
Research Article
A Collusion-Resistant Identity-Based Proxy Reencryption
Scheme with Ciphertext Evolution for Secure Cloud Sharing

Shimao Yao,1,2 Ravi Sankar,3 and In-Ho Ra 2

1School of Information Science and Technology, Jiujiang University, Jiujiang 322005, China
2Information and Communication Engineering, Kunsan National University, Gunsan 54150, Republic of Korea
3Department of Electrical Engineering, University of South Florida, Tampa 33620, USA

Correspondence should be addressed to In-Ho Ra; ihra@kunsan.ac.kr

Received 7 April 2020; Revised 21 August 2020; Accepted 3 September 2020; Published 14 October 2020

Academic Editor: Clemente Galdi

Copyright © 2020 Shimao Yao et al.)is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In order to solve the challenges of user data security in the cloud computing (storage) environment, many encryption solutions
with different features have been presented. Among them, proxy reencryption (PRE) based on public-key infrastructure (PKI) is a
promising technology for secure cloud sharing. And identity-based proxy reencryption (IBPRE), which uses identity as the public
key, eliminates burdensome certificate management and is, therefore, more preferable. However, most of the current IBPRE
schemes only focus on the processing of data sharing while overlooking the functions of authorization revocation and ciphertext
update, which are more closely related to the security of data itself. Moreover, the few existing schemes that involve ciphertext
update turn out to be impractical because the length of ciphertext increases with the reencryption of ciphertext. In this paper, an
improved IBPRE scheme, which provides improvements on the inadequacies of the scheme proposed by Ateniese et al. especially
in terms of collusion safety and ciphertext evolution, is proposed. To the best of our knowledge, this is a practical IBPRE scheme
integrating the functions of access authorization, delegation revocation, ciphertext update, reauthorization, and conditional
reservation delegation.)e proposed technique has high practicability in the scenario where a large number of ciphertexts need to
be updated synchronously. Lastly, the comparative analysis and simulation results show that the two reencryption algorithms in
the proposed scheme have the shortest computing time than other schemes.

1. Introduction

With the advancement and prevalence of cloud computing
technology, more and more users opt to store their user data
on cloud servers due to its convenience and ubiquity of
access. However, different from local storage, the control
and ownership of data in cloud storage are separated, and
the cloud server is not completely trustworthy. Outsourcing
data to the cloud will face many security issues and chal-
lenges in data integrity, confidentiality, access authorization,
ciphertext search, and ciphertext evolution. To solve these
security problems, many scholars have conducted numerous
relevant researches and proposed various solutions. For
example, there are cloud storage public auditing schemes for
data integrity [1], proxy reencryption (PRE) schemes for
encrypted data authorization [2], identity-based encryption

(IBE) schemes with keyword search [3], IBE schemes sup-
porting ciphertext update evolution [4], and lattice-based
encryption (LBE) schemes to achieve postquantum security
[5]. Some of these solutions addressed multiple aspects of
data security, while others focused on only one or two as-
pects of data security. For example, the PRE scheme [6]
assumes that the proxy is semitrusted and will follow the
protocol and not tamper with the user’s data to ensure data
integrity. It only focuses on confidentiality and access au-
thorization of the data.

It is too complex and unrealistic to consider all security
issues in one cloud storage solution, but it is feasible and
necessary to assemble some security requirements into one
system. For example, in a personal data public cloud sharing
application scenario, it urgently requires an encryption
solution, which includes functions of access authorization,

Hindawi
Security and Communication Networks
Volume 2020, Article ID 8833693, 16 pages
https://doi.org/10.1155/2020/8833693

mailto:ihra@kunsan.ac.kr
https://orcid.org/0000-0002-3936-1116
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8833693

key update, ciphertext update, authorization revocation,
reauthorization, conditional reservation authorization, and
avoids complex certificate management.)e consideration
is based on the reasons as follows:

(1) Access authorization is the primary function of se-
cure cloud data sharing. If a user’s encrypted private
data stored in the cloud are accessed only by himself
but not shared with others, it is not as convenient as
carrying a large mobile storage device around. At
present, to realize secure authorization of encrypted
data, PRE technology is considered as the most
promising solution. Also, identity-based proxy
reencryption (IBPRE) uses identity as the public key,
eliminates burdensome certificate management, and
is, therefore, more preferable.

(2) Authorization revocation is also a function that must
be considered in the personal data cloud sharing
scheme. If a user’s identity has expired or his key has
been broken, his access permission should be
revoked.

(3))e necessity of reauthorization. If the original au-
thorization expires or becomes invalid after the ci-
phertext is updated or the key is updated, the
authorization must be renewed for the legitimate
user.

