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Oblivious transfer (OT) is a cryptographic primitive originally used to transfer a collection of messages from the sender to the
receiver in an oblivious manner. OT extension protocol reduces expensive asymmetric operations by running a small number of
OT instances first and then cheap symmetric operations. While most earlier works discussed security model or communication
and computation complexity of OT in general case, we focus on concrete application scenarios, especially where the sender in the
OTprotocol is a database with less computation and limited interaction capability. In this paper, we propose a generic outsourced
OTextension protocol (OTex) that outsources all the asymmetric operations of the sender to a semihonest server so as to adapt to
specific scenarios above. We give OTex a standard security definition, and the proposed protocol is proven secure in the
semihonest model. InOTex, the sender works on the fly and performs only symmetric operations locally.Whatever the number of
rounds OT to be executed and the length of messages in OT to be sent, our protocol realizes optimal complexity. Besides, OTex

can be used to construct high-level protocols, such as private membership test (PMT) and private set intersection (PSI). We
believe our OTex construction may be a building block in other applications as well.

1. Introduction

Oblivious transfer (OT) is one of the most important
primitives in secure computation. It is wildly used in Yao’s
protocol [1], GMW construction [2], and preprocessing
phase of SPDZ-like [3] protocols. With the development of
big data, cloud computing, and mobile computing, the
demand for joint computation grows rapidly between dif-
ferent organizations and individuals. In order to ensure the
security of such computing tasks against complicated ex-
ternal environment, cryptographic components have to be
used to design protocols, in which OT plays a pivotal role
together with homomorphic encryption, secret sharing, and
garbled circuit.

However, OT is public-key primitive centered, which
makes it computational expensive for secure computation.
Many privacy-preserving protocols, such as private mem-
bership test (PMT) and private set intersection (PSI), rely

heavily on huge number of OT instances for secure com-
putation to get the trade-off between computation and
communication. +e most efficient way to produce many
OT instances is through OT extension protocol [4, 5]. In
such protocol, two participants collectively run few “base”
OT instances and then perform some cheap symmetric
operations to produce many OT instances.

1.1. Motivation. In an OT extension protocol, the sender S
needs to interact with the receiverR for each step during the
protocol, which involves exponential calculation and in-
tensive interaction. In some application scenarios, however,
S could be a mobile device with less computation power or a
database holder with limited interaction capability. When
invoking OT extension as a subprotocol in some more
complex computation tasks, S needs to respond requests
from R as fast as possible.
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Nowadays, many applications are rapidly transferred to
cloud-based service, and it would be desired to seek some
server-aided OTextension protocol to relief the burden of S
under reasonable security assumption. A considerable lit-
erature [6–12] has grown up around the theme of fertilizing
functionality of OTor optimizing communication cost of the
receiverR. However, far too little attention has been paid to
investigate sender side of OT adapting to specific scenarios.

To this end, we propose a generic outsourced oblivious
transfer extension protocol (OTex) in the semihonest
model. In OTex, the sender S first outsources all expensive
asymmetric operations to a third party who runs a sub-
protocol called “base” OT instances with the receiver R.
Based on the corresponding outputs of the subprotocol and
other auxiliary information, S generates symmetric keys
used to encrypt sending messages in OT. As a result, the
sender S works on the fly and sends its inputs encrypted by
symmetric key generated from OTex to the receiverR, and
thus, it enables two parties to complete the whole OT ex-
tension protocol.

Recent trends in OTextension have led to a proliferation
of studies showing how to design an efficient PSI [13–17] or
PSI-based protocols [18–21] in different secure models since
OTextension protocol is an important component in secure
computation and plays a key role in set operations. Take PSI
as an example, without violating individuals’ privacy, and
the use of PSI in contact tracing [21] can help prevent the
further spread of COVID-19. +erefore, OTex framework
has a wide range of applications in outsourced scenarios, and
as a building block, we think OTex can be applied conve-
niently to high-level protocols.

1.2. RelatedWork. Rabin [22] first introduced the notion of
OT that the receiver receives a message sent from the sender
with probability 1/2 and the sender does not know whether
the receiver has received the message or not. +en, a line of
works seek to enrich functionality of OT, and they mainly
consist of 1-out-of-2 OT [6], 1-out-of-nOT [7, 8], and k-out-
of-n OT [9, 10], in which the first two functionalities are
considered in this paper. Some researchers [23–25] pro-
posed OTprotocols in different security models although we
focus on semihonest model that is sufficient enough to
deploy our framework in future among including malicious
model, covert adversary model, and universally composable
model.

Because OT is public-key primitive centered, the issue of
efficiency has received considerable critical attention after
Rabin’s work [22]. Beaver [26] showed that OT can be
precomputed using only prior transfers. Studies over the
past two decades have proved that extending a small number
of OT to huge number of OT instances can be achieved by
one-way function [27–29]. Until 2003, Ishai et al. [4] pro-
posed an efficient method to extend 1-out-of-2 OTs by
running few “base” OT instances, which is also known as the
IKNP OT extension protocol. Kolesnikov and Kumaresan
[5] generalized IKNP from a coding understanding and
proposed an improved OTextension protocol allowing to do
1-of-out-n OTs with less communication and computation

cost. Lindell et al. [11] studied input-size hiding two-party
computation based on fully homomorphic encryption
(FHE) and proposed a secure OT extension protocol to
reduce the communication cost of both the sender and
receiver. Cho et al. [12] focused on the receivers’ commu-
nication cost in OTand proposed laconic OTprotocol based
on the decisional Diffie–Hellman (DDH) assumption.
Carter et al. [30] proposed outsourced OT protocol spe-
cifically for the mobile use-case where the cloud receives
outputs of OT. Recently, Mansy and Rindal proposed [31]
noninteractive OTs from noninteractive key exchange.
However, the resulting OT extension would require 3
rounds.

+e research to date has tended to focus more on the cost
of the receiver and less on the sender in OT, and there are
few studies that have investigated computation and com-
munication complexity on sender side. +e aim of this work
is to explore the cost of sender in OT and construct efficient
OT extension framework assisted by a third party. In ad-
dition, OT extension provides a brief but useful account of
the construction of oblivious pseudorandom function
(PRF). Also, oblivious PRF has been attracting a lot of in-
terest in very recent years, such as multiparty PSI [14], PSI
cardinality [21], and private set union [32]. +is indicates a
need to adapt OT extension to outsourcing scenarios due to
practical constraints.

1.3. Our Contribution. In this paper, we focus on server-
aided OT to reduce the sender’s public-key computation and
rounds of interaction with the receiver. Main contributions
of our work go as follows:

(i) We propose a generic outsourced OT extension
protocol (OTex). In OTex, the server and the re-
ceiver cooperatively run a small number of OT
instances, and at this moment, the sender can be off-
line. After the first phase, the sender can fetch
necessary corelated randomness from the server
whenever needed; then, the sender can send their
inputs encrypted only by a symmetric key to the
receiver, which completes an OT instance. We
design a novel mechanism for this purpose and
formally prove its security under semihonest model.

