
Research Article
GroupTracer: Automatic Attacker TTP Profile Extraction and
Group Cluster in Internet of Things

Yixin Wu,1 Cheng Huang ,1 Xing Zhang,2 and Hongyi Zhou2

1College of Cybersecurity, Sichuan University, Chengdu 610065, China
2NSFOCUS, Beijing 100089, China

Correspondence should be addressed to Cheng Huang; opcodesec@gmail.com

Received 3 September 2020; Revised 3 November 2020; Accepted 19 November 2020; Published 4 December 2020

Academic Editor: Ting Chen

Copyright © 2020 Yixin Wu et al.)is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

As Advanced Persistent)reat (APT) becomes increasingly frequent around the world, security experts are starting to look
at how to observe, predict, and mitigate the damage from APT attacks. In the meantime, the Internet of things devices are
also risky and heavily exposed to the Internet, making them more easily used by hacker organizations to launch APTattacks.
An excellent attacker can take down millions of Internet of things devices in a short time. Once the IoT botnet is built,
attackers can use it to launch complex attacks which could damage Internet infrastructure and cause network disconnection.
)is paper proposes GroupTracer, a framework for observing and predicting the Internet of things attacks. GroupTracer is
designed to automatically extract the TTP profiles (i.e., tactics, techniques, and procedures) that can describe the behavior of
attackers through their tactics, techniques, and processes and dig out the potential attacker groups behind complex attacks.
Firstly, it captures attacks by IoT honeypots and extracts relevant fields from logs.)en, attack behaviors are automatically
mapped to the ATT&CK framework to achieve automatic TTP profiles extraction. After that, GroupTracer presents four
feature groups, including TTP profiles, Time, IP, and URL features, a total of 18 features, mines potential attack groups
through hierarchical clustering algorithm, and compares the clustering results with two baseline algorithms. As the ground
truth labels are unknown, we apply three internal validation indexes to evaluate the cluster quantity. Experimental results
showed that the proposed framework has achieved an excellent performance in exploiting potential groups as the Cal-
inski–Harabasz index reaches 3416.93. Eventually, attack trees are generated for each cluster where nodes indicate attack
commands and edges represent command sequences.)ese attack trees could help better understand each attack group’s
actions and techniques.

1. Introduction

)e Global Research and Analysis Team (GReAT) at Kas-
persky points out that the Advanced Persistent)reat (APT)
activity has become increasingly complex and destructive [1]
since these APT groups launch targeted attacks on critical
infrastructure and attempt to compromise central networks.
Meanwhile, the Internet of things has become the no. 1
security threat to personal privacy, corporate information
security, and even critical infrastructure since IoTdevices are
inherently risky and easy to exploit while being heavily
exposed to the Internet. What is worse, attackers can utilize
open-source tools to quickly assemble malware that can
scan, penetrate, and control IoT devices. Excellent hackers

can take down millions of IoT devices in a short time. Once
IoT botnets are formed, attackers can launch an APT attack
to hazard the Internet infrastructure and cause network
disconnections (e.g., Dyn cyberattack [2] and VPNFilter
event [3]).)e emerging challenge is how to observe and
predict attacks on IoTdevices by individuals or even attacker
groups since the number of attacks on IoTdevices, which are
perfect tools for APT attacks, has risen dramatically.

1.1. Describing Individual Behavior. While behavior detec-
tion methods for attacks are mostly based on Indicators of
Compromise (IOCs) extracted from rule-based methods or
traditional blacklists, the information conveyed by such

Hindawi
Security and Communication Networks
Volume 2020, Article ID 8842539, 14 pages
https://doi.org/10.1155/2020/8842539

mailto:opcodesec@gmail.com
https://orcid.org/0000-0002-5871-946X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8842539

IOCs is not enough to describe the abundant and varied
network security environment due to the following reasons:

(i) IOC is unstable and is easily changed by attackers.
For example, if adversaries are leveraging an
anonymous proxy service like Tor, they may change
IPs quite frequently with little effort and never be
noticed.

(ii) IOC cannot express how the attacker interacts with
the victim system, and the process of the attack
cannot be represented.

(iii) Redundancy occurs when IOC is used to express an
attack. In other words, more IOCs do not neces-
sarily lead to a better description.

Bianco proposed the Pyramid of Pain [4], in which each
level of the pyramid represents different types of attack
indicators leveraged to detect the activities of the adversary,
and the most valuable attack indicator is attacker TTPs. TTP
profile [5] describes the flow that adversaries go through to
accomplish their mission, from initial access to impact and
at every step in between, which is abundant to support a
comprehensive analysis of the aggressive behaviors of in-
dividuals or attack groups. Meanwhile, the defense is shifting
from vulnerability-centric to threat-centric, and flexible and
efficient security architecture can only be constructed with a
sufficient understanding of the threat of the critical assets,
which depends on an overall comprehension of the attack
tactics, techniques, and behavior patterns (i.e., TTPs).
However, at this stage, there is no mature method to nor-
malize the description of attacks on IoT devices and map
them to the analysis model. A method for automatic TTP
profile extraction of IoT device attacks is expected.

1.2. Clustering Attackers into Groups. With the rapid
growth of APT activities, the evolution of a threat land-
scape moves from a single hacker to well-organized attack
actor groups (e.g., Darkhotel [6] and Turla [7]). How to
find and depict the behavior of an attack actor group
among an ocean of attacks becomes a challenge. Behav-
ioral analysis in sandboxes [8, 9] and binary analysis
[10, 11] seem like pleasant ways, which can match
malicious samples used by attackers to known or novel
malicious families and capture their behaviors to observe
the similarities between these attackers. However, mali-
cious family and attack group have a many-to-many re-
lationship, and we cannot just rely on the analysis of
malicious samples to find the group behind attacks.
Considering the excellent performance of the data-driven
approach in the field of network security [12–14], we try to
tackle the challenges from a data-driven perspective.

Given the challenges presented above, this paper aims to
develop mapping knowledge bases from attacker payloads to
the ATT&CK framework to extract the TTP profile and
generate behavior fingerprint for attackers to discover
groups behind active campaigns.)e ultimate purpose is to
observe the behavior of attack actor groups and predict
attacks in the Internet of things.

1.3. Contributions.)ree critical contributions of the paper
are as follows:

(i) Comprehensive Description of Attacker Behavior.
GroupTracer leverages four feature groups (TTP
profile, Time, IP, andURL) that are derived from log
data to characterize different actions of attackers,
which addresses the emerging challenge of the
observation and prediction of attacks on IoTdevices
by individuals.)e TTP profile depicts the tech-
nique, tactic, and procedure of the attacker.)e
Time feature group provides statistical character-
istics based on attack duration, number of attacks,
and time zone of the attacker.)e IP and URL
feature groups both involve the type of IP/URL and
the malicious index, while the latter also analyzes
the download file.