(4))e need for the key update. For cryptography
systems, its security relies on the protection of the
key. According to the Special Publication SP-80057
[7] issued by the National Institute of Technology
(NIST), cryptograph-based ciphertext key has a strict
life cycle; that is, the key needs to be updated after a
certain period.

(5))e requirement of ciphertext update.)ere are two
types of ciphertext update.)e first one is passive
update. If the authorized access permission is re-
voked, the encrypted ciphertext should be renewed
to prevent the old authorization key and the revoked
visitor from continuing to access the ciphertext.)e
second one is active update, also be termed ci-
phertext evolution. If the delegator updates his en-
cryption key, the ciphertext needs to evolve
synchronously.

(6) Special requirements for conditional reservation
authorization. Sometimes, the user wants to specify
the requestor’s access right at the reserved time to
implement access control. For instance, one user
with a solar energy collection system wants to sell the
excess energy to others in the microgrid. Similarly,
other prosumers also wish to sell their excess energy.
)ese suppliers will share their energy information
to an energy consumer, who cannot access the report
containing the energy price in advance. Otherwise, it
may lead to malicious bidding or collusion.

As far as we know, the IBPRE scheme can basically
achieve access authorization without complicated certificate
management.)ere are also some proposals that have

supported conditional authorization [8, 9], some systems
that have achieved authorization revocation [10, 11], and
some schemes that have even considered the function of
updating ciphertext [10]. However, no satisfactory solution
has been found to meet all of the above needs.)erefore, this
motivates our work to find a practical IBPRE scheme with
functions of access authorization, ciphertext update, and
delegation revocation.

1.1. Related Work. PRE allows a proxy to convert a ci-
phertext under one user’s (delegator’s) public key into an-
other ciphertext which can be decrypted with another user’s
(delegatee’s) private key, without disclosing the underlying
plaintext and secret key information. Since Blaze et al. [12]
proposed the first PRE scheme, a large number of PRE
schemes with different characteristics have been presented.
In [13], Nuñez et al. reviewed, compared, and analyzed the
main PRE researches.)eir study included PKI-based proxy
reencryption [14–16], identity-based proxy reencryption
(IBPRE) [17, 18], attribute-based proxy reencryption
(ABPRE) [19, 20], and lattice-based proxy reencryption
(LBPRE) [21]. Among these studies, the IBPRE scheme is
presented to be an important research direction. It combines
identity-based encryption (IBE) [22, 23] and PRE [12],
where the user’s identity is used as the public key for en-
cryption, avoiding the complex public-key certificate
management which is beneficial in several scenarios.

Green and Ateniese [18] put forward the first IBPRE
scheme, in which two noncollusion safe approaches were
introduced, and some promising applications of IBPRE were
mentioned. Subsequently, many improvements and appli-
cations were proposed to meet various needs and shortages
of previous solutions. Wang et al. [24] proposed two IBPRE
schemes that could resist collusion attacks.)e first one has
no ciphertext expansion, while the second one achieves CCA
security. Wang et al. [25] gave an improved multiuse IBPRE
scheme, which achieves CCA2 security in the random oracle
model.)eir solution gives a confirmable answer to the open
problem mentioned in [18]. Shao and Cao [26] introduced
the first CCA-secure and collusion-safe IBPRE scheme in the
standard model. Xu et al. [8] presented a conditional
identity-based broadcast PRE scheme and applied it to cloud
e-mail. Zhou et al. [27] proposed an IBPRE scheme with
version 2, which provides a ciphertext transformation from
complicated identity-based broadcast encryption (IBBE) to
simple IBE. Ge et al. [9] presented a secure fine-grained
identity-based broadcast PRE scheme for encrypted
microvideo sharing.)e schemes mentioned above analyzed
the efficiency, security, and access control of the algorithms
in detail but did not consider the functions of permission
revocation and ciphertext evolution.

Liang et al. [10] proposed an efficient cloud-based rev-
ocable IBPRE scheme for periodic key and ciphertext up-
dates by updating time tokens, in which the length of
ciphertext increases linearly with the number of times of
reencryption. Sun et al. [4] proposed a CCA-secure revo-
cable IBE with ciphertext evolution for data sharing in cloud

2 Security and Communication Networks

storage, which emphasizes that the size of the ciphertext in
the cloud remains in constant size regardless of evolutions.
However, their approach is not based on PRE.)e ciphertext
stored in the cloud is encrypted by the data owner using the
identity of the requester instead of his own identity, which
means that there are multiple ciphertexts stored on the cloud
corresponding to different requesters, instead of only one
ciphertext in the PRE system. Shafagh et al. [6] realized a
project that includes functions of authorization, revocation,
key update, and ciphertext update in PKI-based architecture,
which needs complex certificate management.