(ii) We analyze the complexity of our construction and
perform implementation, and the experiment shows
that our construction is practical and efficient.

(iii) Our OTex construction can be applied to improve
the efficiency of OT-based privacy-preserving
primitives in server-aided setting, such as oblivious
pseudorandom function, and high-level protocols,
such as PMT and PSI, which is of independent
interest.

2. Preliminaries

2.1. Notation. Unless otherwise stated, we use OT to denote
1-out-of-2 OT and OTk

l to denote k instances of 1-out-of-2
OT of l-bit strings. For simplicity, let H(·) denote random
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oracles with a suitable secure output length, which will be
well defined in an actual protocol. Matrices are denoted by
capital letters, and vectors are denoted by small bold letters;
that is, ti denotes the i-th row of a matrix T, and tj denotes
the j-th column of T. Small light front with subscript si

denotes the i-th bit of a string s. Notably, we regard strings as
vectors and do not distinguish the difference between strings
and vectors. If s � s1‖ · · · ‖sn and t � t1‖ · · · ‖tn are two
strings, then the notation s⊕ t denotes
(s1 ⊕ t1)‖ · · · ‖(sn ⊕ tn). Similarly, the notation s⊙ t denotes
the vector (s1 · t1)‖ · · · ‖(sn · tn). Specially, when c ∈ 0, 1{ }, c ·

s denotes the vector (c · s1)‖ · · · ‖(c · sn).

2.2. Secure Computation and Security Model. +e formal
definition of security of a secure multiparty protocol [33] is
based on comparing two output distributions coming from
an ideal world and a real world, respectively. +e func-
tionality of three parties P1, P2, P3 is denoted as f:

0, 1{ }∗ × 0, 1{ }∗ × 0, 1{ }∗↦ 0, 1{ }∗ × 0, 1{ }∗ × 0, 1{ }∗, where f

� (f1, f2, f3) and Pi gets fi as output.

Ideal/reality Simulation Paradigm. In an ideal world,
participants send the input to an external trusted party
who computes the functionality and sends each par-
ticipant the corresponding output. Suppose there exists
an adversary who has the inputs and outputs of a
protocol in the ideal world and executes attack against a
real protocol, then there always be an adversary exe-
cuting the same attack in the ideal world. In a real
protocol, if no adversary can do more harm than the
execution of the protocol in the ideal world, the pro-
tocol in the real world is said to secure.
Computationally Indistinguishability. Two distribution
probability ensembles X � X(a, n){ }a∈ 0,1{ }∗;n∈N and Y �

Y(a, n){ }a∈ 0,1{ }∗;n∈N are said to be computationally in-
distinguishable, denoted by Xc ≡ Y, if for every non-
uniform polynomial-time algorithm D, there exists a
negligible function μ(·) such that for every a ∈ 0, 1{ }∗

and every n ∈ N:

|Pr[D(X(a, n)) � 1] − Pr[D(Y(a, n))

� 1]|≤ μ(n).
(1)

Semihonest Adversary Model. In the semihonest ad-
versary model, corrupted participant must execute the
protocol correctly. However, the adversary can com-
prehensively obtain the internal status of the corrupted
party, e.g., the transcripts of all received messages, and
then tries to obtain additional information that should
be kept confidential. Semihonest model is sufficient and
captures many scenarios in practice although it is a very
weak adversary model.

In this paper, we focus on semihonest model and
honest majority case where an adversary can corrupt at
most one participant and any two participants will not get

colluded. In the following, the formal security definition is
proposed.

Definition 1. Let f � (f1, f2, f3) be a deterministic func-
tionality and π be a three-party protocol for computing
f. Given the security parameter κ and triple inputs (x, y, z),
where x is fromP1, y is from P2, and z is from P3, the view of
Pi (i � 1, 2, 3) in the protocol π is denoted as
viewπ

i (x, y, z, κ) � (w, ri, m1
i , . . . , mt

i), where w ∈ x, y, z􏼈 􏼉,
ri is the randomness used by Pi, and m

j
i is the j-th message

received by Pi; the output of Pi is denoted as outputπi
(x, y, z, κ), and the joint output of the parties is outputπ

(x, y, z, κ) � (outputπ1(x, y, z, κ), outputπ2(x, y, z, κ), outpu

tπ3(x, y, z, κ)). We say that π securely computes f in the
semihonest model if the following holds:

(i) +e correctness holds:

outputπ(x, y, z, κ)c ≡ f(x, y, z)􏼈 􏼉x,y,z,κ. (2)

(ii) +ere exist probabilistic polynomial-time simulators
S1, S2, and S3 such that

S1 1κ, x, f1(x, y, z)( 􏼁􏼈 􏼉x,y,z,κ
c ≡ view

π
1(x, y, z, κ)􏼈 􏼉x,y,z,κ,

S2 1κ, y, f2(x, y, z)( 􏼁􏼈 􏼉x,y,z,κ
c ≡ view

π
2(x, y, z, κ)􏼈 􏼉x,y,z,κ,

S3 1κ, z, f3(x, y, z)( 􏼁􏼈 􏼉x,y,z,κ
c ≡ view

π
3(x, y, z, κ)􏼈 􏼉x,y,z,κ.

(3)

2.2.1. OTex Security Model. In OTex, a simpler definition
can be used since two of three parties output nothing (see
FOTex in Figure 1). Specifically, three parties P1, P2, P3 stand
for server S, sender S, and receiver R, respectively. +e
functionality of OTex can be given by simply writing
f: ( 0, 1{ }∗, (x0

i , x1
i )􏼈 􏼉, c)↦(λ, λ, x

ci

i ), where λ denotes the
empty string. We still require correctness described above,
and security meaning that there exist three simulators SimS,
SimS, and SimR such that

SimS 1κ, s,⊥( 􏼁􏼈 􏼉x,s,c,κ
c ≡ viewπ

S(x, s, c, κ)􏼈 􏼉x,s,c,κ,

SimS 1κ, x,⊥( 􏼁􏼈 􏼉x,s,c,κ
c ≡ viewπ

S(x, s, c, κ)􏼈 􏼉x,s,c,κ,

SimR 1κ, c, 􏽥x( 􏼁􏼈 􏼉x,s,c,κ
c ≡ viewπ

R(x, s, c, κ)􏼈 􏼉x,s,c,κ,

(4)

where x denotes input set (x0
i , x1

i )􏼈 􏼉 from S, 􏽥x denotes
output x

ci

i􏼈 􏼉 of R, and ⊥ denotes null value.