(ii) Automatic TTP Profile Extraction. Considering that
the data source is honeypot log data, which collects
payloads utilized by attackers, we construct the 1st
and 2nd knowledge bases, which store the mappings
between commands and TTPs. By using these
knowledge bases, GroupTracer maps commands
derived from payloads to the ATT&CK framework
to extract the TTP profile, which bridges the gap
between cyber threat intelligence (CTI) and the
attacker.

(iii) Group Cluster and Attack Tree Generation.
GroupTracer proposes four feature groups and
hierarchical clustering algorithm to build attack
group cluster model which aims at finding out the
potential groups behind complex attacks. In order
to better understand each attack group’s behaviors,
GroupTracer also introduces attack tree construc-
tion method where nodes describe attack com-
mands and edges represent command sequences.
)e evaluation result shows that GroupTracer can
achieve excellent performance as the Cal-
inski–Harabasz index reaches 3416.93.

)e remainder of this paper is organized as follows:
Section 2 explains the related work about the fundamental
techniques used in our framework. Section 3 presents the
data collection, flow of feature processing, application of
clustering algorithm, and attack tree creation in Group-
Tracer.)e entire experiment and evaluation process is
elaborated in Section 4. Finally, the conclusion and future
work are discussed in Section 5.

2. Related Work

2.1. Application of IoT Honeypot. To specialize in cyber-
attacks and defend against them, tools for proactive defense
are presented. For instance, honeypot that can capture
attacks, document intrusion information about instru-
ments and behaviors of hackers, and prevent attacks
outbounding the compromised system [15] has been widely
leveraged in cybersecurity. Due to the vulnerable and
destructive nature of IoT devices [16–18], the number of

2 Security and Communication Networks

IoT honeypots based on different protocols is rapidly in-
creasing. Currently, some IoT honeypots have already
existed [19].)e work in [20] utilizes IoTPOT, a novel
honeypot that stimulates the Telnet-enabled IoT devices,
which handles commands sent by attack actors, analyzes
malicious families on different CPU architectures, and
provides an in-depth analysis of ongoing attack behavior.
However, IoTPOT focuses on observing the characteristics
of malicious families (e.g., spread tendency and ultimate
goal) and relationships between these families. It does not
employ existing data to analyze the behavior of the ag-
gressors behind attacks and associations between them in
detail, which is the center of cyber threat intelligence. A
honeypot that emulates the ZigBee gateway and aims at
assessing ZigBee attack intelligence and IoT cyberattack
behavior is proposed in the text [21]. Although this paper
analyzes the commands in the honeypot data at great length
and classifies them into six categories of attacks, it does not
mine the TTP of these attacks, which helps analysts in
threat modeling. Heo and Shin [22] analyze the connec-
tion-level log data to study Telnet service scanning to
provide solid evidence for the existence of IoT botnet,
whereas the dataset contains only connection metadata, so
there is no way to analyze the payload in packages, which is
a critical evidence for attacking, thus not entirely
convincing.

In conclusion, most published methodologies have fo-
cused on a single service such as Telnet and ZigBee and
analyzed features of malicious families. GroupTracer is more
widely used for protocols where command execution vul-
nerabilities occur and depicts the characteristics of attack
behaviors. Besides, most of the previous studies have not
analyzed payloads at the TTP level, and some even have not
analyzed payloads at all. GroupTracer extracts attack tech-
niques, tactics, and procedures (TTPs) from payloads and
utilizes payloads to build attack trees for potential attack
groups to more specifically demonstrate their attack
behaviors.

2.2. Cyber 3reat Intelligence and TTP Extraction.
Gartner defines cyber threat intelligence (CTI) as evidence-
based knowledge, which can be utilized to inform decisions
concerning the subject’s response to menace or compromise
[23]. With the rapid evolution of the cyber threat landscape,
the demand for high quality and fast speed of CTI exchange
that allows organizations to respond to emerging threats at
the tactical level is becoming increasingly urgent. TTP de-
scribes the techniques, tactics, and attack patterns used by
the adversary and can be presented in structured text for-
mats that meet the high demand. Husari et al. [24] develop
TTPDrill that can achieve the automatic and context-aware
analysis of CTI to generate TTPs precisely.)eir work
bridges the gap between unstructured cyber threat intelli-
gence and structured techniques, tactics, and procedures.
Nevertheless, their data source is the cyber threat intelli-
gence, which means that only after CTI is produced, can
TTPDrill construct a complete attack pattern. Our work
aims at decreasing the time-to-defend even more.

2.3. Group Cluster. Clustering and correlating have been
studied extensively and are employed in a multitude of data-
driven domains, including security and privacy areas [25]. In
a similar direction to this paper, the work in [26] applies an
unsupervised method to characterize and classify security-
related anomalies and attacks that exist in honeypots
without learning phase, labeled traffic, or attack signature
database. Cho et al. [27] compare the similarity of the
distributed domain to predict the same group, which pro-
vides the possibility of response to future attacks. Azevedo
et al. correlate IOCs from different OSINT feeds and cluster
them to obtain enriched IOCs.)is work allows the iden-
tification of attacks that was impossible by analyzing IOCs
individually. One work that inspires us comes from Ghiëtte
et al. [28].)ey dissect the SSH protocol to fingerprint tools
based on cipher suites and SSH version strings, employing
key exchange algorithms and SSH banners to cluster similar
tool usage into collaborating individuals and even cam-
paigns. However, as [4] said, adversaries can employ or
create another tool that has the same capability to evade
detection.

By comparison, GroupTracer employs honeypot log
data, in which timestamps, IP addresses, and payloads sent
by attackers are usually recorded, and considers four dif-
ferent perspectives (e.g., TTPs and Time) to generate feature
groups. For example, it generates TTP profiles by mapping
payloads to ATT&CK framework based on command
characteristics.)en, it clusters similar adversaries’ behav-
iors into groups based on these features. Our work draws on
the strengths of the mentioned studies and improves their
weaknesses.

3. Framework

)e ultimate goal of this paper is to automatically extract
TTP profiles and cluster attack groups in the Internet of
things. Figure 1 overviews the flow of GroupTracer. Firstly, it
captures attacks, generates raw data, and extracts features
from specific fields (e.g., timestamp, payload, and timezone).
We deploy numerous honeypots on the Internet to capture
attacks. Secondly, it enriches these features. As for gener-
ating the TTP profile feature group, it cuts payload into
commands, maps these commands to the ATT&CK
framework, and then generates Abstract Syntax Tree of the
commands for a second mapping to techniques and tactics.
After generating all feature groups, encoding and TF-IDF
algorithm are utilized to vectorize these string-type features.
)irdly, it combines all feature vectors and leverages the
hierarchical clustering algorithm to cluster these attackers
into groups. Finally, attack trees for each group, where nodes
are commands and edges are command sequences, are
created from their payloads to characterize attack profiles.

