
Research Article
Order-Revealing Encryption Scheme with Comparison Token for
Cloud Computing

Jingjing Guo 1 and Jiacong Sun2

1State Key Laboratory of Integrated Service Networks (ISN), Xidian University, Xi’an, Shaanxi 710071, China
2Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China

Correspondence should be addressed to Jingjing Guo; jennifer.jing.sun@gmail.com

Received 24 September 2020; Revised 5 November 2020; Accepted 30 November 2020; Published 24 December 2020

Academic Editor: Prosanta Gope

Copyright © 2020 Jingjing Guo and Jiacong Sun.)is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Order-preserving encryption (OPE) is a basic paradigm for the outsourced database where the order of plaintexts is kept in
ciphertexts. OPE enables efficient order comparison execution while providing privacy protection. Unfortunately, almost all the
previous OPE schemes either require numerous rounds of interactions or reveal more information about the encrypted database
(e.g., the most significant bit). Order-revealing encryption (ORE) as a generalization is an encryption scheme where the order of
plaintexts can be evaluated by running a comparison algorithm.)erefore, it is desirable to design an efficient ORE scheme which
addresses above efficiency and security issues. In this paper, we propose a noninteractive ORE scheme from prefix encoding and
Bloom filter techniques.)e proposed scheme is an encryption scheme where a cloud service provider cannot evaluate the order of
plaintexts until a comparison token is provided.)e security analysis illustrates that our scheme achieves ideal security with
frequency hiding. Furthermore, we illustrate a secure range query scheme through designing an encrypted tree structure named
PORE tree from the above ORE scheme.)e PORE tree reveals the order between different nodes and leaves encrypted data items
in the same node incomparable even after query execution. Finally, the experimental evaluation shows the high efficiency of the
proposed ORE scheme and range query scheme.

1. Introduction

)e rapid development of cloud computing enables re-
source-constrained data owners to outsource their data
storage and computational tasks to a cloud service provider.
)e outsourced data could be attacked by outside attackers
and the cloud service provider, for example, Verizon cloud
leak and Equifax data breach.)us, sensitive data should be
encrypted before outsource, such as CryptDB, CipherCloud,
and PRS server. Encryption is a promising approach for
protecting sensitive data. However, traditional encryption
breaks correlation of plaintexts and brings many difficulties
in ordinary services, such as keyword search, numeric op-
erations, and range query. Although some advanced cryp-
tography primitives such as fully homomorphic encryption
[1–3] and functional encryption [4–6] are introduced, the
existing schemes are somewhat inefficient.

One method to enable efficient query services while
meeting privacy requirement is to introduce an encryption
scheme that allows only limited services. Searchable en-
cryption [7–9] has been introduced to handle the keyword
search in an encrypted database (EDB) [10, 11]. To execute
range queries [12, 13], order-preserving encryption (OPE)
[14–17] and its generalization order-revealing encryption
(ORE) [18–20] have been proposed and developed.

OPE provides a property that the order of ciphertexts
retains that of plaintexts. It has many applications in real-
world scenarios, such as in SQL queries [16, 21–23], Web
applications [24], CRM software [25], and others.)e
concept of OPE is firstly proposed by Agrawal et al. [14]
while without security analysis. As an improvement, Bol-
dyreva et al. [15] introduced a provable OPE scheme called
BCLO that provides security models and rigorous analysis
from cryptography point.)e ideal security of OPE requires

Hindawi
Security and Communication Networks
Volume 2020, Article ID 8837904, 13 pages
https://doi.org/10.1155/2020/8837904

mailto:jennifer.jing.sun@gmail.com
https://orcid.org/0000-0001-6280-896X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8837904

that ciphertexts reveal nothing except the order of plaintexts.
)e BCLO scheme also points out that ideal security is
unachievable if an OPE scheme is immutable and stateless.
)erefore, the BCLO scheme is later shown to leak half of
plaintext bits. To enhance security, Popa et al. [16] intro-
duced a mutable OPE scheme named MOPE by leveraging
binary tree.)e OPE scheme achieves ideal security espe-
cially indistinguishability under an order chosen-plaintext
attack (IND-OCPA). Unfortunately, the ideally secure
scheme [16] requires O(log n)-round of interactions.

Different from previous OPE schemes, Boneh et al. [18]
proposed a generalization definition of the order-revealing
encryption scheme which reveals the order of plaintexts.
Due to the heavy computation burden of multilinear maps,
the scheme [18] is impractical and remains a theoretical
result for most applications. Chenette et al. [26] introduced
a practical ORE scheme called CLWW that sacrifices the
index of first different bit. Lewi and Wu [27] designed an
ORE scheme named Lewi-Wu ORE that makes a trade-off
between efficiency and security. But, the scheme [27] scales
linearly with the size of domain space and reveals the index
of first different block. As security improvement, Cash et al.
[19] proposed a parameter-hiding order-revealing en-
cryption by using asymmetric bilinear map to construct
property-preserving hash (PPH) as the heart of the scheme.
Unfortunately, the parameter-hiding ORE has a heavy
computation burden and is vulnerable to frequency
attacks.

1.1. Our Contributions. In this work, we focus on the
construction of the order-revealing encryption scheme over
the encrypted database system in cloud computing.)e
main contributions are as follows:

(i) We introduce a noninteractive ORE scheme over
the encrypted database by leveraging Bloom filter
and prefix encoding technologies.)e security
analysis demonstrates that our ORE scheme ach-
ieves ideal security and also hides frequency in-
formation of data items.

(ii))e introduced ORE scheme leaves encrypted data
items incomparable until a comparison provided.
Since the encrypted data items are incomparable,
our ORE scheme can resist file-injection attacks
[28].

(iii) We further present its application in secure range
query on an encrypted database. Specifically, data
items are stored in a tree structure (e.g., B-tree) to
enhance search efficiency. We apply the introduced
ORE scheme to encrypt the data items in the tree
node and thus construct an encrypted tree, which is
referred as PORE tree.

(iv))e presented PORE tree reveals order relation
between different tree nodes and leaves encrypted
data items in same node incomparable even after
query execution.

)is paper is an extended and enhanced version of the
conference paper presented at ISPEC 2018 [17]. Compared

with the conference version, we design a new ORE scheme
which achieves ideal security with frequency hiding as an
enhanced security of conference version with leakage
function.)e detailed description is depicted in Section 4.
Furthermore, we modify the stored contents of PORE tree in
Section 5.)e proposed PORE tree achieves better security
and efficiency. Moreover, formal security definition is
presented in Section 3.2, and revised analysis according to
the improved ORE scheme is introduced in Section 6. Fi-
nally, we add the experimental evaluation to evaluate the
performance of MOPE [16], Lewi-Wu ORE [27], and our
ORE scheme in Section 7.

1.2. RelatedWork. Order comparison [29] is one of the most
popular operation in database-as-a-service (DaaS). In order
to protect sensitive data, encryption is introduced as a
prevailing consensus method. Numerous researchers have
studied the problem of designing a secure and efficient
encryption scheme which allows untrusted cloud servers to
perform order comparison operation over ciphertexts. Due
to heavy computation time and ciphertext size, fully ho-
momorphic encryption and functional encryption are still
impractical to handle order comparison [1, 2, 30].)erefore,
practical OPE schemes have proposed in the past few years
[14–16, 31].