Intuitively, IBPRE (such as in [10, 25, 26]) can be used
directly for updating ciphertext, but usually ciphertext grows
with the number of encryption times, which is not practical.

1.2. Our Contributions. Inspired by the work presented in
[6], we propose an improved IBPRE scheme, which in-
cludes the functions above for a secure personal data cloud
sharing application.)is improved approach has the
characteristics of noninteractivity, unidirectionality, col-
lusion safety, ciphertext optimization, and multiuse and
nontransferability in the random oracle model. Moreover,
the ciphertext update (reencryption) operations can be
executed multiple times, and the ciphertext length remains
the same.)e ciphertext reencrypted (delegated) to the
delegate, however, cannot be reencrypted (reauthorized).
)e improvements are based on Green and Ateniese [18]
and aim to realize secure user data sharing on cloud servers
by combining essential characteristics of data sharing, ci-
phertext updating, and attribute-based access permission
granting and revocation. Furthermore, the scheme also
highlights the properties of multiuse and collusion-resis-
tant and the optimization of reencryption performance
(that shortens reencryption time; ensure efficiency when
many users access data, or much ciphertext updated
concurrently).)e main contributions of this paper are as
follows:

(1) Provide improvements in the work proposed in [18]
that focuses on achieving collusion safety and
multiuse without ciphertext expansion and mini-
mizing reencryption time.

(2) Propose a practical IBPRE scheme that includes
functions of access authorization, delegation revo-
cation, ciphertext update, reauthorization, and

conditional reservation delegation to implement
secure cloud data sharing.

(3) Apply the improved IBPRE scheme to a practical
secure user data sharing application and provided an
analysis comprehensively.

)e rest of the paper is organized as follows. Section 2
describes some of the cryptographic primitives, definitions,
and some properties of the proxy reencryption.)e system
model and the assumptions of the proposed scheme are
given in Section 3.)e improved IBPRE algorithm is de-
scribed in detail in Section 4, and the application of the
improvements is deployed to a secure cloud data sharing
scenario presented in Section 5. A comparison and analysis
of the proposed scheme and existing schemes are provided
in Section 6, and finally, the conclusion is given in Section 7.

2. Preliminaries

2.1. Bilinear Map and Decisional Bilinear Diffie–Hellman
Problem [25]

Definition 1 (bilinear map). Let G1 and G2 are two cyclic
groups of the same prime order q and g be a generator of G1.
We say that e: G1 × G1⟶ G2 is a bilinear map if it satisfies
the following properties:

(1) Bilinear: for all a, b ∈ Z∗q and g ∈ G1,
e(ga, gb) � e(g, g)ab.

(2) Nondegenerate: e(g, g)≠ 1G2
, where 1G2

is the unit of
G2.

(3) Computability: e can be efficiently computed.

Definition 2 (decisional bilinear Diffie–Hellman (DBDH)
problem). Let G1 and G2 are two cyclic groups of the same
prime order q and g be a generator of G1. Support that
e: G1 × G1⟶ G2 is a bilinear map.)e decisional bilinear
Diffie–Hellman (DBDH) problem is to decide, given a tuple
of values (g, ga, gb, gc, T) ∈ G4

1 × G2 (where a, b, c∈RZ∗q),
whether T � e(g, g)abc holds.

Let k be a security parameter of sufficient size. Formally,
we say that the DBDH assumption holds inG1, G2, e, if for all
probabilistic polynomial time (PPT) algorithm A, the fol-
lowing condition is true, where v(·) is defined as a negligible
function:

Pr a, b, c⟵ RZ
∗
q ; 1⟵A g, g

a
, g

b
, g

c
, e(g, g)

abc
􏼐 􏼑􏽨 􏽩 − Pr a, b, c⟵ RZ

∗
q ; T⟵ RG2; 1⟵A g, g

a
, g

b
, g

c
, T􏼐 􏼑􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ v(k).

(1)

2.2. Definition and Security Model of IBPRE-CE

Definition 3 (identity-based proxy reencryption with ci-
phertext evolution). An identity-based proxy reencryption
scheme with ciphertext evolution (IBPRE-CE) is a tuple of

algorithms (Setup, KeyGen, Encrypt, RKGen1, RKGen2,
Reencrypt1, Reencrypt2, Decrypt1, and Decrypt2) as follows:

(1) Setup(1k): taking a security parameter k as input, this
algorithm generates both master public parameters

Security and Communication Networks 3

(mpp) and master secret key (msk).)e mpp is dis-
tributed to all participants, while themsk is kept secretly.