3.1. Raw Data Collection.)e log format of open-source
honeypot contains general fields and particular fields.)ere
are 12 general fields standard in all honeypots. src ip is the
source IP, and src port is the source port number. sensor ip
and dst port represent the IP and destination port number

Security and Communication Networks 3

of the honeypot, respectively. timestamp represents the time
when the event occurred. protocol represents the underlying
protocol used by the honeypot. geoip describes the current
geographic location of the IP and related information like
time zone, which is usually obtained by the external API
GeoLite [29]. pot version is added by the honeypot devel-
oper to indicate the current version of the honeypot.
fingerprint is mostly a hash value generated from a string of
src ip, timestamp, and a specific honeypot-specific field.
log type depicts the type of event recorded in the log, and
honeypot type describes the type of honeypot. container id
represents the ID of the docker container.)e particular
field is determined according to the specific protocol used by
the IoT honeypot. GroupTracer mainly leverages three
general fields, namely, src_ip field, timestamp field, and
geoip field in honeypot log data, as these three fields can
provide information to generate the Time and IP feature
groups. Given that the payloadmay appear in different fields,
GroupTracer will accurately locate the corresponding field
through string matching. To ensure the universality of the
framework and the integrity of the payload, the contents of
all fields that have payloads are spliced.

3.2. Feature Extraction.)e following subsections detail
how GroupTracer converts these fields into four feature
groups, namely, the TTP profiles, Time, IP, and URL. src_ip
field is considered to be the primary key in all fields because
the probability of an IP being used by multiple groups is
minimal, even if the individual IP is assigned dynamically.

3.2.1. TTP Profile Feature Group Generation.)e TTP
profile consists of tactics and techniques used by attack
actors. Tactic depicts the common strategy of a threat action
(e.g., execution and defense evasion). ATT&CK framework

provides 12 categories for corresponding techniques.
GroupTracer extracted these names as tactics in TTP pro-
files. Technique describes attack techniques implemented by
attack actors under a specific tactic. For example,
defense evasion is a tactic that can be performed by a
technique named clear command history.

GroupTracer produces the TTP profile primarily from a
command execution perspective.)ere is a crucial issue to
be compromised. On the one hand, the classification of
commands should be as accurate as possible. On the other
hand, command parameter values sometimes affect the
classification needlessly.)e following two commands il-
lustrate both cases. Both of these commands can be classified
as technique file deletion. (i) can be further subdivided into
technique clear command history, whereas (ii) can only be
classified as technique file deletion. For (i), the whole
statement is a valid classification basis, while for (ii), only rm
can serve as a valid classification basis, and all other parts are
redundant.

(i) rm -rf􏽥/.bash_history
(ii) rm -rf xb.sh xb.sh xb2.sh xb1.sh

Aiming at solving the above dilemma, the quadratic
mapping method is proposed. Figure 2 illustrates the process
of quadratic mapping.)ere are two knowledge bases in
GroupTracer. One saves the mapping of the entire command
statement to tactics and techniques for the first mapping,
and the other stores the mapping of the abstract command
structure to tactics and techniques for the second mapping.
In the first mapping, GroupTracer splits the original payload
into several commands and maps these commands to the 1st
knowledge base to attain some of the TTP profiles. As shown
in Figure 3, GroupTracer generates the Abstract Syntax Tree
[30] for each payload to obtain command nodes and extract
abstract command structures.)en, these abstract structures
are put as input into the 2nd knowledge base to acquire the

Attack actor 1

Attack actor 2

Attack actor
n – 1

Attack actor n

Netis-
backdoor

UPnP-SOAP

Attack capture and raw
data generation

Raw data

IP feature
group

URL feature
group

Time feature
group

Hierarchical
clustering

Feature extraction and enrichment

Malicious judgement

Time series
generation

IP type classification

Attack trees generation

Payload

Generate abstract
syntax tree

TTP
profile

Map to the ATT &
CK using 1st/2nd

knowledge base

Download file
encoding

Figure 1:)e architecture of GroupTracer.

4 Security and Communication Networks

remaining TTP profiles. Table 1 only shows some mapping
samples due to space limitation. After obtaining the TTP
profiles, the GroupTracer encodes the corresponding string
into a numeric feature vector.)e final data structure can be
described as follows:

TTP � [techniques, tactics], (1)

where there are variable-length techniques and tactics.

3.2.2. IP and URL Feature Groups Generation.)e features
related to IP and URL feature groups are shown in Table 2,
the first three of which are common to both feature groups,
and the last one is unique to the URL feature group.)e

country can be obtained through Ipdb [31]. VirusTotal [32]
provides multiple antivirus scanning engines (e.g., Kas-
persky URL advisor, Malware Domain Blocklist [33], and
Dr.Web Link Scanner [34]) used for URL scanning.
GroupTracer first utilizes VirusTotal to scan for unknown
IPs/URLs and then regards the number of antivirus engines
that return malicious results as the malicious index for those
IPs/URLs. According to the purpose, there are seven types of
IP addresses shown in Table 3.)is framework uses the
RTBAsia API [35] to get the classification of IP types.
Download is an optional option for the URL feature group,
depending on the type of vulnerability in the honeypot,
because in some cases the download is to install a backdoor
for subsequent manipulation, while in others it is to provide

TTP profiles

1st knowledge
base

Command abstraction

First mapping

Second mapping

Techniques

Tactics

2nd knowledge
base

Threat action
patterns

Command structures

Figure 2:)e process of generating the TTP profile. GroupTracer cuts payload into commands, maps these commands to the ATT&CK
framework, and then abstracts the structure of the commands for a second mapping to techniques and tactics.)e product of the first
mapping and the second mapping constitutes the TTP profiles.

cd/tmp/; chmod + x
mips; ./mips

cd/tmp/

chmod + x mips

./mips

CommandNode (parts = [WordNode (parts = []
pos = (9, 14) word = ′chmod′),WordNode (parts = []

pos = (15, 17) word = ′+x′), WordNode (parts = []
pos = (18, 22) word = ′mips′)] pos = (9, 22))

CommandNode (parts = [WordNode (parts = []
pos = (23, 29) word = ′./mipsV)] pos = (23, 29))]

pos = (0, 29))]

CommandNode (parts = [WordNode (parts = []
pos = (0, 2) word = ′cd′), WordNode (parts = []

pos = (3, 8) word = ′/tmp/′)] pos = (0, 8))

[cd, chmod, ./mips]

Figure 3: GroupTracer generates the Abstract Syntax Tree for each payload to obtain command nodes and then extracts the abstract
structure from command nodes.

Security and Communication Networks 5

some tools for privilege escalation under certain circum-
stances. When attacking different honeypots, it is likely that
hackers in a group download file for different purposes,
which will greatly affect our performance in clustering only
by downloading file names. After attaining these feature
groups, the GroupTracer encodes the corresponding string
into a numeric feature vector.

