameters, sp;, that are in plaintext, encrypted,
signed, or hashed together, are put after the plaintext index,
encryption index, signature index, and hash index, re-
spectively. The main advantage of this method is that pa-
rameters are not modeled individually but alongside other
adjacent parameters. Therefore, every message vector would
be as follows:

m; = {PPi,p SPin>SPin> -+« > PPim> SPi1>SPi2> - - } (5)

As a result, the size of the message vector is reduced to
4 % L, since the only parameter properties we considered are
plaintext, encryption, signature, or hash. Here, L is the
maximum number of message parameters that are in
plaintext, encrypted, signed, or hashed together. A schematic
of this model is depicted in Figure 11.

3.1.3. Comparison of Our Proposed Model with Previous
Models. Although Ma et al’s model could receive re-
markable results for the first time, it models each message
parameter separately, while in cryptographic protocols, each
message parameter is bound to other message parameters.
For example, consider the protocol message depicted in
Figure 12. In this figure, as shown in red lines, all versions of
Ma et al.’s model consider each message component sepa-
rately. As a result, the machine cannot learn the fact that the
set of message parameters are hashed together, while our
model considers bound messages together. This is an im-
portant point in some attacks such as password guessing
attacks, where the adversary exploits the fact that the
password is bound to some low entropy parameters (Section
2.3.3). In addition, the dimensions of Ma et al.’s model are so
high, which reduces the implementation speed of machine
learning models. A comparison of dataset dimensions is
shown in Table 1.

3.2. Category. Categories are the labels that we assign to
datasets to distinguish the attack in which the protocol is
vulnerable to. In Ma et al.’s scheme [18], protocols were labeled
based on replay attack and key confirmation. In this paper, we
develop more datasets and label them according to more se-
curity goals and attacks such as Unknown Key Share attack and
strong entity authentication, key freshness, password guessing
attack, and key authentication. In this section, after reviewing
Ma et al.’s categories, we describe their deficiency and propose
our categories to label the datasets.

3.2.1. Review of Ma et al.’s Categories. Ma et al. [18] designed
a multiclassification problem to analyze authentication and key
agreement protocols with machine learning. Ma et al. suggested
that every protocol is either secure or prone to one attack
limited to replay attack (Section 2.3.2), lack of key confirmation
(Section 2.2.2), or other attacks. Accordingly, Ma et al. asso-
ciated a category number with every protocol ranging from 1 to
4 (Figure 13). Then, they collected around 500 protocols and
divided them according to the attack they are prone to.

3.2.2. Deficiency of Ma et al.’s Categories. Although Ma et al.
received remarkable results for the first time, the results are
only valid for limited number of protocols. Only around 100
protocols were collected for each category. Limited number
of datasets reduces the generalization ability of the analysis
tool. Furthermore, most of the protocols are vulnerable to
multiple attacks. For example, consider the following pro-
tocol in Figure 14.

At the same time, it suffers lack of key confirmation, as
neither S nor B is not sure if the other party has received the
session key K 5. As a result, the multiclassification problem is
not an appropriate framework to analyze protocols with. In the
next section, we propose a new framework with a larger number
of datasets to analyze security protocols with machine learning.

3.2.3. Our Proposed Categories. Considering the deficiencies
of Ma et al.’s categories, we provide more datasets for each
category. Further, we design a binary classification problem
in which the protocols are either prone to a specific attack or
secure against that (Figure 15). In this regard, the following
attacks/goals are considered for each problem.

(1) Strong Authentication and Unknown Key Share Attack.
As explained in Section 2.1.2, strong entity authentication of
A to B is provided if B has a fresh assurance that A has
knowledge of B as his/her peer entity. The most common
attack that targets this property is UKS attack (Section 2.3.1).
For the purpose of analyzing security protocols against this
property, we develop around 1000 protocols that are either
secure or prone to an attack that violates this property. For
example, consider an instance of this dataset in Figure 16.
Figure 16(a) shows the SPLICE/AS protocol [28] which is
labeled as category 1, since it is prone to the attack presented
by Clark and Jacob [29] (Figure 4(b)) and does not achieve
strong authentication. An improved version of this protocol
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is shown in Figure 16(b). As it is secure against this attack, it
is labeled as category 0.

As another example, consider the Helsinki protocol [36]
in Figure 8(a). As this protocol is vulnerable to UKS attack
(Figure 8(b)), it is labeled as category 1 (Figure 17(a)). As
suggested by Mitchell et al. [37], a secure version of this
protocol is labeled as category 0 (Figure 17(b)).

(2) Key Freshness. As said in Section 2.2.1.1, key freshness is
achieved in security protocols if the parties can verify and
make sure that the session key they agree with each other is
fresh and not replayed from an old session. To analyze
security protocols against this property, more than 1500
datasets were developed which are either secure or prone to
lack of key freshness. An instance of this dataset is shown in
Figure 18. In Figure 18(a), a secure scheme (improved MSR
scheme in Figure 6) is shown which is labeled as category 0,
while the scheme in Figure 18(b) lacks key freshness, as no
freshness value is used to transfer session key K ,5.