(2) KeyGen (mpp,msk, id): taking mpp, msk, and an
identity id as input, this algorithm outputs a cor-
responding private key skid.

(3) Encrypt(mpp, id, m): taking mpp, identity id, and
message m as input, this algorithm computes an
original ciphertext cid.

(4) RKGen1(mpp, skid1, id1, id2, C1): taking mpp, skid1,
identities(id1, id2), and an element of ciphertext C1
as input, this algorithm calculates a delegation token
rkid1⟶ id2.

(5) RKGen2(mpp, skid1, id1′, C1): taking mpp, old private
key skid1, a new identity id1′, and an element of ci-
phertext C1 as input, this algorithm produces an
update key rkid1⟶ id1′.

(6) Reencrypt1(mpp, rkid1⟶ id2, cid1): taking mpp, del-
egation key rkid1⟶ id2, and ciphertext cid1 as input,
this algorithm converts the ciphertext cid1 into a
delegation ciphertext cid2.

(7) Reencrypt1(mpp, rkid1⟶ id1′, cid1): taking mpp, up-
date key rkid1⟶ id1′, and old ciphertext cid1 as input,
this algorithm updates the ciphertext cid1 into a new
ciphertext cid1′.

(8) Decrypt1(mpp, skid1, cid1): taking mpp, delegator’s
(latest) private key skid1, and ciphertext cid1 as input,
this algorithm outputs corresponding plaintext or an
error flag ⊥.

(9) Decrypt2(mpp, skid2, cid2): taking mpp, delegatee’s
private key skid2, and delegation ciphertext cid2 as
input, this algorithm outputs corresponding plain-
text or an error flag ⊥.

We say that an IBPRE-CE scheme is consistent if for any
valid identities id1, id2, and id1′, their secret keys skid1, skid2,
and skid1′ (generated by KeyGen), the corresponding reen-
cryption key rkid1⟶ id1′ and rkid1⟶ id2 (generated by
RKGen2 and RKGen1), and ciphertexts cid1, cid2, and cid1′
(computed by Encrypt, Reencrypt1, and Reencrypt2), the
following equations hold:

① Decrypt1(mpp, skid1,Encrypt(mpp, id1, m)) � m.
② Decrypt1(mpp, skid1′,Reencrypt2(mpp, rkid1
⟶ id1′,Encrypt(mpp, id1, m))) � m.

③ Decrypt2(mpp, skid2,
Reencrypt1(mpp, rkid1⟶ id2,Encrypt
(mpp, id1, m))) � m.

Definition 4 (IND-PrID-CPA security of IBPRE-CE). An
IBPRE-CE scheme is indistinguishable against chosen
plaintext and identity attack (IND-PrID-CPA) secure if no
probabilistic polynomial time (PPT) adversary A wins the
following game with a nonnegligible advantage:

(1) Setup.)e challenger C runs Setup(1k) to generate
the master public parameters (mpp) and the master

secret key (msk).)empp is sent to A, while the msk
is kept securely.

(2) Phase 1. A issues some private key queries Osk,
updates reencryption key queriesOuk, and delegation
reencryption key queries Odk as follows:

(i) On receiving any query of the form (Osk, id), C

returns skid←KeyGen(mpp,msk, id) to A.
(ii) On receiving any query of the form (Odk, id1,

id2,C1), C returns rkid1⟶ id2←RKGen1
(mpp, skid1, id1, id2, C1) to A, where skid1←
KeyGen(mpp,msk, id1) and C1 is an element of
ciphertext.

(iii) On receiving any query of the form (Ouk, id1,
id1′,C1), C returns rkid1⟶ id1←RKGen2
(mpp, skid1, id1′, C1) to A, where skid1←KeyGen
(mpp,msk, id1) and C1 is an element of
ciphertext.

(4) Challenge. At the end of phase 1, A outputs two
equal-length messages m0 and m1, and a challenging
identity id∗ which does not exist in trivial decryption
(e.g., A holds a private key of id∗ or some trans-
formation keys which are update reencryption keys
or delegation reencryption keys from id∗ to id and
the decryption key of id).)e challenger C returns a
challenge ciphertext c∗ � Encrypt(mpp, id∗, mi),
where i∈R 0, 1{ }.

(5) Phase 2. A adaptively issues queries as phase 1 with
some restrictions that the private key of id∗ and any
trivial decryption key query (Osk, Ouk, Odk) have
never been queried.)e restrictions are as follows:

(i))e private key corresponding to id∗ has not
been queried.