3.2.3. Time Feature Group Generation. As the attacker
groups tend to use the tool framework to attack the specified
target, there is a corresponding regularity in the IP time
zone, attack duration, number of attacks, etc. Algorithm 1
describes the generation of the basic time-series features for
a given Tip, which represents the set of timestamp for a

specific IP. 􏽢T is a collection of T used as input to generate the
start time, the attack duration, and the number of attacks in
each duration. In addition, GroupTracer reuses this code to
select the final threshold. When selecting threshold, we nest
a for loop in the outermost layer, and the threshold value
increases by 1. Meanwhile, we count the number of
time interval in each Tip and assign their sum to the variable
num interval. If num interval has not changed compared to
the previous loop, we jump out of the cycle and output the
final threshold.

)e threshold, which indicates how small the time in-
terval between two attacks is before they are considered to
belong to the same attack period, is utilized to divide the
attack duration. Partitioning each attack period and char-
acterizing the behavior (e.g., duration and number of at-
tacks) of each attack steadily can be the key to the reliability
of time analysis, since the members of a group may be
similar in these respects. To select a number as the initial
threshold, GroupTracer maps all the time interval values into
the following 5 time buckets: <1 s, [1 s, 1min], (1min, 1 h],
(1 h, 1 day], >1 day.)e results show that 99.91% of time
gaps fall into the first four buckets, so the initial threshold is
set to 1 h.)en, GroupTracer employs Algorithm 1 to ac-
complish the threshold selection procedure. It first counts
the total number of attack durations for each IP and then
adjusts the threshold slowly until the number of attack
periods for most IPs is almost unchanged. If multiple
thresholds have the same result, choose the smaller one first,
as the threshold always tends to choose the smaller one.

After we get the final threshold and basic time-series
features, we extract the statistical features from the basic
ones, namely, the start time, the attack duration, and the
number of attacks in each attack duration. GroupTracer
draws a new time series for the relevant features of each IP,
taking the start time as the independent variable and the
attack duration and number of access as the dependent
variables. Several features that proved to be significant time-
series characteristics in an early stage shown in Table 4 are
applied. After generating the time series, GroupTracer will
automatically calculate these selected features to produce the
final feature vectors.

By encoding the timezone field appearing in the data,
GroupTracer finally turns the string-type features into in-
teger vectors. Eventually, statistical features from timestamp
and encoded time zone constitute the Time feature group.

3.3. Group Clustering Algorithm. As the hacker groups tend
to utilize customized frameworks, features like time gap and
TTP profiles have specific patterns.)erefore, attacker be-
havior naturally forms clusters.)is paper is aimed at
identifying such natural clusters to dig out potential groups
behind active campaigns.

We employ the well-known hierarchical clustering al-
gorithm [36] as it captures the hierarchical structure be-
tween clusters, which helps security experts to observe the
relationship between clusters and subclusters. Moreover,
hierarchical clustering is suitable for arbitrary shape clus-
tering and is insensitive to the input order of samples.

Table 1: Some examples of mapping from commands to TTP
profiles.

Command Technique Tactic
1st knowledge base
show running-
config Credential dumping Credential access

show startup-
config Credential dumping Credential access

2nd knowledge base

ftpget Remote file copy Lateral
movement

wget Remote file copy Lateral
movement

curl Remote file copy Lateral
movement

rcp Remote file copy Lateral
movement

copy Remote file copy Lateral
movement

show archive
config Credentials in files Credential access

show history Input capture Collection
show logging Input capture Collection
tar Data compressed Exfiltration
zip Data compressed Exfiltration
rar Data compressed Exfiltration
shutdown System shutdown/reboot Impact
reboot System shutdown/reboot Impact
del File deletion Defense evasion
rm File deletion Defense evasion
adduser Create account Persistence
usermod Account manipulation Persistence
groupadd Account manipulation Persistence

dir File and directory
discovery Discovery

ls File and directory
discovery Discovery

cd File and directory
discovery Discovery

echo Data from local system Collection
cat Data from local system Collection
more Data from local system Collection
pwd Data from local system Collection
whoami Data from local system Collection

6 Security and Communication Networks

Figure 4 depicts a bottom-up approach to perform hierar-
chical clustering. Each sample represents a unique cluster in
the beginning, and then we choose Euclidean distance to
calculate the similarity between each cluster and merge these
clusters successively.)e threshold applies when forming
the final flat clusters.)e Euclidean distance is computed as
follows [37]:

d(x, y) �

���������������������������������

x1 − y1(􏼁
2

+ x2 − y2(􏼁
2

+ · · · + xn − yn(􏼁
2

􏽱

�

���

􏽘

n

i�1

􏽶
􏽴

xi − yi(􏼁
2
,

(2)

where x � (x1, x2, . . . , xn) and y � (y1, y2, . . . , yn) are two
points in Euclidean n-space.

3.4. Attack Tree Creation Method. After digging out po-
tential groups, GroupTracer gathers all payloads and gen-
erates attack trees for each cluster to embody and better
understand group behaviors. Algorithm 2 is to process all
payloads from a cluster. PT represents all payloads collected
from a given cluster T.

In the directed graph, nodes are command names and
edges represent the command sequence between two
commands.)e out-degree of each command determines
the size of each node. If a command exists only at the end of
the payload, its size can also depend on the in-degree.)e
width of each edge is decided by the weight, which describes
the frequency of occurrence of the command sequence. For
instance, we have some payloads from a cluster, whose
command sequences shown in Table 5 are obtained after
command segmentation and abstraction. GroupTracer runs
Algorithm 2 to generate the attack tree, as illustrated in
Figure 5. Line 3–line 13 generate a list that stores two-step
command sequences. For example, it turns cd chmod ./t into
[cd chmod, chmod ./t]. Line 14–line 16 counts the number
of occurrences of all two-step command sequences.

4. Experiment and Metrics

4.1. Dataset. In this section, we first describe the datasets
obtained from two kinds of IoT honeypots: UPnP-SOAP
multiport honeypot and the Netis router backdoor honey-
pot.)e time of data collection, the number of IPs, and the
number of log entries are shown in Table 6.

4.1.1. UPnP-SOAPMultiport Honeypot. In the UPnP service,
SOAP protocol assists in defining device types and other
related information [38].)erefore, there are a huge number
of IoTdevices that provide SOAP services, some of which do
not require authentication. Honeypot simulates the behavior
of the 11 ports most frequently scanned (e.g., 52881, 5500, and
2048) and the relevant SOAP service path and returns the
corresponding information after being scanned. Six nodes are
deployed on the Internet, averaging about 700 log entries per
day.)e dataset contains 153,413 log entries from 2,652 IPs
over 196 days in 2019 (Table 6). Each log entry is identified by
src ip, timestamp, timezone, body, and query string.)e
src ip in our datasets is globally unique.