As another example, consider the key agreement pro-
tocol of Figure 19. Here, the session key is a*”. The protocol
shown in Figure 19(a) is vulnerable to replay attack which
violates the key freshness of the scheme. As the adversary can
replay message 2 and convince A to agree on a different

session key than party B, thus, it is labeled as category 1.
However, the scheme of Figure 19(b) is secure against this
attack, as the adversary can no longer replay message 2, since
he/she fails to forge the signature of B which includes the
freshness parameter a*.

(3) Key Authentication. According to the definition of
Section 2.2.1.1, the key should only be known to A and B
and any mutually trusted parties. To analyze security
protocols against this property, around 1200 protocols
were provided as dataset. Each instance of the dataset is
either prone to key authentication or secure against this
property. For example, consider Otway-Rees protocol as an
instance of dataset in Figure 20(a). As explained in Section
2.2.1.1, this protocol cannot provide key authentication. As
a result, it is labeled as category 1. Abadi and Needham’s
protocol is labeled as category 0 as it achieves key au-
thentication (Figure 20(a)).

(4) Password Guessing Attack. According to the definition of
Section 2.3.3, the attacker is able to guess the secret password
if it is hashed together with other public parameters. To
analyze security protocols against this property, around 1500
protocols were provided as dataset. Each instance of the
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FIGURE 14: An example protocol that suffers both replay attack and
lack of key confirmation. (a) A vulnerable security protocol. (b)
Replay attack against the protocol.

dataset is either prone to password guessing attack or secure
against this attack. For example, consider the Lee-Sohn-
Yang-Won password-based protocol as an instance of
dataset in Figure 21(a). This protocol is prone to password
guessing attack, as the parameters that are hashed together
with the password, that is, A and B, are all public and ac-
cessible by the adversary. Accordingly, it is labeled as cat-
egory 1. However, the protocol depicted in Figure 21(b) is
secure against password guessing attack thanks to the secret
parameter K 4z, since the attacker has no way to guess the
password and verify its correctness.

4. Experimental Results

In this section, we apply our proposed model along with
previous models, namely, TLM and SLM models, to analyze
different security properties of authentication and key

Security and Communication Networks
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FIGURE 15: Protocol analysis as a binary classification problem.

agreement protocols such as resistance to Unknown Key
Share (UKS) attack, key freshness, key authentication, and
resistance to password guessing attack. Then, we compare
the performance of our proposed model against previous
models, namely, TLM and SLM models. The results indicate
that our proposed model outperforms the previous models
by at least 10-20 percent in all of the machine learning
models. In addition, for more complex security properties
and attacks such as UKS attack and key authentication, the
increase of the dataset size has almost no effect on the
classification accuracy, which indicates that these dataset
constructions are unable to train the machine. Inspired by
the experimental results of Ma et al., we apply XGBoost
approach to our classification problem. To improve the
accuracy, we modified the default value of the number of
gradient boosted trees and maximum depth value of the
trees in XGBoost model such that the best results are re-
ceived with either (10, 3), (10, 15), (20, 15), or (30, 30) where
the first component represents the number of gradient
boosted trees and the second component represents the
maximum depth value of the trees. In addition, to gauge
whether deep learning-based approaches are appropriate in
this framework, multilayer perceptron (MLP) model is also
employed. The results indicate a promising prospect for the
integration of deep learning with protocol analysis. The
hidden layer size of the MLP model is set to either (15, 15),
(20, 20), or (30, 30). In the following, we discuss the ex-
perimental results for each analysis, namely, resistance to
Unknown Key Share (UKS) attack, key freshness, key au-
thentication, and resistance to password guessing attack.

4.1. Experimental Results of Analyzing UKS Attack. Asshown
in Figures 22 and 23, in analysis of UKS attack, the clas-
sification accuracy of our proposed model rises with the
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FIGURE 16: An instance of dataset in analysis of strong authentication and UKS. (a) SPLICE/AS protocol denoted by category 1. (b) SPLICE/
AS improved protocol denoted by category 0.
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FIGURE 17: Another instance of dataset in analysis of strong authentication and UKS. (a) Helsinki protocol denoted by category 1. (b)
Mitchell et al.’s protocol denoted by category 0.
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FIGURE 18: An instance of dataset in analysis of key freshness. (a) MSR scheme without key freshness denoted by category 1. (b) Improved
MSR scheme with key freshness denoted by category 0.
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FIGURE 19: Another instance of dataset in analysis of key freshness. (a) A secure key agreement protocol with key freshness denoted by
category 0. (b) A vulnerable key agreement protocol without key freshness denoted by category 1.
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FIGURE 20: An instance of dataset in analysis of key authentication. (a) Otway-Rees’s protocol without key authentication denoted by
category 1. (b) Abadi and Needham’s protocol with key authentication denoted by category 0.
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FIGURE 21: An instance of dataset in analysis of password guessing attack. (a) Lee-Sohn-Yang-Won password-based protocol prone to
password guessing attack denoted by category 1. (b) Improved Lee-Sohn-Yang-Won password-based protocol resistant to password
guessing attack denoted by category 0.
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FIGURE 22: Analysis of UKS with XGBoost model.
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FIGURE 23: Analysis of UKS with the MLP model.