2.3. OT Extension. We start by introducing the definition of
standard 1-out-of-2 OT, where a sender holding two mes-
sages (m0, m1) interacts with a receiver holding a choice bit
b. +e 1-out-of-2 OT protocol guarantees that the receiver
obtains mb without knowing anything about m1−b, while the
sender knows nothing about b. +e ideal functionality for 1-
out-of-2 OT, denoted as FOT, is described in Figure 2.

In most settings, it is necessary to run a large number of
OT instances at the same time. +e multiexecution of OT is
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called batch OT (see Figure 3) denoted as FOTm
l
. +e IKNP

OT extension protocol [4] is a real milestone in the devel-
opment of OT research computing FOTm

l
efficiently. It is

trivial to compute FOTm
l
by simultaneously running FOTm

times although it leads to large costs on computation and
communication. +erefore, OT extension is the most effi-
cient way for executingFOTm

l
instead of runningm instances

of OT in parallel.
As shown in Figure 3, the functionality of IKNP is thatR

receives messages x
ci

i |it ∈ n[m]􏼈 􏼉 without knowing anything
about x

1−ci

i |it ∈ n[m]􏽮 􏽯, while S knows nothing about c,
where ci denotes the i-th bit of c. In the IKNP protocol, after
acting as the receiver in FOT and running it k times, S
computes m pairs of symmetric keys denoted as
(K0

1,K
1
1), . . . , (K0

m,K1
m)􏼈 􏼉, which are used to encrypt each

pair of messages (x0
i , x1

i )􏼈 􏼉, where i ∈ [m]. For each pair of
symmetric keys (K0

i ,K1
i ), R only knows the exact one

according to his selection string, i.e.,
K

ci

i |t nciq ∈ hc,x 7iC ∈ ; [ m ]􏽮 􏽯.+e key insight of IKNPOT

extension is to execute such an OT-based key agreement
between S and R in the following way:

R forms m × k matrix T at random and then computes
matrix U such that ti ⊕ui � (ci‖ · · · ‖ci). S chooses s← 0, 1{ }k

at random. For each j ∈ k, R invokes FOT with input
(tj, uj), and S acts as the receiver with selection bit sj. S
receives qj after each computation of FOT and then forms
matrix Q. For each column of matrix Q, it implies
qj � [(sj ⊕ 1) · tj]⊕ (sj · uj) � tj ⊕ (sj · c). +e essential ob-
servation is that, for each row of matrix Q, it holds

qi � ti ⊕ ci · s( 􏼁. (5)

S prepares key pairs by K0
i � H(qi) and

K1
i � H(qi ⊕ s) andR exactly knows Kci

i � H(ti), where ti
is generated by R locally. In addition, due to the ran-
domness of s chosen by S, R learns K1−ci

i � H(ti ⊕ s) with
no more than a negligible probability (1/2k). +en, S can
execute just symmetric operations so as to encrypt each pair
of messages using key pairs (K0

i ,K1
i ) and sends m pairs of

encrypted messages to R. Finally, R can decrypt the cor-
responding message for each message pairs under
K

ci

i � H(ti).
As described above, the IKNP protocol begins with

running FOT k times and then executes lots of symmetric
operations to “extend” these OT instances, which are also
called as “base” OTs.

2.4. Oblivious PRF. Freedman et al. [34] proposed
oblivious evaluation of pseudorandom function (OPRF)
and gave a general construction of OPRF from OT. An
OPRF is a two-party protocol where a sender P1 inputting
a random seed s obtains nothing while a receiver P2
inputting an evaluation point x obtains fs(x) for some
pseudorandom function family fs. +e functionality
of OPRF (see Figure 4) can be defined by
(s, x)↦(λ, fs(x)).

A general definition of OPRF is that the receiver P2
inputs an evaluation set X � xi􏼈 􏼉 and obtains the evaluations
on a PRF in an oblivious manner, i.e., fs(xi)􏼈 􏼉. +e func-
tionality in Figure 4 can be regarded as a special and sim-
plified case although it is sufficient to construct such an

Functionality F
Tex

Let k be security parameter.
�ree parties: sender S, receiver R, server .

(i) Input:
(1)
(2)  inputs random string r ←{0, 1}κ.
(3)

(ii) Output:
(1) S outputs nothing.
(2)  outputs nothing.
(3)

S inputs m pairs of messages (xi
0, xi

1), each of length l, 1 ≤ i ≤ m.

R inputs m-bit selection vector c = c1|| ... ||cm.

R outputs {xi
ci | i Є [m]} and learns nothing about {xi

1–ci | i Є [m]}.

Figure 1: Outsourced oblivious transfer functionality FOTex.

Functionality FOT

(i) Input:
(1) S inputs two messages x0, x1 Є {0, 1}l.
(2)

(1)
(2)

R inputs a selection bit σ Є {0, 1}.
(ii) Output:

S has no outputs.

Let l Є N.Two parties: sender S and receiver R.

R outputs xσ and learns nothing about x1–σ.

Figure 2: 1-out-of-2 oblivious transfer functionality FOT.

Functionality FOTl
m

(i) Input:
(1)
(2)

(1)
(2)

(ii) Output:
S has no outputs.

Let l, m Є N. Two parties: sender S and receiver R.

R inputs m-bit selection string c = c1|| ... ||cm.

R inputs {xi
ci | i Є [m]} and learns nothing about {xi

1–ci | i Є [m]}.

S inputs m pairs of messages {(xi
0, xi

1) | i Є [m], |xi
0| = |xi

1| = l}.

Figure 3: Batch oblivious transfer functionality FOTm
l
.
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efficient OPRF for some scenarios. In this paper, we consider
only the definition where receiver P2 evaluates the PRF on a
single point x, which can be constructed massively in an
efficient manner.

2.4.1. Batched OPRF Based on OT Extension. Kolesnikov and
Kumaresan [5] generalized IKNP and proposed KK protocol
realizing 1 − out − of − 2l OTs in an efficient way. In IKNP, the
equation ti ⊕ ui � (ci‖ · · · ‖ci) means that each row of matrix
T⊕U is either all zeros or all ones.+is feature was interpreted
as a repetition code in KK, and they improved it using a linear
error correcting code denoted byC. Now for each row in T and
U, it holds that ti ⊕ ui � C(ci), whereC is a public linear error
correcting code of dimension l and codeword length k.
+erefore, in KK, equation (5) becomes

qi � ti ⊕ C ci( 􏼁⊙ s􏼂 􏼃. (6)

Notably, ci stands for the i-th element in vector c, and
now, it is no longer a binary bit in equation (5) but an l-bit
string. +e codeword length of C(ci) determines the length
of s and the number of columns of matrices T and U, instead
in IKNP of k (k is relative to a security parameter κ). In KK,
to reach the same security requirement, the codeword length
k′ is about twice as much as k. +at is to say, kKK ≈ 2.5kIKNP.
As a consequence, the number of “base” OTin KK is doubled
than that in IKNP.