(ii) If a series of update key queries which originate
from id∗ to id1, next from id1 to id2,. . ., from
idn− 1 to idn, have been issued, the private key of
any id in set ID= {id1, id2, . . . idn} has not been
queried.

(iii) If the delegation key query from id∗ to idj has
been issued, the private key of idj has not been
queried.

(iv) If a series of update key queries which originate
from id∗ to id1, next from id1 to id2,. . ., from
idn− 1 to idn have been issued, and delegation key
from any id in set ID = {id1, id2, . . . idn} to idj

has been queried, the private key of idj has not
been queried.

(6) Guess. A gives a guess i′ ∈ 0, 1{ }.

)e advantage of A in the above game is defined by
ε � |Pr[i′ � i] − (1/2)|.

2.3. Properties of Proxy Reencryption. In literature [13],
Nuñez et al. summarized several security concepts and
properties of PRE and described that the existing schemes

4 Security and Communication Networks

are either unidirectional or bidirectional, single use or
multiuse, collusion safe or not, transferable or nontrans-
ferable, transitive or nontransitive, identity-based or not, and
interactive or noninteractive. In addition, based on the
achieved notion of security, PRE schemes can achieve chosen
plaintext attacks (CPAs) security or chosen ciphertext attacks
(CCAs) security. For clarity, this subsection briefly reiterates
some of these properties, in particular, giving focus to those
that are provided by the proposed scheme and are relevant for
practical instantiations of IBPRE:

(1) Noninteractivity: this property means that the user
does not need to interact with the requester or trusted
third party because there is no need for their secret
information (e.g., private key or master system key) to
generate the reencryption key. With this property, the
user can delegate access permission to the requester
without interaction and can even assign a requester’s
decryption condition associated with its identity.

(2) Multiuse capability: the ciphertext can be converted
multiple times, e.g., from the ciphertext cid1 to ci-
phertext cid2 and from ciphertext cid2 to ciphertext
cid3.)erefore, the data owner can update the ci-
phertext multiple times as needed.

(3) Collusion safety: in this characteristic, even if the
delegatee colludes with the proxy, the delegator’s
private key does not be compromised. And we can
denote it as rkid1⟶ id2 + skid2↛skid1, where
rkid1⟶ id2 is the reencryption key known by the
proxy, and skid2 is id2’s (delegatee’s) private key, and
skid1 is id1’s (delegator’s) private key.

(4) Nontransitivity: in this characteristic, the proxy (or
two colluded proxies) cannot derive a reencryption
key from two continuous reencryption keys. For
example, rkid1⟶ id2 and rkid2⟶ id3 can get
rkid1⟶ id3.

(5) Nontransferability: this property means that a del-
egatee (even if colludes with the proxy) cannot
transfer the decryption ability to a third party or
entity. For example, user id1 generates the reen-
cryption key rkid1⟶ id2 to delegate the decryption
capacity to the requestor id2 who can decrypt the
reencrypted ciphertext but cannot generate a new
delegation key which originates from id1 (i.e.,
rkid1⟶ id3) or reencrypt the delegation ciphertext to
generate a new ciphertext which can be decrypted by
a third entity with the private key skid3.

(6) Unidirectionality: with the reencryption key
rkid1⟶ id2, the proxy can convert user id1’s cipher-
text to another one that can be decrypted by the user
id2, but not vice versa.

(7) Ciphertext optimality: the ciphertext does not ex-
pand upon reencryption.)is property means that
the size of the ciphertext will be constant when
transformed.

(8) Key optimality: the requester needs only one private
key to decrypt the ciphertext encrypted by himself or

the reencrypted ciphertext comes from different
proxies.

Besides the characteristics described above, it is also
worthy to note that there are other properties identified to be
essential for some applications of PRE introduced in
[13, 14, 18, 24].

3. System Model and Assumptions

3.1. SystemModel. As shown in Figure 1, the system consists
of the user (data owner and delegator), the requester (del-
egatee), the private key generator (PKG), and the cloud
server (proxy).

)e PKG is responsible for generating the master public
parameters and master secret key of the system, so it should
be a trusted third party. All the participants in the system can
get the master public parameters, but only PKG knows the
master secret key. In addition, the PKG will generate a
corresponding private key when it receives a legal key
generation request for a user’s identity.)en, the generated
private key (and themaster public parameters) will be sent to
the user securely.