Agrawal et al. [14] formalized the definition of order-
preserving encryption and designed an OPE scheme. It
transforms plaintexts into ciphertexts which retain the order
and follow a target distribution provided by the client. In
[14], the authors gave no security analysis and their scheme
only applies for the static system. As an improvement,
Boldyreva et al. [15] proposed the ideal security definition
and further proved that an OPE scheme with immutable and
stateless is impossible to achieve ideal security.)e illus-
trated BCLO scheme in [15] is indistinguishable from a
ROPF and later shows that it leaks more than half of
plaintext bits [32, 33]. Moving a step forward, Dyer et al. [34]
introduced an OPE scheme by using approximate integer
common divisor problem. However, Dyer et al.’s scheme
achieves window one-wayness security.)ere exist other
OPE schemes [21–23, 33] with weaker security guarantee by
making some impractical assumptions.

Popa et al. [16] firstly introduced an ideally secure order-
preserving encoding scheme named MOPE by using a
balanced search tree and mutable ciphertexts. Mutable ci-
phertexts mean that encodings for several plaintext change
with a deletion and insertion operation.)e security on
MOPE shows it is, in principle, possible to reveal no ad-
ditional information besides orders. Kerschbaum [35] in-
dicated each (deterministic) OPE scheme suffers a simple
frequency attack from ciphertexts. For this reason, he
provided a stronger security definition and indistinguish-
ability under frequency analysis ordered chosen-plaintext
attack (IND-FAOCPA). Based on random ciphertexts, the
scheme [35] hides frequency information and achieves IND-
FAOCPA security. Enlightened by a buffer tree [36], Roche
et al. [37] constructed an order-preserving tree and further
proposed a partial order-preserving encoding (POPE)

2 Security and Communication Networks

scheme which supports the insert-heavy database and leaks
partial orders. Unfortunately, all above schemes limit by
multiple round of interactions between clients and cloud
servers.

Boneh et al. [18] provided a generalization definition of
ORE. Different from traditional OPE, ORE reveals the order
of plaintexts.)ey designed an ORE scheme by using
multilinear maps. Because of the heavy computation burden
of multilinear maps, the scheme [18] is impractical in most
applications.)e CLWW scheme [26] is the first practical
ORE scheme by using PRFs. For each bit of data items, a
keyed PRF takes this bit concatenated with all more sig-
nificant bits as input.)us, the ciphertexts include n ele-
ments which are the numerically sum of the keyed PRF and
the next less significant bit. But, the CLWW scheme leaks the
index of first different bit of two plaintexts. In order to
balance security and efficiency, Lewi and Wu [27] intro-
duced a generalization of the ORE scheme by using the left/
right framework.)e scheme of the small domain in [27]
scales linearly with the size of message space and large
domain reveals the first differing block. Based on bilinear
map techniques, Cash et al. [19] proposed a more secure
ORE scheme which leaks the equality pattern of the most
significant bit.

Several related works about multiclient have been in-
troduced. Xiao et al. [33] gave a method to extend the OPE
scheme to multiclient scenario which only supports the OPE
system not ORE. As an improvement, two multiclient order-
revealing encryption (MC-ORE) schemes [38] have been
proposed by using the design principle of the CLWW
scheme. Obviously, MC-ORE schemes are proven secure
with different leakage functions. Li et al. [20] introduced and
designed the delegatable order-revealing encryption
(DORE) scheme for the multiclient system.)e DORE
scheme reveals the index of the first different bit between two
plaintexts. Latest, some attack schemes have been intro-
duced, such as inference attack [39], file-injection attack
[28], and multicolumn attack [40]. However, most of these
attack schemes require auxiliary information which limits
the application in practical.

1.3. Organization.)e rest of this paper is organized as
follows. In Section 2, we introduce some preliminaries.)e
systemmodel andORE definition are illustrated in Section 3.
)en, in Section 4, we propose a PORE scheme by leveraging
prefix encoding and Bloom filter techniques. We demon-
strate its application on secure range query in Section 5.)e
security and efficiency analysis are illustrated in Section 6. In
Section 7, we provide a performance evaluation of our
scheme. Finally, the conclusions are presented in Section 8.

2. Preliminaries

In this section, we provide some preliminaries and defini-
tions for the design of the ORE scheme and secure range
query scheme.

2.1. Bloom Filter. As a space-efficient data structure, Bloom
filter [41] is always used to test whether an element a is a

member of a set S.)e detailed description of Bloom filter is
illustrated in the following.

Bloom filter (BF) contains an array of n cells which store
0 or 1 and k different hash functions H1, H2, . . . , Hk.)e
hash function Hi is defined as Hi: 0, 1{ }∗ ⟶ [1, n],
i � 1, 2, . . . , k. In the initial phase, we set all cells of the array
to 0. When embedding an element w into the Bloom filter
BF, we compute its hash functions H1(w), H2(w), . . . ,

Hk(w) and set all these chosen cells to 1. To test whether an
element w belongs to a set S, we compute its hash functions
and check whether the indicated cells of set S are all 1. If all
these corresponding cells are 1, then w is an element of set S

with allowable errors. Otherwise, w does not belong to the
set S.)e allowable error is called as false positive which
satisfies Pf � (1 − e− ((km)/n))k. It reaches its minimum value
2− k when r � ln 2∗ (n/m), where n is the size of the Bloom
filter, k is the number of hash functions, and m denotes the
number of elements in Bloom filter BF. An example of a
Bloom filter is shown in Figure 1.

2.2. Prefix Encoding Technique. Prefix encoding technique
converts the testing of whether an element d falls into a
range [a, b] to the testing of whether two sets have common
elements [42].)e details are demonstrated as follows.

Given a t-bit number d � d1d2, . . . , dt, we evaluate its
prefix family as F(d) � d1d2, . . . , dt, d1d2, . . . ,􏼈

∗ , . . . , d1 ∗ · · · ∗ , ∗ ∗ · · · ∗ }. It is easy to see that the size of
F(d) is t + 1. Given a range [a, b], we compute the minimum
cover set of prefixes such that the union of prefixes is [a, b],
denoted S([a, b]).)e number of prefixes in S([a, b]) is at
most 2t − 2. In this condition, the testing of whether an
element d belongs to a range [a, b] can be translated to the
testing F(x)∩ S([a, b]) � ∅.)e element d belongs to a
range [a, b] if F(x)∩ S([a, b])≠∅, otherwise not. As shown
in Figure 2, the prefix family of 3 with 5-bit is
F(3) � 00011, 0001∗ , 000∗ ∗ , 00∗ ∗ ∗ , 0∗ ∗ ∗ ∗ , ∗ ∗{

∗ ∗ ∗ } and minimum cover set of [0, 6] is
S([0, 6]) � 000∗ ∗ , 0010∗ , 00110{ }. Owing to that
F(3)∩ S([0, 6]) � 000∗ ∗{ }, it is easy to draw the conclu-
sion that 3 ∈ [0, 6].

3. Problem Formulation

3.1. System Model. As shown in Figure 3, the introduced
ORE scheme consists of three main parties, data owner
(DO), search user (SU), and cloud service provider (CSP).

(i) Data owner: the data owner is the entity who owns
the database, encrypts the database, and delegates
the encrypted database to a powerful cloud service
provider. During the encryption phase, the data
owner encrypts the data items from the symmetric
encryption scheme to protect its privacy and gen-
erates the encrypted search indexes to facilitate data
utilization.