4.1.2. Netis Router Backdoor Honeypot.)e Netis router
listens on port 53413 (UDP) by default. After sending a
specific string to it, the attacker can gain root login and then
execute the corresponding command to perform a series of
malicious behaviors.)e honeypot has seven nodes
deployed on the Internet, averaging about 300 log entries per
day. Our Netis dataset contains 241,593 log entries from only
373 IPs over 279 days in 2019 (Table 6). Unlike UPnP-SOAP
honeypot, the log entry in Netis is characterized by src ip,
timestamp, timezone, and data.

Given that both types of honeypots are simulated
command execution vulnerabilities, we can leverage
commands executed by attackers to discover their tech-
nology and tactics.)erefore, GroupTracer can be utilized
to analyze the data of these two honeypots at the same
time. Our datasets contain ten types of techniques that can
be grouped into six tactics.)ese tactics are as follows
[39]:

(i) Defense evasion: avoiding being detected while
adversaries are intruding on the victim system.

(ii) Discovery: figuring out the environment of the
victim system.

(iii) Lateral movement: moving through the victim
environment. Adversaries might download their
tools from remote servers to achieve lateral
movement.

Table 2: Features related to IP & URL feature groups.

Feature name Description
1 Country Describes the country to which the IP/URL belongs.
2 Malicious index Leverages the VirusTotal API to determine the maliciousness of the IP/URL.
3 IP address type Utilizes the RTBAsia API to classify IP/URL type.
4 Download (optional))e file that the attack actor downloaded by executing the command.

Table 3: Seven types of IP addresses.

Types
1 Internet data center
2 Fixed IP Internet access line
3 Ordinary broadband
4 Mobile broadband
5 Backbone node
6 Known crawler API
7 Small operator

Security and Communication Networks 7

Require: 􏽢T

Ensure: Basic Time-series features for all IPs
(1) threshold � t0
(2) for all Tip ∈ 􏽢T do
(3) sort By Time(Tip)

(4) start � end � Tip[0]

(5) for i ∈ [0, len(Tip) − 1] do
(6) delta � Tip[i + 1] − Tip[i]

(7) if delta≤ threshold then
(8) end � Tip[i + 1]

(9) cnt � cnt + 1
(10) else
(11) unit � start′: start,′duration′: start − end,′cnt′: cnt􏼈 􏼉

(12) time interval.append(unit)
(13) start � Tip[i + 1]

(14) end � start
(15) cnt � 1
(16) end if
(17) end for
(18) if start≠ end then
(19) unit � start′: start,′duration′: start − end,′cnt′: cnt􏼈 􏼉

(20) time interval.append(unit)
(21) end if
(22) time intervals.append(time interval)
(23) end for

ALGORITHM 1: Basic time-series feature generation for a given Tip.

Table 4: Several significant time-series characteristics.

Feature name Description
1 maximum)e largest value of the time series
2 minimum)e smallest value of the time series
3 length Number of attack periods per IP
4 mean A measure of the central tendency
5 median)e “middle” value
6 standard_deviation)e square root of its variance
7 variance)e expectation of the squared deviation of a random variable from its mean
8 sum_value Calculates the sum over the time-series values

C15

C13 C14

C9 C10 C11 C12

C1 C3 C4 C5 C6 C8C7C2

Threshold

Figure 4:)e hierarchy of the attacker behavioral clusters.

8 Security and Communication Networks

(iv) Execution: running malicious code.)e purpose of
adversary-controlled code might be communicating
with C&C servers or stealing data.

(v) Impact: expanding the impact of the intrusion on
the victim system.

(vi) Collection: gathering information related to the
adversary’s objectives.

Table 7 shows techniques corresponding to each tactic
and commands mapped to these techniques in our datasets.

4.2. Clustering Performance Evaluation. After clustering, we
need measurement indicators to evaluate the effect. In
general, the measurement for the quality of a clustering
algorithm can be categorized into two kinds of criteria [40]:
internal validation and external validation. External criteria
are based on the previous knowledge about the data and
require that ground truth labels are known. However, the
labels of samples in this paper are not available.)us, the
internal validation is more suitable for our evaluation. More
specifically, three internal indexes are utilized in this eval-
uation.)ese indexes measure if clusters are well compact
and separated.

(i) Calinski–Harabasz (CH) [41]:
)e index CH is defined as follows:

Require: Payloads PT

Ensure: Attack tree for T

(1) edges � []
(2) weighted edges � {}
(3) for all payload ∈ PT do
(4) payload.ast()
(5) tmp � payload.split()
(6) if len(tmp)> 2 then
(7) for i ∈ [0: len(tmp) − 1] do
(8) edges.append(tmp[i: i + 2])

(9) end for
(10) else
(11) edges.append(tmp)

(12) end if
(13) end for
(14) for all edge ∈ edges do
(15) weighted edges[edge] � weighted edges.get(edge, 0) + 1
(16) end for
(17) G � Digraph()
(18) G.add edges(weighted edges)
(19) DrawAttackTree(G,width � weighted edge,node size � G.degree())

ALGORITHM 2: Attack tree generation for a given cluster T.

Table 5:)e occurrence frequency statistics of command sequence
from a certain cluster.

Command sequence Frequency
1 cd wget 5
2 cd rm 2
3 cd chmod./t 2
4 cd chmod./s 1
5 cd chmod./nig 1

./nig

cd

wget
chmod

./s

./t

rm

Figure 5:)e attack tree for a given cluster.

Table 6: Datasets from UPnP-SOAP and Netis backdoor
honeypots.

Dataset Time # of unique
sources

of
entries

UPnP-SOAP Apr.21–Nov.03
2019 2,652 153,413

Netis
backdoor

Mar.21–Dec.25
2019 373 241,593

Total Mar.21–Dec.24
2019 3,025 395,006

Security and Communication Networks 9

CH �
trace SB(􏼁

trace SW(􏼁
􏼠 􏼡 ·

np − 1
np − k

􏼠 􏼡, (3)
where SB denotes the between-cluster scatter matrix
and SW is the within-cluster scatter matrix. np is the
number of samples, and k represents the number of

0.46

0.48

0.50

0.52

0.54

Si
lh

ou
et

te
 C

oe
ffi

ci
en

t i
nd

ex

5.0 7.5 10.0 12.5 15.0 17.52.5
Threshold

(a)

0.75

0.80

0.85

0.90

0.95

1.00

D
av

ie
s-

Bo
ul

di
n

in
de

x

5.0 7.5 10.0 12.5 15.0 17.52.5
Threshold

(b)

2600

2800

3000

3200

3400

Ca
lin

sk
i-H

ar
ab

as
z i

nd
ex

5.0 7.5 10.0 12.5 15.0 17.52.5
Threshold

(c)

Figure 6:)e evaluation of GroupTracer using the three indicators, where the value of threshold ranges from 1 to 20: (a) Silhouette
Coefficient; (b) Davies–Bouldin; (c) Calinski–Harabasz.

Table 7: Techniques corresponding to each tactic and commands mapped to these techniques in our datasets.