)e user is assumed to subscribe to a cloud service from a
cloud service provider for user data storage and/or data
processing. After getting the public parameters from the
PKG, the user can encrypt the user data with the identity
before uploading it to the cloud server for storage.)e user
can download and decrypt the ciphertext with his own secret
key. If the data needs to be shared with some requesters (e.g.,
friends or cooperators), the user needs to generate a cor-
responding reencryption key (a.k.a. delegation key).)is
reencryption key also needs to be sent to the proxy secretly.
Moreover, the user generates an update key, which is also a
reencryption key for updating the ciphertext on the cloud
server through the proxy.

)e requester may be a friend or a cooperative partner
who wants to access some of the data encrypted by the data
owner and stored on a cloud server.)e requester, who is a
valid delegatee, can decrypt the delegation ciphertext con-
verted by the proxy to get the delegator’s data. To reduce the
complexity, the authentication of the requester is not con-
sidered in this work.

)e proxy stores the ciphertext encrypted by the user and
transforms the ciphertext with the reencryption key. If the
reencryption key is for updating ciphertext, the proxy
transforms the ciphertext to a new ciphertext directly. If the
reencryption key is for delegation, the proxy will keep it
secret and use it to generate a new delegation ciphertext
when the legitimate delegatee requests the user data. Finally,
the proposed scheme assumes that the cloud server only
keeps one copy of the data.

3.2. System Security Assumptions.)e proposed work as-
sumes that the user’s private key can be transported secretly
from the PKG to the user.)e user’s delegation key can be
securely sent to the proxy (cloud server) too.)e cloud
service is robust but not wholly trusted; that is, the user data
and delegation key stored on it will not be lost due to some

Security and Communication Networks 5

physical disasters or not be modified, but the cloud server or
its administrators because of several reasons (curiosity or
specific purpose) are interested in obtaining user data as well
as some of the user’s key. Moreover, the cloud servers might
collude with some malicious users, or a former authorized
user whose permission has been revoked is also considered
in the improvements. All entities in the system will follow
the communication protocol that will respond to the request
correctly.

4. Proposed Scheme

)e differences between the proposed scheme and the
original scheme in [18] exist in three aspects: reencryption
key generation algorithm, reencryption algorithm, and de-
cryption algorithm:

(1))ere are two reencryption key generation algo-
rithms in our proposal.)e first one (RKGen1)
improves the key generation algorithm of the orig-
inal scheme by replacing the multiplication opera-
tion in the function with a bilinear mapping
operation. In this way, if the proxy colludes with the
delegatee, they can only get the bilinear pair, but not
the private key.)us, this achieves collusion resis-
tance.)e second one (RKGen2) is a new reen-
cryption key generation algorithm, wherein the
generated key is used for updating ciphertext and is
discussed in detail in Section 5.

(2) Our approach has two reencryption algorithms with
different functions, while the original scheme only
has one reencryption algorithm used for delegation.
)e first reencryption algorithm REncrypt1 used to
calculate the delegation ciphertext is single use.)e
newly added one REncrypt2 used for ciphertext
update is multiuse. We utilize these two algorithms
to perfectly solve the contradiction between re-
quiring multiple reencryption and not allowing
reencryption.

(3) Two decryption algorithms are used in the proposed
system.)e first one Decrypt1 is used by the data
owner to decrypt ciphertext or updated ciphertext
which have been reencrypted for several times.)e

second one Decrypt2 is utilized by the delegatee to
decrypt the delegated ciphertext. In the original
scheme, however, there is only one decryption al-
gorithm used to decrypt original (level-1) ciphertext
and reencrypted (level-n, n> 1) ciphertext. And for
the delegation ciphertext, the decryption needs to be
performed recursively. Firstly, the latter two terms of
the ciphertext are decrypted with the private key of
the delegatee to get the random number selected in
the calculation of the reencryption key.)en, the
random number is used to calculate the plaintext.
However, in the proposed scheme, the decryption
object is an optimized ciphertext (ciphertext is not
extended when reencrypting), so there is no need for
recursive decryption.

For the sake of simplicity and comparison of the Green
and Ateniese [18] (shown in Figure 2) and the proposed
scheme (shown in Figure 3), a description and a detailed
discussion are given below.

4.1. A Brief Description of Original Scheme.)e original
scheme has six algorithms as follows:

(1) Setup: let e: G1 × G1⟶ G2 be a bilinear map,
where G1 and G2 are two cyclic groups of the same
prime order q and g is a generator of G1. Select two
hash functions H1: 0, 1{ }∗ ⟶ G1 and
H2: G2⟶ G1. Randomly select s ∈ Z∗q , set the
master secret key msk � s, and output the master
public parameters mpp � (G1, G2, q, g, gs,H1,H2).