Based on 1-out-of-n OTextension, Kolesnikov et al. [13]
proposed a variant of OPRF and described an efficient
protocol to generate batched OPRF instances (known as
BaRK-OPRF). From the point of adaption of OTextension,
the variant OPRF functionality based on equation (6) is that

qi, s( 􏼁, ci( 􏼁⟼ λ, H i, qi ⊕ C ci( 􏼁⊙ s􏼂 􏼃( 􏼁( 􏼁, (7)

where C now is a pseudorandom code instead of a linear
error correcting code.

Notably, the random seed s consists of (qi, s) in
BaRK-OPRF and i ∈ [m], indicating that equation (6) es-
sentially instantiates m different OPRFs in total, and this is
why BaRK-OPRF is called bathed and key-related OPRF. In
addition, the codeword length of pseudorandom code in
BaRK-OPRF is approximately 2 times longer than the
output length of linear error correcting code in KK, which is
necessary to reach security requirement. Based on OPRF, it
is trivial to construct the private membership test, which will
be illustrated later.

3. Overview of Our Construction

+e functionality ofOTex is described in Figure 1. While the
essential difference betweenFOTm

l
in Figure 3 andFOTex in

Figure 1 may appear to be unimpressive and unnecessary,
the distinction becomes more pronounced in the case of
practical OT extension applications and even more so in
outsourced OT scenarios.

+e codeword length of code schemes in equations (6)
and (7), i.e., pseudorandom code and linear error correcting
code, determines the number of “base” OT instances to be
evaluated. +is gives us the intuition that we could use a
specific number of OTs to extend any large amount of OT
instances we need. Both Ishai et al. [4] and Kolesnikov et al.
[5, 13] show n OTs of long strings that can be reduced to k

“base” OTs of shorter strings. +at is, given pseudo-random
generator and a small number of OTs, we can implement any
F

OTm′
l′

we want. +erefore, we make OT execute in a pro-
gram-iteration-like way (see Figure 5) to reach the final
functionality FOTm

l
. Here, for clarity, we denote selection

string in FOTki
ki+1

by bold letter ri instead of c, and j-th el-
ement of ri is denoted by ri[j].

To better understand our work, let us review IKNP OT
extension where S holds m pairs of l-length messages
(x0

1, x1
1), . . . , (x0

m, x1
m)􏼈 􏼉, and the receiver R holds m-bit

selection vector c. According to Figure 5, we now focus on
OTk1

k2
and OTk2

k3
only. For i ∈ [m], each row of matrices T2

and T2′ consists of x0
i and x1

i , respectively; that is, both T2
and T2′ are m × l matrices and r2 � c. Now, OTk1

k2
serves as

“base” OT in IKNP, while the final functionality is to
realize OTk2

k3
, where k1 is the security parameter, k2 � m,

and k3 � l. After OTk1
k2
,S computes equation (5) and sends

encrypted T2 and T2′ to R. Using symmetric-key opera-
tions only, R receives V2 from T2 and T2′ in an oblivious
way. For i ∈ [m], each row of matrix V2 is x

ci

i . We have
reviewed the whole framework of IKNP protocol so far,
and it does matter the relationships among T1, T1′, and r2.
If we write the algorithm implementing OTki

ki+1
as recursive

function FOT(ki,ki+1) in programming language, then the key
step in IKNP is that FOT(m,l) invokes FOT(κ,m); i.e., OTm

l is
reduced to OTκ

m, where κ is the security parameter in
IKNP. +us, we implement FOT(m,l) by invoking FOT(κ,m)

first and then executing some symmetric-key encryption
operations.

In more general case, two parties P1 and P2 prepare to run
protocol OTki

ki+1
, where P1 acts as sender S holding messages

matrices Ti and Ti
′ while P2 holds chosen vector ri. After

OTki

ki+1
, P2 gets outputs Vi consisting of those messages he/she

chooses to receive. According to OTextension protocol,P1 and
P2 first run OT

ki−1
ki

, where P1 acts as a receiver and P2 acts as a
sender. For each OTki

ki+1
and OTki−1

ki
, it holds

Ti−1[j]⊕Ti−1′[j] � f ri[j]( 􏼁. (8)

Ti−1[j] denotes the j-th row of matrix Ti−1[j], ri[j]

denotes j-th element of ri, and f(·) for some encoding
scheme, such as repetition code in equation (5) and linear
error correcting code in equation (6). We present detailed

Functionality FOPRF

(i) Input:
(1) S inputs a random seed s.
(2) R inputs a value r.

(ii) Output:
(1) S has no outputs.
(2) R outputs fs (r).

Let f be a pseudorandom function. Two parties: sender S and receiver R.

Figure 4: Oblivious PRF functionality FOPRF.
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f(·) in concrete protocol and just emphasize the connec-
tions between Ti−1 and ri here.

OTki

ki+1
and OTki−1

ki
are named as outer and inner OT,

respectively. Specially, OTk1
k2
is the innermost one. +en, we

find that the two input vectors Ti−1 and Ti−1′ of the inner
OTki−1

ki
are determined by the input ri of the outer OT

ki

ki+1
. +e

role of P1 and P2 get reversed each time FOT(ki,ki+1) invokes
FOT(ki−1 ,ki)

; that is to say, S in outer OT becomes the receiver
in inner OT, so as toR. Furthermore, OTki+1

ki
(if exists) is the

outer OT related to OTki

ki−1
; therefore, the input vectors of Ti

and Ti
′ are determined by ri+1.

+e transformation amongOTki+1
ki+2

, OTki

ki+1
, andOTki−1

ki
is the

main part of our work.+e key observation is that the inputs of
both two parties in OTki−1

ki
and OTki+1

ki+2
are independent. +at is,

Ti+1 and Ti−1, Ti+1′ and Ti−1′, and ri+1 and ri−1 are independent.
If OTki+1

ki+2
is a necessary component in protocol, we can pre-

compute OTki−1
ki

assisted with a semihonest server. We focus on
a special-but-sufficient case whereS andR prepare to execute
OTk2

k3
; notably, the innermost is OTk1

k1
(see Figure 6) instead of

OTk1
k2
. In such a scenario, k1 should not be less than security

parameter. IfR is a normal user acting as the receiver in OTk2
k3

and S is a database with limited computation power and
interaction capability, the framework becomesmore useful and
efficient. +erefore, we consider a server-aided oblivious
transfer reducing the sender’s all public-key computation and
numbers of interaction with other parties. As shown in Fig-
ure 6, S outsources the computation marked with blue rect-
angle to a server.