(ii) Search user: search users receive system parameter
and secret keys from the data owner and generate
search requests according to their requirements.
)en, search users send search requests with the

Security and Communication Networks 3

0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 1 0

BF.Init

BF.Add

w

BF.Test z

H1(w)

H1(z) H3(z) H2(z)

H2(w) H3(w)

Figure 1: An example of Bloom filter, where w is added in the set andz does not belong to the set.

00∗∗∗

Data prefix
family F(3)

3 = 00011

00011

000∗∗

0∗∗∗∗

∗∗∗∗∗

0001∗
Range prefix

family S([0, 6])

00110

0010∗

000∗∗

[0, 6]

|F(3)| = 6

|S([0, 6])| = 3

Figure 2: An example of prefix encoding technology.

Cloud service provider

Original
database

Data owner

Encrypted
database

Secure index Secure index

Encrypted
database

Outsourced

Search user

Query
Token generation

Trapdoor
Query requestSearch

Encrypted result
Return result DecryptionEncryption

Generate
index

d1d2
d2···

Figure 3: System model of the order-revealing encryption scheme.

4 Security and Communication Networks

corresponding trapdoor to the cloud service pro-
vider and receive the search results on ciphertext.
Finally, they decrypt the ciphertexts and obtain the
results.

(iii) Cloud service provider: the cloud service provider
owns the powerful storage resources and unlimited
computation resources.)us, the cloud service
provider always provides the storage, computation,
and query services for the data owner and search
user.

To protect the private sensitive information, the data
owner encrypts the database, generates the indexes, and
sends them to the cloud service provider. Search users
compute the search trapdoor according to their request
and send search trapdoor to the cloud service provider.
)e cloud service provider stores the encrypted database
and then searches the encrypted database for the search
users. In our paper, we assume the data owner and search
users are fully trusted and the cloud service provider is
“honest-but-curious.” It means the cloud service provider
follows protocol and returns answers faithfully but intends
to learn additional information about the encrypted da-
tabase.)e assumption is very common in other work,
such as [12, 13, 43].

3.2. Order-Revealing Encryption Scheme. An ORE scheme is
defined by four probabilistic polynomial-time (PPT) algo-
rithms ORE.KeyGen, ORE.Enc, ORE.TokenGen, and
ORE.OrderComp.)ese algorithms are defined as follows:

(i) ORE.KeyGen (λ)⟶SK: DO runs this algorithm to
output a secret key SK.)e secret key will be secretly
stored by the data owner. Furthermore, the data
owner will send the secret key to search users
through the access control technique.

(ii) ORE.Enc(SK, d) ⟶Cd: DO runs the data en-
cryption algorithm to encrypt data item d.)e data
encryption algorithm takes as input a secret key SK
and a data item d and outputs the ORE ciphertext as
Cd.

(iii) ORE.TokenGen (SK, a)⟶TKa: SU runs this al-
gorithm to generate the comparison token. It takes
as input a secret key SK and a data item a and
outputs the comparison token TKa.

(iv) ORE.OrderComp(Cd,TKa)⟶ ans: CSP runs the
order comparison algorithm to output the order
relation.)e algorithm takes as input the ciphertext
Cd of data item d and comparison token TKa for
another data item.)e order comparison algorithm
outputs the order relation for data item d and a. If
ans� 1, it means a≥d; otherwise, ans� 0 means
a<d.

In the following, the correctness and security definitions
were introduced in the ORE scheme [27].

Definition 1 (Correctness). An ORE scheme over a well-
domain D is correct if for SK← ORE.KeyGen(λ) such that,

for any a, b ∈ D, if a< b, Ca←ORE.Enc(SK, a), TKb←
ORE.TokenGen(SK, b) then 1←ORE.OrderComp(Ca, TKb).

Consider an experiment defined for the ORE scheme as
follows. In the experiment, we introduce the random var-
iable winA,k as the success of adversary A.

)e IND-OCPA indistinguishability experiment
ExpA,OPE is as follows:

(i))e client runs the ORE.KeyGen(λ) algorithm to
produce the secret key SK and chooses a random bit
b;

(ii))e client and adversary A engage in polynomial
rounds of interaction. At round i,

)e adversaryA chooses v0i􏼈 􏼉 and v1i􏼈 􏼉 in adaptive
and sends both of them to the client;
After receiving v0i􏼈 􏼉 and v1i􏼈 􏼉, the client runs the
encryption algorithm ORE.Enc(SK,) and returns
Cvb

i
to the adversary A;

(iii))e adversaryA outputs a bit b′, its guess for b.)e
output is defined as 1 if b′ � b and 0 otherwise.

Definition 2 (Security). An ORE scheme is IND-OCPA
secure, if for all PPT adversaries A and sequences v0i􏼈 􏼉i and
v1i􏼈 􏼉i with the same order relations, there is a negligible
function negl(·) satisfying

Pr winA,k
􏽨 􏽩≤

1
2

+ negl(k). (1)

4. The Proposed ORE Scheme

4.1. High Description. Before describing the details of our
ORE scheme, we introduce the construction principle in
brief. Different from the existing works, we partition a ci-
phertext Cd into two parts Ed and Id, where
Ed �DET.Enc(sk1, d) refers to the ciphertext which is
produced by the symmetric encryption schemeDETwith the
strongest security (e.g., AES a DES) and Id is an index which
indicates the order of plaintexts. Comparison is only pro-
ceeded between the index Id of one plaintext and the search
token TKa of another data item a.)us, CSP proceeds the
query request until a search token provided by SU.

In the following, we focus on the construction of index
Id.)e order comparison between value d and a is equal to
check whether a value d falls into a range[0, a]. By using
prefix encoding technique which is proposed in [42], we
compute the data prefix F(d) and range prefix S([0, a]).
)us, the checking of whether a value d falls into a range
[0, a] converts to the checking of whether two sets F(d) and
S([0, a]) have common elements.)e basic method is to
check whether an element of one set falls into another set.
Trivially, the checking is done by leveraging Bloom filter
technique in [41].

Since frequency information leads some simple attacks
which were pointed out by Naveed et al. [39], DO should
also hide the frequency (i.e., hide equality) in the ciphertext
Ed and the index Id. Owing to DET is an IND-CPA secure

Security and Communication Networks 5

encryption scheme, the frequency is hidden in the ciphertext
Ed. To hide the frequency in index, DO randomizes a data
item d as d′ � d‖01‖r1 to break the equality before con-
structing the index.

4.2.?eMainConstruction. In this section, we introduce the
ORE scheme from four processes: key generation, data
encryption, token generation, and order comparison.

For the sake of clarity, we assume that all data items are
w-bit and greater than 0, and DET� (DET.Key, DET.Enc,
DET.Dec) is an IND-CPA secure encryption scheme.)e
details of our ORE scheme are illustrated as follows:

(i) ORE.KeyGen(λ): on input a security parameter λ,
DO computes sk1← DET.Key(λ) as a secret key. It
also chooses random numbers k1, k2, . . . , ks as se-
cret keys to compute hash H(·) for a Bloom filter
BF.)us, DO has the secret key SK � sk1, sk2􏼈 􏼉.