Tactic Technique Command

Defense evasion

Disabling security tools
Clearing command history

File deletion
File and directory permissions modification

service iptables stop
history -c

rm
chmod

Discovery Process discovery
File and directory discovery

ps
cd; ls; dir

Lateral movement Remote File copy tftp; wget; curl; ftpget
Execution Exploitation for client Execution sh;./mips;./zuki;./nig
Impact Network denial of service ultimate
Collection Data from local system echo; more; cat

Table 8:)e evaluation of GroupTracer and two comparison baselines using the Calinski–Harabasz, the Silhouette Coefficient, and the
Davies–Bouldin index.

Algorithm Calinski–Harabasz Silhouette Coefficient Davies–Bouldin # of clusters Value
GroupTracer 3416.9311 0.5389 0.7367 4 10 (threshold)
K-means model 1212.7809 0.3246 1.1807 3 3 (K)
Meanshift model 2199.9206 0.5004 0.6769 2 50% (quantile)

10 Security and Communication Networks

classes.)e larger value of CH indicates a better
clustering solution.

(ii) Silhouette Coefficient [42]:
)e Silhouette Coefficient s is composed of two
scores: a means distance between a sample and the
rest in the same cluster. b is the distance between a
point and all other samples included in the next
nearest class. s for all samples is given as the mean of
the Silhouette Coefficient for each point. As for
single sample i, s can be computed by

s(i) �
b(i) − a(i)

max(a(i), b(i))
. (4)

)e Silhouette Coefficient index ranges from −1 to 1;
−1 represents a weak clustering effect, and 1 means a
good classification effect. 0 indicates the overlap of
clusters. A higher s indicates a better clustering quality.

(iii) Davies–Bouldin (DB) [43]:

DB can be measured as follows:

DB �
1
k

􏼒 􏼓 􏽘

k

i�1
maxi≠j

d Xi(􏼁 + d Xj􏼐 􏼑

d ki, kj􏼐 􏼑

⎧⎨

⎩

⎫⎬

⎭, (5)

k denotes the number of clusters. i, j represent different
cluster labels (j≠ i). d(Xi) and d(Xj) are the distance from
all samples in cluster i and j to their respective cluster
centroids. d(ki, kj) is the distance between these centroids. A
smaller DB value means a better clustering result.

4.3. Experiment Design. In the following, we evaluate
GroupTracer by examining the cluster quality, i.e., how well
clusters capture similar attack actors.)e primary evaluation
is for the group clustering of GroupTracer. We compare the
evaluation results of GroupTracer based on the three indi-
cators we mentioned above with the performance of group
clustering based on the other two baseline algorithms to
conclude that GroupTracer has excellent performance.

4.3.1. Comparison Baselines. Meanshift [44] and K-means
[45] clustering algorithms are chosen to be the baselines.
Meanshift is a centroid-based algorithm that requires an
iterative step. It continuously calculates the expected moving
distance of the center point and moves until the final
condition is reached. For a given sample set, K-means di-
vides it into K clusters, minimizing a criterion (e.g., within-
cluster sum-of-squares). K is a positive integer number and
must be predefined.

0.30

0.35

0.40

0.45

0.50

0.55

0.60
Si

lh
ou

et
te

 C
oe

ffi
ci

en
t i

nd
ex

10 15 20 25 305
K

(a)

0.6

0.7

0.8

0.9

1.0

1.1

1.2

D
av

ie
s-

Bo
ul

di
n

in
de

x

10 15 20 25 305
K

(b)

800

900

1000

1100

1200

Ca
lin

sk
i-H

ar
ab

as
z i

nd
ex

10 15 20 25 305
K

(c)

Figure 7:)e evaluation of K-means model using the three metrics: (a) Silhouette Coefficient; (b) Davies–Bouldin; (c) Calinski–Harabasz.

Security and Communication Networks 11

We first extract the required features according to
Section 3.2 and convert them into usable feature matrices.
Before performing the final group clustering, we normalize
the feature matrices.)e reason is that clustering algorithms
all use a distance measure to determine if object i is more
likely to belong to the same cluster as object j than the same
cluster as object k.)ese distance measures are affected by
the scale of the variables. By putting all variables into the
same range, we can weigh all variables equally, especially
when the feature vectors are generated differently.

)e main idea of normalization is to calculate the p −

norm of each sample and then divide each element in the
sample by the norm.)e result of this process is that the
p − norm of each processed sample is equal to 1. In the
experiment, p is set to 2 and L2 − norm of vector
x � (x1, . . . , xn) can be defined as [37]

‖x‖2 � x1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+ x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+ · · · + xn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼐 􏼑
1/2

� 􏽘
n

i�1
xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2⎛⎝ ⎞⎠

1/2

. (6)

For the purpose of eliminating the influence of irrelevant
variables as much as possible, we leverage all data in the
dataset for experiments of each algorithm. For GroupTracer,
we iterate the threshold value to pick the threshold with the
highest clustering quality.)e number of iterations is 20.
)en we generate multiple versions of K-means clustering to

attain the best clustering solution (Calinski–Harabasz in-
dex). Meantime, we run the Meanshift algorithm with the
window size changing to get the best effect.

4.4. Experiment Result and Discussion.)e evaluations of
GroupTracer and two comparison baselines using the
metrics we mentioned above are shown in Table 8. When
running each algorithm, the value of different independent
variables (e.g., threshold and quantile) brings the most
significant change to the Calinski–Harabasz index, so this
index is considered as the primary reference index when
evaluating each algorithm. As a result, the Cal-
inski–Harabasz index of GroupTracer reaches 3416.93 when
the threshold is set to 10, which is about three times the
K-means model and 1.5 times the Meanshift model. Taking
the Silhouette Coefficient index as the definitive reference,
the performance of GroupTracer is still the best. Although
our algorithm performance is not the best after taking the
Davies–Bouldin index into account, the gap is also within
the acceptable range. GroupTracer generates 4 clusters, while
the K-means model generates three classes. In the same way,
the Meanshift model only generates 2 clusters for all data.

)e evaluation of GroupTracer using the three metrics is
illustrated in Figure 6, where the value of threshold ranges
from 1 to 20.)e Silhouette Coefficient index is on the rise

0.45

0.46

0.47

0.48

0.49

0.50

0.51
Si

lh
ou

et
te

 C
oe

ffi
ci

en
t i

nd
ex

15 20 25 30 35 40 45 5010
Quantile (%)

(a)

0.5

0.6

0.7

0.8

0.9

1.0

1.1

D
av

ie
s-

Bo
ul

di
n

in
de

x

15 20 25 30 35 40 45 5010
Quantile (%)

(b)

1000

1200

1400

1600

1800

2000

2200

Ca
lin

sk
i-H

ar
ab

as
z i

nd
ex

15 20 25 30 35 40 45 5010
Quantile (%)

(c)

Figure 8:)e evaluation of Meanshift model using the three metrics: (a) Silhouette Coefficient; (b) Davies–Bouldin; (c) Calinski–Harabasz.