(2) KeyGen(mpp,msk, id): providing mpp, msk, and
identity id ∈ 0, 1{ }∗ as input, the algorithm outputs a
corresponding private key skid � H1(id)s.

(3) Encrypt(mpp, id, m): providing mpp, identity id,
and datam as input, randomly select r ∈ Z∗q , and the
algorithm outputs a corresponding ciphertext
cid � (gr, m · e(gs,H1(id))r).

(4) RKGen(mpp, skid1
, id2): providing mpp, private key

skid1, and identity id2 as input, randomly select el-
ement X from group G2, and the algorithm com-
putes R1, R2 � Encrypt(mpp, id2, X) and outputs a
reencryption key rkid1⟶ id2 � (R1, R2, R3), where
R3 � (H2(X)/skid1).

(5) REncrypt(mpp, rkid1⟶ id2, cid1): providing mpp, the
reencryption key rkid1⟶ id2, and ciphertext cid1 as
input:

① If cid1 � (C1, C2) is a level-1 ciphertext (original
ciphertext), the algorithm computes
C2′ � C2 · e(C1, R3), C3 � R1, and C4 � R2 and
outputs ciphertext cid2 � (C1, C2′, C3, C4).

② If cid1 � (C1, C2, . . . , C2n− 1, C2n) is a level-n
(n> 1) ciphertext, the algorithm computes
C2n
′ � C2n · e(C2n− 1, R3), C2n+1 � R1, and C2n+2 �

R2 and outputs ciphertext cid2 � (C1, C2, . . . ,

C2n− 1, C2n
′, C2n+1, C2n+2).

skid, mpp

skid, mpp

Ciphertext

Update/delegation key

Original/updated ciphertext

Delegation
ciphertext

Cloud server/proxy

Encrypted dataUser
delegator

Requester
delegateePKG

Figure 1: System model.

6 Security and Communication Networks

(6) Decrypt(mpp, skid, cid): providing mpp, private key
skid, and ciphertext cid as input:

① If cid � (C1, C2) is a level-1 ciphertext (original
ciphertext), the algorithm computes
m � (C2/e(C1, skid)).

② If cid � (C1, C2, . . . , C2n− 1, C2n) is a level-n ci-
phertext, consider the combination (C2n− 1, C2n)
as a level-1 ciphertext, the algorithm computes
Xn � (C2n/e(C2n− 1, skid)) and
Xi � (C2i/e(C2i− 1, H2(Xi+1))), where i is eval-
uated from n − 1 to 2. Finally, the algorithm
computes m � (C2/e(C1, H2(X2))).

)e original ciphertext contains two elements, the length of
which increases by two elements for each reencryption.)eo-
retically, the ciphertext can be reencrypted any number of times.

4.2. Detailed Design of the Proposed Scheme.)ere are nine
algorithms in the proposed scheme, and the process flow is
depicted in Figure 3.)e description of the processes is as
follows:

(1) Setup: let e: G1 × G1⟶ G2 be a bilinear map,
where G1 and G2 are two cyclic groups of the same
prime order q and g is a generator of G1. Select a
random s ∈ Z∗q as the master secret key msk and two
hash functions H1: 0, 1{ }∗ ⟶ G1 and
H2: 0, 1{ }∗ ⟶ G1. Output the master public

parameters mpp � (H1,H2, g, gs, q) while keeping
the master secret key msk � s private.

(2) KeyGen(msk, id): when PKG receives a key gen-
eration request from a legitimate user with identi-
ty id, this algorithm takes as input mpp (this
parameter is included implicitly here and in fol-
lowing algorithms for simplicity), msk, and identity
id and generates the corresponding private key
skid � H1(id)s.

(3) Encrypt(id, m): when a user wants to encrypt data
m ∈ G2 with identity id, the encryption algorithm
picks r∈RZ∗q and computes C1 � grand
C2 � m · e(gs,H1(id)r) to generate the ciphertext
cid � (C1, C2), which will be sent to a cloud server for
storage.)is resulting ciphertext is also called
original ciphertext (level-1 ciphertext).

(4) RKGen1(skid1, id1, id2, C1): providing as input user’s
private key skid1, identities (id1, id2), and an element
of ciphertext C1, this algorithm generates a reen-
cryption key (a.k.a. access token) rkid1⟶ id2, which
will be sent to proxy for storage and converting the
ciphertext upon receiving the request from the
delegatee.)e calculation processing is as follows:

① Kid1 ,id2 � e(skid1,H1(id2)).
② rkid1⟶ id2 � e(C1, H2(Kid1 ,id2‖id1‖id2) · skid1).