Our OTex protocol consists of two major phases. First,
in the outsourced phase, R and server S run OTk1

k1
as

follows.R inputs random selection string r1, while S inputs
two random k1 × k1 matrices T1 and T1′. After OT

k1
k1
, R gets

output V1 and prepares T2 (and T2′) for OT
k1
k2
. In the second

phase, S aims to respond to the request for OTk2
l . +is

phase can be concluded as FOT(k1 ,k2) invoking FOT(k1 ,k1) and
S sending pairs of messages (T3 and T3′ encrypted by V2) to
R. In the last phase,R gets outputs from OT

k2
l , which can be

seen as FOT(k2 ,l) invoking FOT(k1 ,k2).

4. Outsourced Oblivious Transfer Extension

In this section, we show how to construct an outsourced
oblivious transfer extension protocol OTex, where three-
party functionality FOTex can be securely computed in the
presence of semihonest adversaries.

Our OTex protocol consists of two major phases among
three parties, sender S, receiver R, and server S. Figure 6

shows OTex construction in a program-iteration-like way,
where a small number of OT instances, the innermost OTk1

k1
,

are first to be executed cooperatively. In fact, we let k1 � κ,
and it becomes OTκ

κ, where κ is the security parameter in real
protocol. From the global perspective, we give procedure of
OTex in Figure 7 so as to have a better understanding of
roles three parties play in every phase.

First, in the outsourced phase, R and S run OTκ
κ as

follows. R inputs random selection string r, while S inputs
two random κ × κ matrices T and T′. After OTκ

κ, R gets
outputs D and prepares V (and V′) for OTκ

m. In the second
phase,S aims to respond to the request for OTm

l .+is phase
can be concluded as FOT(κ,m) invoking FOT(κ,κ) and S

sending pairs of messages (T andT′ encrypted by E) toR. In
the last phase,R gets outputs from OTm

l , which can be seen
as FOT(m,l) invoking FOT(κ,m).

We describe OTex in Figure 8 which realizes func-
tionality FOTex in Figure 4. +e invoking procedure inOTex

can be written as FOT(m,l)≫FOT(κ,m)≫FOT(κ,κ).
According to equation (8), each time FOT(ki,ki+1) invokes

FOT(ki−1 ,ki)
, and it holds Ti−1[j]⊕Ti−1′[j] � f(ri[j]). Let f(·)

represent different encoding schemes each time iteration
occurs. In OTex, we have T[i]⊕T′[i] � f1(s) and
V[j]⊕V′[j] � f2(c), where both f1(·) and f2(·) are rep-
etition code with output length κ, i.e.,

f1(s) � si‖ · · · ‖si,

f2(c) � ci‖ · · · ‖ci.
(9)

Notably, in more general case, the outputs of f1(ri[j])

and f1(ri+1[j]) may be not equal length, which is deter-
mined by OTki−1

ki
and OTki

ki+1
, respectively. Figures 7 and 8

illustrate OTex framework and procedure, where the
symbols are consistent and the output length of repetition
code is embodied in the number of columns in the matrices
T and V.

Theorem 1. :e OTex protocol in Figure 8 securely com-
putes the functionality FOTex (Figure 4) in semihonest setting,
as described in Definition 1, given random oracle and
functionality FOT(Figure 1).

Proof. We begin by proving the correctness. AfterOTex, we
prove thatR only receives x

ci

i and knows nothing about x
1−ci

i

when computing 􏽥xi � 􏽥z
ci

i ⊕H(i, vi). In the outsourced phase,
it holds that

Vn
V2 V1

V3

r2
r3

r1

rn
T3

T′3

Tn

Tn′T1
T2

T1′
T2′OTk2

k1

OTk3

k2

OTk4

k3

Figure 5: Overview of OT iteration.

V2
V1

V3

r2
r3

r1

T3

T3′
T1

T2

T1′
T2′OTk1

k1

OTk2

k1

OTk3

k2

Figure 6: Construction of OTex.
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dj
� tj ⊕ rj · s􏽨 􏽩,

di � ti ⊕ si · r􏼂 􏼃, where i, j ∈ [κ].
(10)

+en, in the responding phase, Step 5, R essentially
computes

y
0
j � vj ⊕H1 j, tj ⊕ sj · r􏽨 􏽩􏼐 􏼑,

y
1
j � v′j ⊕H1 j, tj ⊕ sj ⊕ 1􏼐 􏼑 · r􏽨 􏽩􏼐 􏼑, where j ∈ [κ].

(11)

+erefore, in Step 6, for j ∈ [κ], by computing
ej � y

sj

j ⊕H1(j, tj), S gets ej � vj when sj � 0 and gets ej �

v′j when sj � 1. Due to vi ⊕ vi
′ � (ci‖ · · · ‖ci), we have ej �

vj ⊕ [sj · c] and

ei � vi ⊕ ci · s􏼂 􏼃, where i ∈ [m], j ∈ [κ]. (12)

For σ ∈ 0, 1{ }, S computes zσ
i � xσ

i ⊕H(i, ei ⊕ [σ · s])
and essentially sends to S the following messages:

z
σ
i � x

σ
i ⊕H i, vi ⊕ ci ⊕ σ􏼂 􏼃 · s( 􏼁. (13)

It holds that H(i, vi ⊕ [ci ⊕ σ] · s) � H(i, vi) if and only if
ci � σ. Concretely, when ci � 0, R computes

(i) Outsourced phase:

(a) R acts as recevier with input rj.
(b) S acts as sender with input (tj, t′j).
(c) R recevies output dj.

(ii) Responding phase:

(iii) Outputting phase:

INPUT OF server : random string s ← {0, 1}κ.

INPUT OF receiver R: m selection bit c = c1|| ... ||cm.
COMMON INPUT: a security parameter κ.
ORACLE: random oracles H: [m] × {0, 1}κ → {0, 1}l, H1 : [κ] × {0, 1}κ → {0, 1}m.

CRYPTOGRAPHIC PRIMITIVE : an ideal OTκ
κ primitive.

INPUT OF sender S: m pairs (xi
0, xi

1) of l-bit binary string.

(1) R chooses r ← {0, 1}κ at random.
(2)  computes κ × κ matrix T at random and sets matrix T′ such that
ti ⊕ t′i = (si || ... ||si).

R forms κ × κ matrix D such that the j-th column of D is the vector dj.

(4)  sends string s and matrix T to S.
(5) R forms m × κ matrix V at random and sets matrix T′ such that vi ⊕ v′i =
(ci || ... ||ci), where i Є [m]. For j Є [κ], R computes yj

0 = v j ⊕ H1 (j, dj)
and yj

1 = v′j ⊕ H1 (i, dj ⊕ r) and then sends messages (yj
0, yj

1) to S.

(3) For each j Є [κ],  and R invoke FOTκ
κ in the following way: 

(6) S recovers m × κ matrix E by computing ej = yj
sj ⊕ H1 (j, tj), j Є [κ].