12 Security and Communication Networks

until the threshold reaches 9. When the threshold value
ranges from 10 to 17, the index stabilizes at a relatively high
level in Figure 6(a).)e Davies–Bouldin index shows a
downward trend as a whole until the threshold reaches ten
and starts to stabilize at the lowest point (0.7367). After that,
the index starts to rise rapidly in Figure 6(b). When the
threshold value is 10–17, the Calinski–Harabasz index is
maintained at the highest level (3416.93) in Figure 6(c), and
the number of clusters is also kept at 4. In summary, all three
indicators show that when the number of clusters is 4, the
cluster quality becomes the highest and reaches a stable state.

When the CH index reaches the highest point, the Sil-
houette Coefficient and the DB index both have the worst
effect in Figure 7. Similarly, when the CH index reaches the
highest level, the DB index is in a lower position in Figure 8.
It can be seen in these two figures that the changing trends of
these indicators are not matched, which means that the two
baselines are not well applied to our datasets.

5. Limitation and Future Work

Our research proposes a framework that can dig out potential
groups behind active campaigns.)is new technique can
make full use of information from attack campaigns. How-
ever, our current design is preliminary. We only focus on the
IPs used by the potential groups and do not go any further to
track which specific groups were involved, that is, to try to
correspond to the real groups [46]. Moreover, GroupTracer
can only deal with honeypot logs that contain attack payloads.

In future work, we expect to combine NLP techniques with
cyber threat intelligence to precisely match these potential
groups to the real-world APT groups, in which the attack tree
may be helpful to extract a group profile. Moreover, an ex-
periment to prove the effectiveness of the attack tree should
also be carried out. Further, we expect to apply more data
sources such as system log and network traffic to expand our
knowledge base and perform more comprehensive analysis.

6. Conclusion

In this work, we propose GroupTracer, a framework for
attack actors clustering from IoT honeypot logs. Group-
Tracer is aimed at extracting the TTP profile automatically
and digging out potential groups behind active campaigns.
By mapping payloads to the ATT&CK framework,
GroupTracer can effectively extract structured TTP profiles
using two knowledge bases. Besides, this framework lever-
ages four feature groups (namely, Time, TTPs, IP, and URL),
a total of 18 characteristics, derived from log entries to
capture the natural hierarchical structures for attacker
groups. Finally, GroupTracer constructs attack trees for each
cluster to embody the group actions. In the experiment, we
compare our algorithm with two baseline algorithms.)e
evaluation of 395,006 log entries from 3,025 IPs reveals the
high performance of GroupTracer, in which the Cal-
inski–Harabasz index reaches 3416.93. Moreover, our pro-
posed framework is generalizable as it is from a log
accounting perspective, so its application is not limited to
the IoT honeypot.

Data Availability

)e research data used to support the findings of this study
are available from the corresponding author upon request.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

)is work was supported in part by National Natural Science
Foundation of China (61902265) and National Key Research
and Development Program (2016YFE0206700 and
2018YFB0804503).

References

[1] GReAT, Apt Trends Report, 2019, https://securelist.com/apt-
trends-report-q2-2019/91897/.

[2] H. Scott, “Dyn,” 2019, https://dyn.com/blog/dyn-analysis-
summary-of-friday-october-21-attack/.

[3] Talos, Vpnfilter, 2019, https://blog.talosintelligence.com/
2018/05/VPNFilter.html.

[4] D. J. Bianco, “)e pyramid of pain,” 2019, https://detect-
respond.blogspot.com/2013/03/the-pyramid-of-pain.html.

[5] J. Friedman and M. Bouchard, Definitive Guide to Cyber
3reat Intelligence: Using Knowledge about Adversaries toWin
the War against Targeted Attacks, Isightpartners, Amsterdam,
Netherlands, 2015.

[6] MITRE, Darkhotel, 2019, https://attack.mitre.org/groups/
G0012/.

[7] MITRE, 2019, Turla, https://attack.mitre.org/groups/G0010/.
[8] M. Alazab, “Profiling and classifying the behavior of malicious

codes,” Journal of Systems and Software, vol. 100, pp. 91–102,
2015.

[9] S. S. Hansen, T. M. T. Larsen, M. Stevanovic, and
J. M. Pedersen, “An approach for detection and family
classification of malware based on behavioral analysis,” in
Proceedings of the 2016 International Conference on Com-
puting, Networking and Communications (ICNC), pp. 1–5,
IEEE, Kauai, HI, USA, February 2016.

[10] M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, and
G. Giacinto, “Novel feature extraction, selection and fusion
for effective malware family classification,” in Proceedings of
the Sixth ACM Conference on Data and Application Security
and Privacy, pp. 183–194, ACM, New Orleans, LA, USA,
March 2016.

[11] A. Makandar and A. Patrot, “Malware analysis and classifi-
cation using artificial neural network,” in Proceedings of the
2015 International Conference on Trends in Automation,
Communications and Computing Technology (I-TACT-15),
pp. 1–6, IEEE, Bangalore, India, December 2015.

[12] K. Borgolte, C. Kruegel, and G. Vigna, “Meerkat: detecting
website defacements through image-based object recogni-
tion,” in Proceedings of the 24th {USENIX}Security Symposium
({USENIX}Security 15), pp. 595–610, Washington, DC, USA,
August 2015.

[13] T. Taylor, X. Hu, T. Wang et al., “Detecting malicious exploit
kits using tree-based similarity searches,” in Proceedings of the
Sixth ACM Conference on Data and Application Security and
Privacy, pp. 255–266, ACM, New Orleans, LA, USA, March
2016.

Security and Communication Networks 13

https://securelist.com/apt-trends-report-q2-2019/91897/
https://securelist.com/apt-trends-report-q2-2019/91897/
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://blog.talosintelligence.com/2018/05/VPNFilter.html
https://blog.talosintelligence.com/2018/05/VPNFilter.html
https://detect-respond.blogspot.com/2013/03/the-pyramid-of-pain.html
https://detect-respond.blogspot.com/2013/03/the-pyramid-of-pain.html
https://attack.mitre.org/groups/G0012/
https://attack.mitre.org/groups/G0012/
https://attack.mitre.org/groups/G0010/

[14] Z. Tu, R. Li, Y. Li et al., “Your apps give you away: dis-
tinguishing mobile users by their app usage fingerprints,”
Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, vol. 2, no. 3, pp. 1–23, 2018.

[15] F. Zhang, S. Zhou, Z. Qin, and J. Liu, “Honeypot: a sup-
plemented active defense system for network security,” in
Proceedings of the Fourth International Conference on Parallel
and Distributed Computing, Applications and Technologies,
pp. 231–235, IEEE, Chengdu, China, August 2003.