(ii) ORE.Enc(SK, d): on input a secret key
SK � sk1, k1, k2, . . . , ks􏼈 􏼉 and a data item d, DO
firstly leverages privacy-preserving techniques to
protect the privacy of data items. To keep the
functionality of order comparison, DO illustrates an
index for each data item.)e following processes
need to be performed:

(1) Data encryption: DO encrypts data items in the
database as Ed �DET.Enc(sk1, d).

(2) Index construction: to facilitate look-ups, DO
constructs a secure Bloom filter BFd as index
structure Id for each data item d.)e secure
Bloom filter BF algorithm is depicted in
Algorithm 1.

(iii) ORE.TokenGen(SK, a): on input a secret key SK and
a data item a, SU wants to compute the comparison
token for it.

(1) Data randomization: for a data item a, SU
uniformly samples a w-bit random number r

and computes its randomization as a′ � a‖11‖r.
(2) Token computation: the search user first com-

putes range prefix S([0, a||11||r]) �

Pa1, Pa2, . . . , Pal􏼈 􏼉 with l prefixes. Next, SU
computes hashes for each prefix P ∈
S([0, a||11||r]) as H(k1 ‖ P), H(k2 ‖ P), . . . ,

H(ks ‖ P).

)e comparison token Tka for the data item a is a
hash matrix:

H k1 ‖ Pa1(􏼁, H k2 ‖ Pa1(􏼁, . . . , H ks ‖ Pa1(􏼁, . . . ,􏼈

H k1 ‖ Pal(􏼁, H k2 ‖ Pal(􏼁, . . . , H ks ‖ Pal(􏼁􏼉.
(2)

(iv) ORE.OrderComp(Cd,TKa): after receiving the ci-
phertext Cd and comparison token TKa, the cloud
service provider checks whether BFd(TKa) � 1.)e
checking BFd(TKa) � 1 is done by checking whether
there exists a row i in TKa such that all the positions

H(v · r ‖ H(k1 ‖ Pai)), H(v · r ‖ H(k2 ‖ Pai)), . . . ,

H(v · r ‖ H(ks ‖ Pai)) of Bloom filter BFd are 1.
)at is, there exists prefix P in S([0, a′]) such that
P ∈ BFd′ . If BFd(TKa) � 1, set ans� 1; otherwise,
ans� 0.

)e ciphertext of data item d is Cd �

(Ed, Id) � ORE.Enc(SK, d).

5. Encrypted Range Queries

In this section, we describe the application of the introduced
ORE in range queries over the encrypted database. In our
model, the resource-constraint data owner outsources the
storage and computation tasks to the cloud service provider.
Subsequently, search users submit the range query requests
and obtain the query results. In outsourcing scenario, the
cloud service provider needs to learn the order information
for the range query. In this work, the above ORE scheme is
introduced to help it in the operation of order comparison.
To enhance the efficiency, the data owner stores data items in
tree structure, such as B-tree. We describe the secure range
query scheme with the proposed ORE scheme in the fol-
lowing algorithms

(i) RQ.Setup(λ): takes as input a security parameter, it
outputs the secret key SK� {sk1, sk2}, where secret
key SK is the same with that in the ORE scheme.

(ii) RQ.TreeBuild(D): takes as input a database D, the
data owner stores the data items D in a B-tree data
structure and obtains tree:

Γ � d1, d2, . . . , dn, P􏼈 􏼉, (3)

where d1, d2, . . . , dn are data items in database D

and P is a set of pointers to cover the parent-child
relations of Γ tree.

(iii) RQ.TreeEnc(SK, Γ): takes as input the secret key SK

and the tree Γ, the data owner runs the ORE.Enc
algorithm in the ORE scheme to encrypt Γ tree as

Γ∗ � Cd1
, Cd2

, . . . , Cdn
, P􏽮 􏽯, (4)

where Cdi
� Edi

, Idi
􏽮 􏽯 �ORE.Enc(SKdi). Since Γ∗

tree reveals order of data items in different nodes
and leaves data items in same node incomparable,
the encrypted Γ∗ tree is named as PORE tree.

(iv) RQ.RangeQuery(SK, Γ∗, [a, b]): the range query
algorithm consists of two phases. In the first phase,
search users compute and send the encrypted
ranges to CSP. In the second phase, CSP proceeds
the search process over the encrypted tree structure
Γ∗.

(1) Token generation: SU partitions the range [a, b]

into [0, a] and [0, b] two parts and uniformly
samples two random numbers r1 and r2 to
randomize the ranges [0, a] and [0, b] as

6 Security and Communication Networks

[0, a‖00‖r1] and [0, b‖11‖r2]. Next, search users
proceed the token computation algorithm in
ORE.TokenGen to generate search token TK[0,a]

and TK[0,b]. Finally, search users send the search
token TK[0,a] and TK[0,b] to CSP.

(2) After receiving search token, CSP searches the
tree from root to the leaf and finds the leftmost
and the rightmost leaf node intersecting with the
range.)e details of the search algorithm are
illustrated in Algorithm 2.

(v) RQ.Update(SK,Γ∗, d): to update the outsourced
database, the data owner generates the ciphertext
Ed, index Id, and token TKd and submits (Ed, Id,
TKd) to the cloud service provider CSP. After re-
ceiving the update request, CSP updates the data-
base by leveraging (Ed, Id, TKd). In the following, we
introduce the insertion, deletion, and modification
algorithms in detail:

(1) Suppose that DO wants to insert a data d into the
encrypted database. DO firstly computes and sends
the ciphertext Ed, index Id, and comparison token
TKd to CSP. Upon receiving the insertion token,
CSP takes this newdata as a split point and inserts it
into the parent node v. For a data item (Edi

, Idi
) in

the leaf node v, CSP checks whether data item di

satisfying BFdi
(TK[0,d]) � 1. CSP stores (Edi

, Idi
)

into the left node v1 if BFdi
(TK[0,d]) � 1. Other-

wise, CSP stores it into the right node v2.
(2) Suppose that DO wants to delete a data d from

the encrypted database.)e deletion algorithm
finds data items in the range [d, d], which is
similar to the range query algorithm and deletes
these data items.

(3) Suppose that DO wants to modify a data item d

to d in the encrypted database.)e modification
is converted to deletion and insertion operation.
)us, it can be done using above two steps.

(vi) RQ.Dec(SK, Res∗): on input the secret key SK and
encrypted results Res∗, DO firstly runs DET.Dec to
decrypt Res∗ and then removes random numbers to
obtain final results.

6. Analysis

In this section, we demonstrate the security analysis and
efficiency analysis.

6.1. Security Analysis

Theorem 1. ?e proposed ORE scheme over a well-domain
D is correct.

Proof. Suppose that r1 and r2 are two w-bit random
numbers, Cd is the ciphertext for data itemd, and TKa is the
comparison token for data item a. We prove the correctness
through d≤ a if and only if ans � 1 without considering the
false positive of Bloom filter.

First, we prove if d≤ a, then ans � 1. If d≤ a, we have the
relationd′ < a′. Owing to the fact that a data item d falls into
a range [a, b] if and only if F(d)∩ S([a, b])≠ϕ, we can
compute and draw the conclusion that F(d′)∩ S

([0, a′])≠ ϕ.)at means, BFd(TKa) � 1, namely, ans � 1.
Moreover, if we do not take false positive of Bloom filter

into consideration, we can prove the correctness.)at is, if
ans � 1, then BFd(TKa) � 1. Since BFd(TKa) � 1, we have
the conclusion that there exists a rowi in TKa such that all
the corresponding positions of Bloom filter BFd are equal to
1. Namely, F(d′)∩ S([0, a′])≠ ϕ that means d′ ≤ a′. Because
d′ � d||01||r1 anda′ � a‖11‖r2, we have the conclusion that
d≤ a (if d> a, then d′ > a′). □

Theorem 2. ?e proposed secure range query scheme over a
well-domain D is correct.