For i Є [m], S computes zi
0 = xi

0 ⊕ H (i, ei) and zi
1 = xi

1 ⊕ H (i, ei ⊕ s)
and then sends messages (zi

0, zi
1) to R. 

(7) For i Є [m], after receiving (zi
0, zi

1) to R outputs xi = zi
ci ⊕ H (i, vi).~ ~ ~ ~

Figure 8: Outsourced oblivious transfer extension protocol.

Sender Server Receiver
T
T′

r
D

Encrypt matrices
V and V′ under DEncrypted results

Initial parameters

OT

Recover matrix E 
Encrypt messages
under E 

Recover messages

Figure 7: Procedure of outsourced oblivious transfer.
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􏽥xi � 􏽥z
0
i ⊕H i, vi( 􏼁 � x

0
i ⊕H i, vi ⊕ [0⊕ 0] · s( 􏼁⊕H i, vi( 􏼁 � x

0
i .

(14)

When ci � 1, R computes

􏽥xi � 􏽥z
1
i ⊕H i, vi( 􏼁 � x

1
i ⊕H i, vi ⊕ [1⊕ 1] · s( 􏼁⊕H i, vi( 􏼁 � x

1
i .

(15)

In summary, R only receives x
ci

i in OTex and cannot
recover x

1−ci

i by computing 􏽥z
1−ci

i ⊕H(i, vi) becauseR knows
nothing about H(i, vi ⊕ [0⊕ 1] · s), i.e., H(i, vi ⊕ [ci ⊕ (1−

ci)] · s).
+is concludes the correctness of OTex.
We now construct three simulators SimS, SimR, and

SimR for simulating corrupt S, S, and R such that the
produced transcript and the view of real execution are
computationally indistinguishable. +at is,

SimS 1κ, s,⊥( 􏼁􏼈 􏼉x,s,c,κ
c ≡ view

π
S(x, s, c, κ)􏼈 􏼉x,s,c,κ,

SimS 1κ, x,⊥( 􏼁􏼈 􏼉x,s,c,κ
c ≡ view

π
S(x, s, c, κ)􏼈 􏼉x,s,c,κ,

SimR 1κ, c, 􏽥x( 􏼁􏼈 􏼉x,s,c,κ
c ≡ view

π
R(x, s, c, κ)􏼈 􏼉x,s,c,κ,

(16)

where x denotes input set (x0
i , x1

i )􏼈 􏼉 from S, 􏽥x denotes
output 􏽥xi􏼈 􏼉 of R, and ⊥ denotes the null value.

Corrupt S. Given FOT, it is easy to perfectly simulate
the view of the Server S because S only has input,
neither receives messages nor outputs during the ex-
ecution of the protocol. +at is, SimS(1κ, s,⊥)􏼈 􏼉x,s,c,κ is
computationally indistinguishable with viewπ

S(x, s, c,􏼈

κ)}x,s,c,κ.
Corrupt S. In protocol, Sender S works only in the
responding phase, when S receives messages from S

andR then sends encrypted inputs toR. +e messages
obtained by S are s, T, (y0

j , y1
j)􏽮 􏽯. +at is to say,

viewπ
S(x, s, c, κ) consists of input x and messages

s, T, (y0
j , y1

j)􏽮 􏽯, where j ∈ [κ]. It is trivial for SimS to
generate a simulation of s, T{ } since both are random
values from the point of view of S.
Now, SimS simulates a simulation of (y0

j , y1
j)|j ∈ [κ]􏽮 􏽯

by choosing a κ-length string 􏽢s, m-length strings 􏽢rj, κ × κ
matrix 􏽢T, and m × κ matrix 􏽢E at random and computing

􏽢y
􏽢sj

j � 􏽢ej ⊕H1 j,􏽢tj􏼐 􏼑,

􏽢y
1−􏽢sj

j � 􏽢rj.

(17)

Let 􏽢s, t􏽢Tn, q(􏽢y0
j , 􏽢y1

j)􏽮 􏽯 be the output of
SimS(1κ, x,⊥). +erefore, we claim that the view
generated by SimS and the view of corruptS in a real
protocol are computationally indistinguishable.
Corrupt R. We construct a simulator SimR that
simulates the view of corrupt R in the real protocol
execution. We first analyze R’s view
viewπ

R(x, s, c, κ) inOTex.R obtains matrix D in the
outsourced phase and (􏽥z0

i , 􏽥z1
i ) in the outputting

phase. +erefore, viewπ
R(x, s, c, κ) consists of R’s

input c and messages D, (􏽥z0
i , 􏽥z1

i )􏼈 􏼉. To construct the
simulation of the view, SimR works as follows.

(i) In the outsourced phase, given the security pa-
rameter κ,R’s input c, and the randomness r, SimR

calls simulation SimOTκ
κ
with input (􏽢T, 􏽢T′, r) and gets

output 􏽢D. +en, SimR appends the output of SimOTκ
κ
,

i.e., matrix 􏽢D, to its own output.
(ii) In the outputting phase, given the security pa-

rameter κ, R’s input c, the randomness V, and
output 􏽥x, SimR simulates a simulation of
(􏽥z0i , 􏽥z1

i )|it ∈ n[m􏼈 􏼉 by choosing m-length strings 􏽢rj

and computing

􏽢z
ci

i � 􏽥xi ⊕H i, vi( 􏼁,

􏽢z
1−ci

i � 􏽢rj.
(18)

+en, SimR appends (􏽢z0
i , 􏽢z1

i )|it ∈ n(m􏽮 􏽯 to its output.
Combining two phases described above in sequence, we

finally claim that the output of SimR is computationally
indistinguishable from the real execution, i.e., SimR􏼈

(1κ, c, 􏽥x)}x,s,c,κc ≡ viewπ
R(x, s, c, κ)􏼈 􏼉x,s,c,κ.

+is completes the construction of three simulators:
SimS, SimR, and SimR. In summary, OTex is secure under
semihonest model. □

4.1. PerformanceAnalysis. We now analyze the performance
ofOTex in semihonest model.+e complexities ofOTex are
presented in Table 1.

(i) Computation complexity. +e number of sym-
metric and asymmetric operation to be executed in
OTex essentially depends on the size of matrices T,
V, and E, respectively. In the outsourced phase,
FOTκ

κ
consists of O(κ) public-key and O(κ) private-

key operations, for both S (acting as sender) andR

(acting as receiver). In the responding phase, R
invokes random oracle and performs XOR opera-
tion for O(κ) times. +en, S recovers matrix E and
encrypts messages (x0

i , x1
i ), which only consists of

O(m + κ) symmetric operations. In the outputting
phase, R performs symmetric operations O(m)

times to compute its outputs.
(ii) Communication complexity. In the outsourced

phase, the number of bits transferred between S and
R is bounded by O(κ2). In the responding phase,S
receives messages from S and R and sends
encrypted messages to R, which consist of
O(ml + κ2). In the outputting phase, R receives
2ml-bit messages in total from S.