increase of the dataset size, as opposed to the other two
models, namely, TLM and SLM models, in which the dataset
size has almost no effect on the classification accuracy. For a
large number of datasets, that is, the number of protocols is
1300, the classification accuracy reaches over 80% which is
20% higher than the other two models. The higher classi-
fication accuracy of TLM and SLM models for a low number
of protocols, that is, 100-600, may be tempting to conclude
that our model is unable to train the machine. However, with
the increase of the number of datasets, the accuracy of the
TLM and SLM models either decreases or remains constant.
Further, the performance of TLM model is extremely
fluctuating in MLP algorithm.
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F1GURE 24: Analysis of key authentication with the XGBoost model.
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FIGURE 25: Analysis of key authentication with the MLP model.

4.2. Experimental Results of Analyzing Key Authentication.
In the analysis of key authentication, TLM and SLM dataset
constructions fail to train the machine. According to
Figures 24 and 25, increase of the dataset size not only has no
effect on the classification accuracy but also decreases the
accuracy in case of TLM model. Meanwhile, the classifica-
tion accuracy of our proposed model rises with the increase
of the dataset size and reaches over 80% for 1200 protocols
which is 15-20% higher than the other two models.

4.3. Experimental Results of Analyzing Key Freshness. Key
freshness is a simpler security property compared to UKS
attack and key authentication, as it affects only a few
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FIGURE 26: Analysis of key freshness with the XGBoost model.
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FIGURE 27: Analysis of key freshness with the MLP model.

parameters such as timestamp and nonce. As a result, the
classification accuracy of TLM and SLM models still im-
proves with the increase of the dataset size. However, as
shown in Figures 26 and 27, the rate of the increase of
classification accuracy of our proposed model is almost three
times more than the TLM and SLM models. Similar to UKS
attack, the performance of TLM model is so fluctuating in
MLP algorithm. For a large number of datasets, that is, the
number of protocols is 1500, the classification accuracy
reaches over 80% which is 10% higher than the TLM and
SLM models.
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XGBoost model in analysis of password guessing attack
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FIGURE 28: Analysis of password guessing attack with XGBoost
model.
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FIGURE 29: Analysis of password guessing attack with MLP model.

4.4. Experimental Results of Analyzing Password Guessing
Attack. As depicted in Figures 28 and 29, in MLP approach,
the classification accuracy of TLM and SLM dataset con-
structions extremely decreases with the increase of the
dataset size. Although XGBoost solver is able to train the
machine using the TLM and SLM dataset constructions, its
classification accuracy is still much lower than our proposed
dataset construction. For a large number of datasets, that is,
the number of protocols is 1200, the classification accuracy
reaches 60% which is still 10% lower than our proposed
dataset construction.
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5. Conclusion, Limitation, and Future Work

Considering the difficulties of formal protocol analysis ap-
proaches, researchers have begun to apply machine learning
in this area. In this paper, we investigated Ma et al’s
framework as the first attempt in applying machine learning
to protocol security analysis. The main limitation of Ma
et al’s framework is that it only considers replay attack and
key confirmation. Further, it exploits multiclassification as a
security framework for such analysis in which every protocol
or dataset is either secure or prone to a security attack such
as replay attack, key confirmation, or other attacks. How-
ever, we show that multiclassification problem is not an
appropriate framework. As a result, we propose binary
classification in which every protocol is either prone to a
specific attack or secure against that. In addition, more
security properties and attacks are considered to analyze
protocols against, such as strong authentication and Un-
known Key Share (UKS) attack, key freshness, key au-
thentication, and password guessing attack. Despite previous
dataset construction models suggested by Ma et al.,, in our
proposed dataset construction model, the classification ac-
curacy increases with the increase of the dataset size, which
represents the fact that our proposed dataset construction
model is capable of training the machine to analyze security
attacks and properties. The most evident limitation of our
work is the fact that the accuracy of our scheme is only 80%.
However, for a practical analysis scheme, we need an ideal
analysis scheme with an accuracy of 100%. As a future work,
more datasets can be provided to reach an ideal analysis
scheme. In addition, more complex security properties can
be analyzed using machine learning techniques such as
pretraining and few-shot learning.

Data Availability

Supplementary codes and datasets are available at https://github.
com/zahednejad/protocol-analysis-with-machinelearning.
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