Input:
hash function: H(·)

secret keys: k1, k2, . . . , ks

data item: d
Output:
–Bloom filter: BFd

(1) In order to hide the frequency, DO adds a random fractional part r for the data item d as d′ � d‖01‖r, where r has the same number
of bits with the data item d and d′ is a (2w + 2)-bit number;

(2) DO computes prefix family of d′ as F(d′) � P1,P2, . . . ,P2w+3􏼈 􏼉;
(3) for i←1 to 2w + 3 do
(4) To remove the correlation among different nodes, DO chooses a random numberv · r which has the same size with secret keys

k1, k2, . . . , ks;
(5) for j←1 to s do
(6) DO first computes hash value H(kj ‖ Pi) and then sets 1 on the position H(v · r ‖ H(kj ‖ Pi));
(7) end for
(8) end for
(9) After inserting the prefix family, we have a secure Bloom filter BFd.

ALGORITHM 1: Secure BF.

Security and Communication Networks 7

Proof. Suppose that a data item d ∈ D, a range [a, b], and
their randomization d′ � d‖01‖r1, a′ � a‖00‖r2 and
b′ � b‖11‖r3, where r1, r2, and r3 are three w-bit random
numbers. We proof the correctness through d ∈ [a, b] if and
only if d ∈ Res.

First, we prove if d ∈ [a, b], then d ∈ Res. If d ∈ [a, b], we
have the relation a′ < d′ < b′. Owing to the fact that for a data
item d and range[a, b], x ∈ [a, b] if and only
ifF(d)∩ S([a, b])≠ ϕ, we can compute BFd′(M[0, a′]) �

0,BFd′(M[0, b′]) � 1.)at means, Cd ∈ Res∗, namely,
d ∈ Res.

Moreover, if we do not take false positive of Bloom filter
into consideration, we can prove the correctness.)at is, if
d ∈ Res, then d ∈ [a, b]. If d ∈ Dec(sk,Res∗), we can draw
the conclusion that

Cd ∈ Res
∗
,

BFd′ M 0, a′􏼂 􏼃(􏼁 � 0,

BFd′ M 0, b′􏼂 􏼃(􏼁 � 1.

(5)

)at is, d′ ∉ [0, a′] and d′ ∈ [0, b′], namely,

d||01||r1 ∉ 0, a||00||r2􏼂 􏼃,

d‖01‖r1 ∈ 0, b‖11‖r3􏼂 􏼃.
(6)

After derandomization, we can draw the conclusion that

d ∉ [0, a), d ∈ [0, b]. (7)

)at means d ∈ [a, b]. □

Theorem 3. ?e proposed ORE scheme is IND-OCPA secure
in the random oracle model.

Proof. For the convenience of understanding, we first in-
troduce the concept of computationally indistinguishable.
Let X � Xk􏼈 􏼉k and Y � Yk􏼈 􏼉k be ensembles of distributions.
X and Y are said to be computationally indistinguishable
(written XC ≈ Y), if for all PPT adversariesA,

Pr Xk(􏼁 � 1􏼂 􏼃 − Pr Yk(􏼁 � 1􏼂 􏼃 � negl(k). (8)

Next, we will prove the theorem in the following hybrid
games:

(i) Hybrid 1:)e IND-OCPA game for an adversaryA
and the proposed scheme. LetHA

1 (λ) be the random
variable indicating the output of A in the IND-
OCPA game, namely, A’s guess bit.

(ii) Hybrid 2:)e IND-OCPA game for an adversary
A, where the proposed scheme is revised to in-
stead the DET with a random oracle O (a random
oracle refers to an oracle which outputs a random
value r when given a value v for the first time, and
the same value r returns when v is given again.).
Let HA

2 (λ) be the random variable indicating the
output ofA in the IND-OCPA game, namely,A’s
guess bit.

(iii) Hybrid 3:)e IND-OCPA game for adversary A,
where the scheme in Hybrid 2 is revised to instead
hash function with a random oracle O. Let HA

3 (λ)

be the random variable indicating the output of A,
namely, A’s guess bit.

Because DET is a pseudo-random function, it is obvious
that HA

1 (λ)C ≈ HA
2 (λ). We give a proof by contradiction for

this conclusion. If these two hybrids are distinguishable,
then we construct a simulator D1 which distinguishes
pseudo-random numbers from random numbers.

)e distinguisher D1(rk􏼈 􏼉):

(1) Adversary A is given a security parameter and
outputs ({v0k} and {v1k}) with the same order relation;

(2) A uniform bit b← 0, 1{ } is chosen, and then a ci-
phertext {Cb

k}� {rk} is computed and given to the
adversary A;

(3))e adversary A outputs a bit b′, its guess for b.)e
distinguisher D1 outputs 1 if b′ � b (meaning
pseudo-random sequence) and 0 (meaning random
sequence) otherwise.

If adversary A can distinguish these two hybrids,
namely,

(i) Input:
(ii) encrypted PORE tree: Γ∗
(iii) search token: TK[a,b] � (TK[0,a]TK[0,b])
(iv) Output:
(v) encrypted results: Res∗
(1) CSP proceeds the search algorithm twice, once for TK[0,a] to find the leftmost leaf node and once for TK[0,b] to find the rightmost

leaf node;
(2) for v←root to leaf no de do
(3) CSP checks whether BFd(TK[0,a]) � 1 by checking whether there exists a row i in matrix TK[0,a] such that the positions

H(v · r ‖ H(k1 ‖ Pai),H(v · r ‖ H(k2 ‖ Pai), . . . ,H(v · r ‖ H(ks ‖ Pai) of BFd are equal to 1;
(4) Afterwards, CSP finds the largest value d satisfying BFd(TK[0,a]) � 1 and updates its corresponding child as the new value for v;
(5) end for
(6) CSP obtains the leftmost leaf node and the rightmost leaf node;
(7) Finally, CSP returns results Res∗ which include data items in leaf nodes between the two leaf nodes, in the leftmost leaf node

satisfying BFd(TK[0,a]) � 0 and in the rightmost leaf node satisfying BFd(TK[0,a]) � 1.

ALGORITHM 2: Tree search.

8 Security and Communication Networks

Pr A DET.Enc sk1, v
b
k􏼐 􏼑􏼐 􏼑 � 1􏽨 􏽩 − Pr A rk(􏼁 � 1􏼂 􏼃

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌> negl(k),

(9)

then we conclude that

Pr D1 � 1􏼂 􏼃

�
1
2
Pr D1 � 1|b � 0􏼂 􏼃 +

1
2
Pr[D1 � 1|b � 1]

�
1
2

+
1
2

· Pr A DET.Enc sk1, v
b
k􏼐 􏼑􏼐 􏼑 � 1􏽨 􏽩 − Pr A rk(􏼁 � 1􏼂 􏼃􏼐 􏼑

≥
1
2

+
1
2

· negl(k).