(iii) Round complexity. +e only interaction in OTex

exists in the outsourced phase betweenS andR, i.e.,
FOTκ

κ
. +e number of interaction round in FOTκ

κ
is

bounded by 1.
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4.2. Efficiency Comparison. Since we focus on the efficiency
of the sender S in OT, we provide comparisons to prior
classical protocols from the S’s point of view in Table 2. In
OTex, all asymmetric operations are operated between the
receiver R and the cloud server S, and S works on the fly
and conducts symmetric computations locally.

5. Performance

In this section, we test the performance of OTex. +e ex-
periments were performed on a Linux machine equipped
with 4 cores 3.40GHz Intel Core i5-7500 CPU and 8GB
RAM.

Our tests refer to the implement on GitHub: https://
github.com/emp-toolkit/emp-ot. We simulated main
asymmetric operations in OTex on a single machine. We
comparedOTex with the OTprotocol used in recent work
[32], where they compute at least 450 OT instances locally
from 128 “base” OTs. +erefore, we regarded n � 28 as a
reference and simulated the outsourced phase. After
setting the length of security parameter equal to 128, we
simulated OTex for n � 27, 29, and 210, respectively. We
repeated each simulation 20 times, and the result is
shown in Figure 9. Although OTex shows an almost
identical performance to Vladimir’s, the running time
tends to be steady sooner when n � 29. In addition, in
Figure 9, the sender S of OTex works offline for most of
the time during simulation, and this is one of the ad-
vantages of OTex.

+e other advantage of OTex found in performance
tests is the reduction of communication bottleneck
caused by the sender S. +e main idea of OT extension
protocol is to extend a small number of base OTs to
perform many OTs. As a consequence, we summed from
the time of base OTon setup to the time of protocol finish
and then computed average time for each original OT.

+e averaged time is illustrated in Figure 10. We tested
n′ � 28+x OT instances for different x values and com-
puted the average running time for one single OT, i.e.,
OT1

n. From Figure 10, we can see that the average time
keeps steady when x is less than 8. If we extend base OT to
an adequate number of OTs, for example, n′ � 218, the
average time has a sharp increase. It does not matter in
OTex, however, since the extension process is conducted
between R and S in the outsourced phase.

6. Applications of OTex

+e OTex framework has a wide range of applications in
outsourced scenarios. In this section, we take private set
intersection (PSI) as a case study and demonstrate that, as a

Table 2: Efficiency comparison.

Protocol Round Communication Asymmetric computation Security model
[4] 2 O(ml + mκ) O(κ) Semihonest and malicious
[5] 2 O((mk/log n) + ln log n) O(k) Semihonest
[16] 2 O(ml + κ2) O(κ + ln) Semihonest and one-sided malicious
[30] 2 O(ml + mκ) O(κ) Semihonest
[31] 3 O(ml + log|G| + κ) O(κ) Malicious
Ours – O(ml + κ2) – Semihonest
Note: the efficiency of sender in OT is presented here, who inputs m pairs of l-bit length messages in protocol. Specially, κ is security parameter, G denotes a
group, and k ≈ 2.5κ in 1-out-of-n OT.

Table 1: Complexity of OTex.

Party
Computation

Communication Round
Asymmetric Symmetric

Server S O(κ) O(κ) O(κ2) 1
Sender S – O(m + κ) O(ml + κ2) –
Receiver R O(κ) O(m + κ) O(ml + κ2) 1

5 10 15 20
3,000

3,500

4,000

4,500

5,000

5,500

Ti
m

e (
m
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n = 27 
n = 28
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Figure 9: Comparison of running time.
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building block, OTex can be applied conveniently to high-
level protocol.

We first introduce a private membership test (PMT)
protocol to estimate whether an element x belongs to a set
Y � y1, . . . , ym􏼈 􏼉 or not and then describe how to efficiently
implement it via OTex. +e resulting protocol can then be
simply extended to compute functionalityFPSI in Figure 11
by applying the OTex-based PMT protocol.

6.1. OPRF-Based PMT Protocol. PMT protocol involves two
parties: Alice who holds an element x and Bob who holds a
set Y. After PMT, Bob knows nothing about x, andAlice only
knows whether her element x belongs to the set Y or not.

Based on OPRF, we can construct PMT protocol as
follows. First, during the OPRF phase, Bob acts as sender
with a random seed s. And Alice, acting as receiver, inputs
her element x. After OPRF, Alice obtains fs(x) and Bob has
fs(·). +en, Bob sends all fs(yi)􏼈 􏼉 to Alice who compares
fs(x) with fs(yi)􏼈 􏼉 one by one. In conclusion, Alice outputs
1 if and only if there exits an i such that fs(yi) � fs(x) and
else outputs 0.

+e security of PMT via OPRF relies on the fact that an
OPRF protocol is secure. In a secure OPRF, it guarantees
that fs(·) is a one-way pseudorandom function and the
length of s equals to secure parameter. +erefore, Alice
receives fs(yi)􏼈 􏼉 and then learns whether there exists an i

such that fs(yi) � fs(x), but she will not learn the exact
values yi|yit ∈ nYq, hfs( xyi7 )C≠ ; fs(x)􏽮 􏽯 with non-
negligible probability. We omit concrete security proof here.

6.2.OTex-Based PMT Protocol. Given functionality FOPRF,
we can construct PMT protocol in a simple manner. In this
section, we introduce how to design OPRF protocol based on
OTex. Equation (7) indicates that 1-out-of-n OT extension
implies BaRK-OPRF; therefore, we focus on the transfor-
mation from 1-out-of-n OT extension to OTex. As a result,
OTex can be easily used to construct PMT protocol.

We can apply pseudorandom code to equation (8) for
defining new relationship among T2 and T2′ in Figure 6,

which implements functionality FOPRF in Figure 3. In
OTex, however, we stress that it always holds T1[i]⊕T1′[i] �

f1(r2[i]) and T2[j]⊕T2′[j] � f1(r3[j]), where f1(·) is the
repetition code. +is means that we implement INKP
protocol in an outsourced manner since we use the same
repetition code f1(·) in FOT(k1 ,k2) and FOT(k2 ,k3). +at is to
say, three parties, S, S, and R, evaluate corporately m

instances of 1-out-of-2 OTof l-bit messages where repetition
code is used twice in total, each by S and R, respectively.
Now, suppose Alice and Bob would like to execute m in-
stances of 1-out-of-n OT where Bob inputs
(y

j
1, y

j
2, . . . , y

j
n)|j ∈ [m], |y

j

i | � l􏽮 􏽯 and Alice inputs her se-
lection vector r3, and they need make the following
adjustments:

(i) Bob organizes the inputs in OTex with m × l ma-
trices T

(1)
3 , T

(2)
3 , . . . , T

(n)
3 , where the j-th row of

matrix T
(i)
3 is y

j
i .