[16] J. A. Jerkins, “Motivating a market or regulatory solution to
iot insecurity with the mirai botnet code,” in Proceedings of the
2017 IEEE 7th Annual Computing and Communication
Workshop and Conference (CCWC), pp. 1–5, IEEE, Las Vegas,
NV, USA, January 2017.

[17] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A. R. Sadeghi,
and S. Tarkoma, “Iot sentinel: automated device-type iden-
tification for security enforcement in iot,” in Proceedings of the
2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS), pp. 2177–2184, IEEE, Atlanta,
GA, USA, June 2017.

[18] A. K. Simpson, F. Roesner, and T. Kohno, “Securing vul-
nerable home iot devices with an in-hub security manager,” in
Proceedings of the 2017 IEEE International Conference on
Pervasive Computing and Communications Workshops (Per-
Com Workshops), pp. 551–556, IEEE, Seattle, WA, USA,
March 2017.

[19] M. Wang, J. Santillan, and F. Kuipers, “)ingpot: an inter-
active internet-of-things honeypot,” 2018, https://arxiv.org/
abs/1807.04114.

[20] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama,
and C. Rossow, “Iotpot: analysing the rise of iot compro-
mises,” in Proceedings of the 9th {USENIX} Workshop on
Offensive Technologies {WOOT}, Washington, DC, USA,
August 2015.

[21] S. Dowling, M. Schukat, andH.Melvin, “A zigbee honeypot to
assess iot cyberattack behaviour,” in Proceedings of the 2017
28th Irish Signals and Systems Conference (ISSC), pp. 1–6,
IEEE, Co Kerry, Ireland, June 2017.

[22] H. Heo and S. Shin, “Who is knocking on the telnet port: a
large-scale empirical study of network scanning,” in Pro-
ceedings of the 2018 on Asia Conference on Computer and
Communications Security, pp. 625–636, ACM, Incheon, South
Korea, June 2018.

[23] Gartner,)e Definition of Cyber)reat Intelligence, 2019,
https://www.gartner.com/en/documents/2487216.

[24] G. Husari, E. Al-Shaer, M. Ahmed, B. Chu, and X. Niu,
“Ttpdrill: automatic and accurate extraction of threat actions
from unstructured text of cti sources,” in Proceedings of the
33rd Annual Computer Security Applications Conference,
pp. 103–115, ACM, Orlando, FL, USA, December 2017.

[25] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep
embedding for clustering analysis,” in Proceedings of the
International Conference on Machine Learning, pp. 478–487,
New York City, NY, USA, June 2016.

[26] P. Owezarski, “Unsupervised classification and character-
ization of honeypot attacks,” in Proceedings of the 10th In-
ternational Conference on Network and Service Management
(CNSM) and Workshop, pp. 10–18, IEEE, Rio de Janeiro,
Brazil, November 2014.

[27] H. Cho, S. Lee, B. Kim, Y. Shin, and T. Lee, “)e study of
prediction of same attack group by comparing similarity of
domain,” in Proceedings of the 2015 International Conference
on Information and Communication Technology Convergence

(ICTC), pp. 1220–1222, IEEE, Jeju Island, South Korea, Oc-
tober 2015.

[28] V. Ghiëtte, H. Griffioen, and C. Doerr, “Fingerprinting tooling
used for {SSH} compromisation attempts,” in Proceedings of
the 22nd International Symposium on Research in Attacks,
Intrusions and Defenses {RAID} 2019, pp. 61–71, Beijing,
China, September 2019.

[29] MaxMind, Geolite, 2020, https://dev.maxmind.com/geoip/
geoip2/geolite2/.

[30] I. Neamtiu, J. S. Foster, and M. Hicks, “Understanding source
code evolution using abstract syntax tree matching,” in
Proceedings of the 2005 International Workshop on Mining
Software Repositories, pp. 1–5, Saint Louis, MO, USA, May
2005.

[31] Ipipdotnet, Ipdb-Python, 2019, https://github.com/ipipdotnet/
ipdb-python.

[32] Chronicle Security, Virustotal, 2019, https://www.virustotal.
com/gui/home/url.

[33] RiskAnalytics, Malware Domain Blocklist, 2019, http://www.
malwaredomains.com/.

[34] Dr.Web, Web Link Scanner, 2019, https://free.drweb.cn/.
[35] RTBAsia, Rtbasia Api, 2019, https://www.rtbasia.com/ip-lab.
[36] S. C. Johnson, “Hierarchical clustering schemes,” Psycho-

metrika, vol. 32, no. 3, pp. 241–254, 1967.
[37] N. Dunford and J. T. Schwartz, Linear Operators Part I:

General 3eory, Vol. 243, Interscience Publishers, New York,
NY, USA, 1958.

[38] K. S. Kim, C. Park, and J. Lee, “Internet home network
electrical appliance control on the internet with the upnp
expansion,” in Proceedings of the 2006 International Con-
ference on Hybrid Information Technology, pp. 629–634, IEEE,
Jeju Island, South Korea, November 2006.

[39] ATT&CK Matrix, Tactic, 2020, https://attack.mitre.org/.
[40] E. Rendón, I. Abundez, A. Arizmendi, and E. M. Quiroz,

“Internal versus external cluster validation indexes,” Inter-
national Journal of Computers and Communications, vol. 5,
pp. 27–34, 2011.

[41] T. Calinski and J. Harabasz, “A dendrite method for cluster
analysis,” Communications in Statistics—3eory andMethods,
vol. 3, no. 1, pp. 1–27, 1974.

[42] P. J. Rousseeuw, “Silhouettes: a graphical aid to the inter-
pretation and validation of cluster analysis,” Journal of
Computational and Applied Mathematics, vol. 20, pp. 53–65,
1987.

[43] D. L. Davies and D. W. Bouldin, “A cluster separation
measure,” IEEE Transactions on Pattern Analysis andMachine
Intelligence, vol. PAMI-1, no. 2, pp. 224–227, 1979.

[44] Y. Cheng, “Mean shift, mode seeking, and clustering,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 17, pp. 790–799, 1995.

[45] J. A. Hartigan and M. A. Wong, “Algorithm as 136: a k-means
clustering algorithm,” Applied Statistics, vol. 28, no. 1,
pp. 100–108, 1979.

[46] MITRE, Apt Groups, 2020, https://attack.mitre.org/groups/.

14 Security and Communication Networks

https://arxiv.org/abs/1807.04114
https://arxiv.org/abs/1807.04114
https://www.gartner.com/en/documents/2487216
https://dev.maxmind.com/geoip/geoip2/geolite2/
https://dev.maxmind.com/geoip/geoip2/geolite2/
https://github.com/ipipdotnet/ipdb-python
https://github.com/ipipdotnet/ipdb-python
https://www.virustotal.com/gui/home/url
https://www.virustotal.com/gui/home/url
http://www.malwaredomains.com/
http://www.malwaredomains.com/
https://free.drweb.cn/
https://www.rtbasia.com/ip-lab
https://attack.mitre.org/
https://attack.mitre.org/groups/