(10)

)us, we can draw the conclusion that
HA

1 (λ)C ≈ HA
2 (λ). Since H(·) is a pseudo-random function,

it draws the same conclusion thatHA
2 (λ)C ≈ HA

3 (λ). Fol-
lowing, we prove the probability adversary A guesses cor-
rectly in Hybrid 3 is 1/2.)at is, the winning advantage ofA
can be at most 1/(2 + negl(k)).)e data owner stores Cd �

(Ed, Id) in the cloud service provider for a data item d.
Because Ed is replaced with a random oracle, the adversary
A cannot distinguish the ciphertexts of v0i and v1i , namely,
Ev0

i

C ≈ Ev1
i
.

Moreover, recall that every value d is assigned a different
random number v.r, and random oracle O uses v.r to
compute hash functions for the secure Bloom filter BFd.
)us, given two different Bloom filters BFi and BFj, it is
infeasible for any PPT adversary A to distinguish whether a
same string or two different strings are mapped to them.
From this, it is easy to draw the conclusion that

BFv0
i

C ≈ BFv1
i
.Namely, Iv0

i

C ≈ Iv1
i
. (11)

As a result, the adversary A cannot distinguish with
nonnegligible probability.)at is,

Pr winA,kinHybrid 3􏽨 􏽩≤
1
2

+ negl(k). (12)

We complete the proof of)eorem 3. □

6.2. Efficiency Analysis. For the convenience of discussion,
some marks are introduced in this section. We denote by
E/D an encryption/decryption algorithm of the DETscheme
with IND-CPA secure, F is a PRF, H is a hash function, r is
the number of hashes in a Bloom filter, w is the bits of our
data item, n is the size of the database, N is the size of
message space, and t is the size of results. We omit other
operations such as comparison of plaintexts and uniformly
random permutation in Lewi-Wu ORE.

We now describe the efficiency analysis among MOPE
[16], Lewi-Wu ORE [27], and the proposed range query
scheme with PORE tree, shorted for the PORE scheme.)e
security in Table 1 demonstrates that all schemes achieve
IND-OCPA security which reveals nothing besides the order
relation. Furthermore, the PORE scheme hides data

frequency and data items in leaf nodes of our PORE scheme
which remain incomparable. Stored information in MOPE
[16] only consists of the ciphertexts, that is, produced by an
IND-CPA secure DET scheme.)erefore, the order com-
parison is achieved by the interaction with a DO/SU. In this
condition, there is about O(log n)-round communication
between DO/SU and CSP during the range query and update
operation. Ciphertexts in Lewi-Wu ORE [27] consist of the
left ciphertexts and the right ciphertexts. It is possible to
proceed the comparison algorithm with the left of one ci-
phertext and the right of another ciphertext. To enhance the
storage efficiency, CSP only stores the left ciphertexts (about
log n bits long) in the sorted order instead of the complete
ciphertexts (about n log 3 + log n bits long). When pro-
ceeding a range query or an update operation, DO generates
the right ciphertexts and sends them to the CSP.

)e basic idea of our PORE is inspired by Lewi-WuORE.
We split stored information into a ciphertext produced by
DET and an index Id.)e index Id is a Bloom filter
storingF(d) with the size of w + 1. Compared with the
MOPE and Lewi-Wu ORE scheme, the cost of encryption in
our PORE scheme is a little higher. While encryption is one-
time in the initialization phase, the cost is acceptable. In
range query and update phases, CSP obtains order com-
parison by communicating with the DO and SU in MOPE.
SU decrypts ciphertexts and returns the order information.
)e cost in Lewi-Wu ORE [27] is linear with the message
space for the DO/SU and logarithm with the database for
CSP. MOPE and Lewi-Wu ORE have a better efficiency for
CSP in both phases. Both schemes do not use the tre-
mendous compute power of CSP violating the definition of
cloud computing. Finally, we observe from decryption cost
that all these schemes have a high efficiency.

7. Performance Evaluation

In this section, we introduce a formal experimental simu-
lation among MOPE [16], Lewi-Wu ORE [27], and the
proposed PORE scheme in order to test the practical utility.
Specifically, the code is run with Python3 language on a
machine with an Intel Xeon (R) CPU i7-8565U processor
running at 16GHz and 1 Tmemory. We instantiate the hash
function with SHA-256 in the Lewi-Wu ORE scheme.)e
symmetric cipher used is AES-ECB-128 as provided by the
PyCrypto library, and the scalable Bloom filer is provided in
pybloom live library. Furthermore, we set error rate of
Bloom filter as 0.001 and storage limitation L � 4 of B-tree to
store ciphertexts.

7.1. Database Size. In the following experiment, we use the
Gowalla database which lists 6,442,890 check-in locations
collected from 196,591 users. We sample 1,000,000 data
items of 48 bit in the database to test the performance of the
MOPE and PORE scheme. Figure 4 demonstrates that Lewi-
Wu ORE [27] is only suitable in the small domain. In this
condition, we cut 12 bit from data items in the Gowalla
database to simulate the performance of search and update.

Security and Communication Networks 9

Table 1: Efficiency comparison among MOPE, Lewi-Wu ORE, and our proposed PORE.

Entity MOPE Lewi-Wu ORE PORE
Security IND-OCPA IND-OCPA IND-OCPA
Interaction log n 0 0
Frequency hiding No No Yes
Encryption DO nE nF nE + nr(w + 1)H

Range query SU 2 log n · D 2NF + 2NH 4r(w − 1)H

CSP — 2 log n · H 4r log n(w − 1)H

Insertion DO E + log n · D (N + 1)F + NH E + 2r(w − 1)H

CSP — log n · H 2r log n(w − 1)H

Deletion DO log n · D NF + NH 4r(w − 1)H

CSP — log n · H 4r log n(w − 1)H

Decryption SU t D tF t D

75

60

45

30

15

0

Ri
gh

t e
nc

ry
pt

io
n

tim
e c

os
t (

s)

8 10 12 14 16 18 20
Bit length of message space

Lewi-Wu ORE

Figure 4:)e average encryption time cost of the Lewi-Wu ORE scheme.

0.0 2.0 × 105 4.0 × 105 6.0 × 105 8.0 × 105 1.0 × 106
0

250

500

750

1000

Tr
ee

 co
ns

tr
uc

tio
n

tim
e c

os
t (

s)

Data item

MOPE
Lewi-Wu ORE
PORE

(a)

0.0 2.0 × 105 4.0 × 105 6.0 × 105 8.0 × 105 1.0 × 106

Data item

0

20

40

60

80

100

St
or

ag
e c

os
t (

M
)

MOPE
Lewi-Wu ORE
PORE

(b)

Figure 5:)e time cost (a) and storage cost (b) of tree construction. Lower is better.)e bit length of data item is 48 bit forMOPE and PORE
and 12 bit for Lewi-Wu ORE.

10 Security and Communication Networks

7.2.Network. For these experiments, we simulate all the data
owner, search users, and cloud service provider on the same
machine.)erefore, we test performance by measuring the
theoretical communication cost instead of the realistic
network with latency and bandwidth restrictions. In the
theoretical experimental simulation, we assume that the
network is slower than 5ms of latency and 20Mbps
bandwidth.