(ii) Alice makes her selection vector in OTex be
r3|jt ∈ n[m]q, hr3[j]x ∈ 7[n]􏽮 􏽯.

+en, the only adaption they need take in OTex is that
T2[j]⊕T2′[j] � f2(r3[j]), where f2(·) is the linear error
correcting code C. To reach the security requirement de-
fined in [13], inOTex, we need to reset security parameter k

rather than κ—concretely 3κ< k< 4κ.
Given 1-out-of-n OT protocol designed from OTex, it is

trivial to designOTex-based OPRF so is toOTex-based PMT.
Again,Alice prepares her elementx � r3[1], whileBobholds set
Y � y1

1, y1
2, . . . , y1

n􏼈 􏼉. In brief, if it holds in OTex that

T1[i]⊕T1′[i] � f1 r2[i]( 􏼁,

T2[j]⊕T2′[j] � C r3[j]( 􏼁,
(19)

where f1(·) is the repetition code and C is the pseudo-
random code; OTex implies the functionality FOPRF where
the seed s consists of (V2, r2) generated by Bob andAlice gets
fs(x). Meanwhile, this essentially completes the main
construction ofOTex-based PMTprotocol. All needed to do
next is that Bob sends fs(y1

i )|i ∈ [n]􏼈 􏼉 to Alice who com-
pares fs(x) with fs(y1

i )|i ∈ [n]􏼈 􏼉 locally.

6.3. OTex-Based PSI Protocol. To obtain the final PSI pro-
tocol that computes X∩Y, Alice simply invokes the PMT
protocol for each xi ∈ X. +e protocol in Figure 12 com-
putes X∩Y in an outsourced manner. +e intuition is that

Functionality FPSI

(i) Input:
(a)
(b)

(ii) Output:
(a) S has no outputs.
(b) R outputs X ∩ Y.

Two parties: sender S and receiver R.

S inputs Y = {y1, ... , ym}.
R inputs X = {x1, ... , xm}.

Figure 11: Private set intersection functionality FPSI.
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Figure 10: Average time for OT instances in OTex.
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Alice holds a set X, while Bob holds Y, and after PMT, Alice
knows whether her element xi belongs to Y or not, i.e., the
intersection of two sets.

Some details on method of preprocessing items in set are
simply omitted in Figure 12. We can hash the item to bins
and then operate the OTex-based PSI protocol on each bin
separately. Specifically, we use Cuckoo hashing [35] for PSI
in the following way. First, Alice and Bob agree on 3 random
hash functions h1, h2, h3: 0, 1{ }∗ ⟶ [m′] suitable for 3-way
Cuckoo hashing. Alice places her items into m in either
h1(x), h2(x), or h3(x), and each bin contains at most one
item. Bob places each of his items y in locations h1(y),
h2(y), and h3(y). At this point, Alice pads her input with
dummy items so that each bin contains exactly 1 item. Note
that when we use cuckoo hashing, then there will be some
items which cannot be placed into the table and have to be
moved to a stash, which does not matter because of the usage
of stash-less cuckoo hashing [20]. Finally, Alice and Bob
perform a PSI in each bin.

7. Conclusions and Future Work

In this paper, we proposed a generic outsourced OT ex-
tension protocol (OTex) which can outsource all the “base”
OT from the sender to a semihonest server. +e proposed
protocol realizes optimal computational and communica-
tion complexity relative to security parameter. In addition,
we showed that OTex can be efficiently used in private
membership test and private set intersection. In the future,
we will consider malicious model and construct efficient
outsourced OTextension protocols secure against malicious
adversary.
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[3] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty
computation from somewhat homomorphic encryption,” in
Proceedings of the Annual Cryptology Conference, pp. 643–
662, Santa Barbara, CA, USA, August 2012.

[4] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, “Extending
oblivious transfers efficiently,” in Proceedings of the Annual
International Cryptology Conference, pp. 145–161, Santa
Barbara, CA, USA, August 2003.

[5] V. Kolesnikov and R. Kumaresan, “Improved ot extension for
transferring short secrets,” in Proceedings of the Annual
Cryptology Conference, pp. 54–70, Santa Barbara, CA, USA,
2013.

(i) Precomputing phase:

(ii)

(iii) Outputting phase:

INPUT OF Alice: {x1, ... , xm}, |xi| = l.

INPUT OF Bob: {y1, ... , ym}, |yi| = l.
COMMON INPUT: a security parameter k, pseudorandom code C.

(1) For i Є m, Alice computes r3[i] = C(xi).
(2) For i, j Є m, Bob computes T3

(i)[j] = C(yi).

Tex phase:
(3) Aided by a sever , Alice and Bob execute Tex with inputs r3 and T 3

(i), respectively.

(4) For j Є [m], Bob gets fsj
 (·) and Alice gets fsj

 (xi) from Tex.

(5) For each xi and Y, Bob sends {fsi
 (yj) | i, j Є [m]} to Alice who outputs

m-length string z, where
- zi = 1, if there exists a j such that fsi

 (xi) = fsi
 (yj),

- zi = 0, otherwise.

(6) Alice outputs {xi | i Є [m], zi = 1}.

Figure 12: Outsourced private set intersection protocol.

Security and Communication Networks 11



[6] S. Even, O. Goldreich, and A. Lempel, “A randomized pro-
tocol for signing contracts,” Communications of the ACM,
vol. 28, no. 6, pp. 637–647, 1985.

[7] G. Brassard, C. Claude, and J.-M. Robert, “All-or-nothing
disclosure of secrets,” in Proceedings of the Conference on the
:eory and Application of Cryptographic Techniques,
pp. 234–238, Santa Barbara, CA, USA, 1986.

[8] W.-G. Tzeng, “Efficient 1-out-n oblivious transfer schemes,”
in Proceedings of the International Workshop on Public Key
Cryptography, pp. 159–171, Paris, France, February 2002.

[9] Y. Mu, J. Zhang, and V. Varadharajan, “m out of n oblivious
transfer,” in Proceedings of the Australasian Conference on
Information Security and Privacy, pp. 395–405, Melbourne,
Australia, 2002.

[10] C.-K. Chu and W.-G. Tzeng, “Efficient k-out-of-n oblivious
transfer schemes with adaptive and non-adaptive queries,” in
Proceedings of the International Workshop on Public Key
Cryptography, pp. 172–183, New York, NY, USA, March 2005.

[11] Y. Lindell, K. Nissim, and C. Orlandi, “Hiding the input-size
in secure two-party computation,” in Proceedings of the In-
ternational Conference on the :eory and Application of
Cryptology and Information Security, pp. 421–440, Bengaluru,
India, December 2013.
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