Figures 5(a) and 5(b) show the time cost and storage cost
on tree construction of MOPE, Lewi-Wu ORE, and our
PORE scheme. We can easily see that time cost of MOPE is
similar to that of Lewi-Wu ORE since the AES-ECB-128 is

used to encrypt data items in MOPE and to instantiate the
PRF in Lewi-Wu ORE. Furthermore, the time cost from 80s
at 100,000 data items and 1082s at 1,000,000 data items of
our PORE scheme is greater than that of the MOPE and
Lewi-Wu ORE scheme. Meanwhile, the storage cost from
10.5M to 105M of the PORE scheme is a little greater than
that of the MOPE and Lewi-Wu ORE scheme, from 8.2M to
82M and 7.5M to 75M, respectively.)e time cost and
storage cost are acceptable of our PORE scheme because of
one-time on tree construction.

In our main experiments, we test the performance of
range query and update operation (insertion and deletion)

100

80

60

40

20

0

Ra
ng

e q
ue

ry
 ti

m
e c

os
t (

s)

0.0 2.0 × 105 4.0 × 105 6.0 × 105 8.0 × 105 1.0 × 106

Data item

MOPE
MOPE-latency

Lewi-Wu-ORE
PORE

Figure 6:)e time cost of range query. Lower is better.)e number of range query is 1000 for MOPE, MOPE-latency, and PORE and 100
for Lewi-Wu ORE.

0

10

20

30

40

50

60

70

In
se

rt
io

n
tim

e c
os

t (
s)

MOPE
MOPE-latency

Lewi-Wu ORE
PORE

0.0 2.0 × 105 4.0 × 105 6.0 × 105 8.0 × 105 1.0 × 106

Data item

(a)

MOPE
MOPE-latency

Lewi-Wu ORE
PORE

0

10

20

30

40

50

60

D
el

et
io

n
tim

e c
os

t (
s)

0.0 2.0 × 105 4.0 × 105 6.0 × 105 8.0 × 105 1.0 × 106

Data item

(b)

Figure 7:)e time cost of (a) insertion and (b) deletion. Lower is better.)e number of insertion and deletion is 1000 for MOPE, MOPE-
latency, and PORE and 100 for Lewi-Wu ORE.

Security and Communication Networks 11

with 1,000 operations in MOPE and our PORE scheme and
that with 100 operations in the Lewi-Wu ORE scheme.)e
time cost of range query is shown in Figure 6. It demon-
strates that our PORE scheme is far less than MOPE-latency
and the Lewi-Wu ORE scheme. Furthermore, our scheme
achieves about 18ms per-range query on the database with
million data items vs. about 50ms per-operation for MOPE-
latency with communication latency.

Figures 7(a) and 7(b) show the time cost on insertion and
deletion operation. As these figures present, the cost is
dominated by communication on range query and insertion
and deletion of theMOPE-latency scheme with 5ms latency.
)e runtime is linear with the round of communication.
Moreover, the time cost of MOPE-latency and Lewi-Wu
ORE is about 5x greater than our scheme on insertion and 2x
on deletion operation. We can see that our scheme is well-
suited for range query and update operation.

8. Conclusions

In this paper, we introduce a noninteractive order-revealing
encryption scheme with comparison token to execute pri-
vacy-preserving order comparison in cloud computing.)e
introduced ORE scheme requires that the cloud service
provider could not perform order comparison until a search
token provided.)e security analysis shows that our ORE
scheme achieves IND-OCPA security. Furthermore, we
design a secure range query over the encrypted database
through designing PORE tree structure from the proposed
ORE scheme.)e designed PORE tree reveals partial order
information of plaintexts and leaves results incomparable
even after query execution. Finally, the experimental result
shows the high efficiency of our PORE scheme based on the
designing of the ORE scheme.

Data Availability

)e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

)e authors declare that they have no conflicts of interest
regarding the publication of this paper.

References

[1] C. Gentry, “Fully homomorphic encryption using ideal lat-
tices,” in Proceedings of the International Symposium of?eory
of Computing (STOC), pp. 169–178, Bethesda, MD, USA, May
2009.

[2] C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic
evaluation of the AES circuit,” in Proceedings of the Inter-
national Conference on Cryptology (CRYPTO), pp. 850–867,
Santa Barbara, CA, USA, August 2012.

[3] M. Li, “Leveled certificateless fully homomorphic encryption
schemes from learning with errors,” IEEE Access, vol. 8,
pp. 26749–26763, 2020.

[4] D. Boneh, A. Sahai, and B. Waters, “Functional encryption:
definitions and challenges,” in Proceedings of the International

Conference on ?eory of Cryptography (TCC), pp. 253–273,
Providence, RI, USA, March 2011.

[5] S. Goldwasser, S. D. Gordon, V. Goyal et al., “Multi-input
functional encryption,” in Proceedings of the International
Conference on ?eory and Applications of Cryptographic
Techniques (EUROCRYPT), pp. 578–602, Copenhagen,
Denmark, May 2014.

[6] A. Jain, N. Manohar, and A. Sahai, “Combiners for functional
encryption, unconditionally,” in Proceedings of the Interna-
tional Conference on?eory and Applications of Cryptographic
Techniques (EUROCRYPT), pp. 141–168, Zagreb, Croatia,
May 2020.

[7] D. X. Song, D. A.Wagner, and A. Perrig, “Practical techniques
for searches on encrypted data,” in Proceedings of the Inter-
national Conference on Security and Privacy (SP), pp. 44–55,
Berkeley, CA, USA, May 2000.

[8] D. Boneh, G. D. Crescenzo, R. Ostrovsky et al., “Public key
encryption with keyword search,” in Proceedings of the In-
ternational Conference on ?eory and Applications of Cryp-
tographic Techniques (EUROCRYPT), pp. 506–522,
Interlaken, Switzerland, May 2004.

[9] J. Wang, X. Chen, X. Huang, I. You, and Y. Xiang, “Verifiable
auditing for outsourced database in cloud computing,” IEEE
Transactions on Computers, vol. 64, no. 11, pp. 3293–3303,
2015.

[10] X. Chen, J. Li, X. Huang, J. Ma, and W. Lou, “New publicly
verifiable databases with efficient updates,” IEEE Transactions
on Dependable and Secure Computing, vol. 12, no. 5,
pp. 546–556, 2015.

[11] X. Chen, J. Li, J. Weng, J. Ma, and W. Lou, “Verifiable
computation over large database with incremental updates,”
IEEE Transactions on Computers, vol. 65, no. 10, pp. 3184–
3195, 2016.

[12] X. Wang, J. Ma, X. Liu et al., “Search me in the dark: privacy-
preserving boolean range query over encrypted spatial data,”
in Proceedings of the International Conference on Computer
Communications (INFOCOM), pp. 2253–2262, Toronto,
Canada, July 2020.

[13] Y. Peng, L. Wang, J. Cui et al., “LSRQ: A lightweight and
forward-secure range query on geographically encrypted
data,” IEEE Transactions on Dependable and Secure Com-
puting, vol. 99, Article ID 2974218, 2020.

[14] R. Agrawal, J. Kiernan, R. Srikant et al., “Order-preserving
encryption for numeric data,” in Proceedings of the Interna-
tional Conference on Management of Data (SIGMOD),
pp. 563–574, Paris, France, June 2004.

[15] A. Boldyreva, N. Chenette, Y. Lee et al., “Order-preserving
symmetric encryption,” in Proceedings of the International
Conference on ?eory and Applications of Cryptographic
Techniques (EUROCRYPT), pp. 224–241, Cologne, Germany,
April 2009.

[16] R. A. Popa, F. Li, and N. Zeldovich, “An ideal-security
protocol for order-preserving encoding,” in Proceedings of the
International Conference on Security and Privacy, pp. 463–
477, (SP), Berkeley, CA, USA, May 2013.

[17] J. Guo, J. Wang, Z. Zhang et al., “An almost non-interactive
order preserving encryption scheme,” in Proceedings of the
International Conference on Information Security Practice and
Experience (ISPEC), pp. 87–100, Tokyo, Japan, September
2018.

[18] D. Boneh, K. Lewi, M. Raykova et al., “Semantically secure
order-revealing encryption: multi-input functional encryp-
tion without obfuscation,” in Proceedings of the International
Conference on ?eory and Applications of Cryptographic

12 Security and Communication Networks

Techniques (EUROCRYPT), pp. 563–594, Sofia, Bulgaria,
April 2015.

[19] D. Cash, F. Liu, A. ONeill et al., “Parameter-hiding order
revealing encryption,” in Proceedings of the International
Conference on ?eory and Application of Cryptology and In-
formation Security (Asia CRYPT), pp. 181–210, Brisbane,
Australia, December 2018.

[20] Y. Li, H. Wang, and Y. Zhao, “Delegatable order-revealing
encryption,” in Proceedings of the International Conference on
Computer and Communications Security (AsiaCCS),
pp. 134–147, Auckland, New Zealand, July 2019.

[21] H. Kadhem, T. Amagasa, and H. Kitagawa, “A secure and
efficient order preserving encryption scheme for relational
databases,” in Proceedings of the International Conference on
Knowledge Management and Information Sharing (KMIS),
pp. 25–35, Valencia, Spain, October 2010.

[22] D. Liu and S. Wang, “Programmable order-preserving secure
index for encrypted database query,” in Proceedings of the
International Conference on Cloud Computing (CLOUD),
pp. 502–509, Honolulu, HI, USA, June 2012.

[23] D. Liu and S. Wang, “Nonlinear order preserving index for
encrypted database query in service cloud environments,”
Concurrency and Computation: Practice and Experience,
vol. 25, no. 13, pp. 1967–1984, 2013.

[24] Perspecsys, “)e PRS Server: Data Protection for Cloud
Applications,” http://www.perspecsys.com/perspecsys-cloud-
protection-gateway/.

[25] F. Y. Rashid, “Salesforce.com Acquires SaaS Encryption
Provider Navajo Systems”, eWeek.Com, 2011. https://www.
cioinsight.com/c/a/Latest-News/Salesforcecom-Acquires-
SaaS-Encryption-Provider-Navajo-Systems-331154.

[26] N. Chenette, K. Lewi, S. A. Weis et al., “Practical order-re-
vealing encryption with limited leakage,” in Proceedings of the
International Conference on Fast Software Encryption (FSE),
pp. 474–493, Bochum, Germany, March 2016.

[27] K. Lewi and D. J. Wu, “Order-revealing encryption: new
constructions, applications, and lower bounds,” in Proceed-
ings of the International Conference on Computer and Com-
munications Security (CCS), pp. 1167–1178, Vienna, Austria,
October 2016.

[28] X. Wang and Y. Zhao, “Order-revealing encryption: file-in-
jection attack and forward security,” in Proceeding of Inter-
national Conference on European Symposium on Research in
Computer Security (ESORICS), pp. 101–121, Barcelona, Spain,
September 2018.

[29] D. Boneh and B. Waters, “Conjunctive, subset, and range
queries on encrypted data,” in Proceedings of the International
Conference on ?eory of Cryptography (TCC), pp. 535–554,
Amsterdam, Netherlands, February 2007.

[30] X. Boyen, X. Fan, and E. Shi, “Adaptively secure fully ho-
momorphic signatures based on lattices,” IACR Cryptology,
Article ID 916, 2014.

[31] J. Furukawa, “Request-based comparable encryption,” in
Proceedings of the International Conference on European
Symposium on Research in Computer Security (ESORICS),
pp. 129–146, Egham, UK, September 2013.

[32] A. Boldyreva, N. Chenette, and A. ONeill, “Order-preserving
encryption revisited: improved security analysis and alter-
native solutions,” in Proceedings of the International Con-
ference on Cryptology (CRYPTO), pp. 578–595, Santa Barbara,
CA, USA, August 2011.

[33] L. Xiao, I. Yen, and D. T. Huynh, “Extending order preserving
encryption for multi-user systems,” IACR Cryptology, Article
ID 192, 2012.

[34] J. Dyer, M. Dyer, and J. Xu, “Order-preserving encryption
using approximate integer common divisors,” in Proceedings
of the International Conference on Data Privacy Management,
Cryptocurrencies and Blockchain Technology, pp. 257–274,
Oslo, Norway, September 2017.

[35] F. Kerschbaum, “Frequency-hiding order-preserving en-
cryption,” in Proceedings of the International Conference on
Computer and Communications Security (CCS), pp. 656–667,
Denver, CO, USA, October 2015.

[36] L. Arge, “)e buffer tree: a technique for designing batched
external data structures,” Algorithm, vol. 37, no. 1, pp. 1–24,
2003.

[37] D. S. Roche, D. Apon, S. G. Choi, and A. Yerukhimovich,
“POPE: partial order preserving encoding,” in Proceedings of
the of International Conference on Computer and Commu-
nications Security (CCS), pp. 1131–1142, Vienna, Austria,
October 2016.

[38] J. Eom, D. H. Lee, and K. Lee, “Multi-client order-revealing
encryption,” IEEE Access, vol. 6, pp. 45458–45472, 2018.

[39] M. Naveed, S. Kamara, and C. V. Wright, “Inference attacks
on property-preserving encrypted databases,” in Proceedings
of the International Conference on Computer and Commu-
nications Security (CCS), pp. 644–655, Denver, CO, USA,
October 2015.

[40] Y. Pan, A. Efrat, M. Li et al., “Data inference from encrypted
databases: a multi-dimensional order-preserving matching
approach,” 2020, https://arxiv.org/abs/2001.08773v1.

[41] B. H. Bloom, “Space/time trade-offs in hash coding with
allowable errors,” Communications of the ACM, vol. 13, no. 7,
pp. 422–426, 1970.

[42] P. Gupta and N. McKeown, “Algorithms for packet classifi-
cation,” IEEE Network, vol. 15, no. 2, pp. 24–32, 2001.

[43] R. Li, A. X. Liu, A. L. Wang, and B. Bruhadeshwar, “Fast and
scalable range query processing with strong privacy protec-
tion for cloud computing,” IEEE/ACM Transactions on
Networking, vol. 24, no. 4, pp. 2305–2318, 2016.

Security and Communication Networks 13

http://www.perspecsys.com/perspecsys-cloud-protection-gateway/
http://www.perspecsys.com/perspecsys-cloud-protection-gateway/
https://www.cioinsight.com/c/a/Latest-News/Salesforcecom-Acquires-SaaS-Encryption-Provider-Navajo-Systems-331154
https://www.cioinsight.com/c/a/Latest-News/Salesforcecom-Acquires-SaaS-Encryption-Provider-Navajo-Systems-331154
https://www.cioinsight.com/c/a/Latest-News/Salesforcecom-Acquires-SaaS-Encryption-Provider-Navajo-Systems-331154
https://arxiv.org/abs/2001.08773v1