(5) RKGen2(skid1, id1′, C1): inputting user’s private key
skid1, a new identity id1′ and part of the ciphertext C1
choose a random r′ ∈ Z∗q , the algorithm computes
R1 � gr′and R2 � (e(gs,H1(id1′)

r′)/e(C1, skid1)) and
generates an update key rkid1⟶ id1′ � (R1, R2), which
is also a reencryption key.

(6) REncrypt1(rkid1⟶ id2, cid1): providing reencryption
key rkid1⟶ id2 and ciphertext cid1 � (C1,1, C1,2) un-
der identity id1 as input, the algorithm computes
C2,1 � C1,1 and C2,2 � (C1,2/rkid1⟶ id2) and outputs
a delegation ciphertext cid2 � (C2,1, C2,2), which can
be decrypted by delegatee with skid2.)is ciphertext
will be sent to the requester (delegatee) but not
stored on the cloud server.

(7) REncrypt2(rkid1⟶ id1′, cid1): with update key
rkid1⟶ id1′ � (R1, R2) and ciphertext
cid1 � (C1,1, C1,2) as input, the algorithm computes
C1,1′ � R1 and C1,2′ � C1,2 · R2 and outputs a new
ciphertext cid1′ � (C1,1′, C1,2′) which will replace the
old ciphertext cid1 to store on the cloud server.

(8) Decrypt1(skid, cid): after downloading the ciphertext
cid � (C1,1, C1,2), original ciphertext or updated ci-
phertext, from the cloud server, the user (data owner
and delegator) runs the algorithm to compute m �

(C1,2/e(C1,1, skid)) with the private key (usually the
latest private key corresponding to the newest
identity) to output the plaintext or an error flag ⊥.

(9) Decrypt2(skid2, cid2): the requester (delegatee) de-
crypts the delegation ciphertext cid2 � (C2,1, C2,2)

with the private key skid2 � H1(id2)
s to output

plaintext or an error flag ⊥.)e process is as follows:

Setup

KeyGen

Encrypt

Decrypt2

Ciphertext

Plaintext

REncrypt

Decrypt1

Delegation
ciphertext

Plaintext

Identity id1

RKGen KeyGen

Identity id2

sk

Data owner
Requester
Proxy

Start

sk

Figure 2: Process flow of the original scheme.

Security and Communication Networks 7

① Kid2 ,id1 � e(skid2,H1(id1)).
② m � C2,2 · e(C2,1, H2(Kid2 ,id1‖id1‖id2)).

4.3. Correctness of the Proposed Scheme

(1))e correctness of decrypting the original ciphertext
cid � (C1,1, C1,2) with the original private key skid1 �

H1(id1)
s is verified as follows:

C1,2

e C1,1, skid1􏼐 􏼑
� m ·

e g
s
,H1 id1(􏼁

r
(􏼁

e g
r
,H1 id1(􏼁

s
(􏼁

􏼠 􏼡 � m. (2)

(2))e correctness of processing updated ciphertext
cid1′ � (C1,1′, C1,2′) � (R1, C1,2 · R2) with the new pri-
vate key skid1′ � H1(id1′)

s corresponding to the new
identity id1′ is verified as follows:

C1,2′

e C1,1′ , skid1′􏼐 􏼑
� C1,2 ·

R2

e R1, skid1′􏼐 􏼑
�

m · e g
s
,H1 id1(􏼁

r
(􏼁 · e g

s
,H1 id1′(􏼁

r′
􏼒 􏼓/e C1, skid1􏼐 􏼑􏼒 􏼓

e g
r′

,H1 id1′(􏼁
s

􏼒 􏼓

� m · e g
s
,H1 id1(􏼁

r
(􏼁 ·

e g
s
,H1 id1′(􏼁

r′
􏼒 􏼓

e g
r
, skid1􏼐 􏼑 · e g

r′
,H1 id1′(􏼁

s
􏼒 􏼓􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ � m.

(3)

(3))e correctness of processing delegation ciphertext
cid2 � (C1,1, C1,2/rkid1⟶ id2) � (C2,1, C2,2) with the

delegatee’s private key skid2 � H1(id2)
s is verified as

follows:

D: decrypt
U: update
A: authorize
RA: reauthorize

Setup

KeyGen

Encrypt

Decrypt2

Ciphertext

Plaintext

Update
identity

Update
key

REncrypt1REncrypt2

Decrypt1

Updated
ciphertext

Delegation
ciphertext

Plaintext

Identity id1

RKGen2
RKGen1 KeyGen

Identity id2

sk

U RA

D

D

U

A

Start

Data owner
Requester
Proxy

Figure 3: Process flow with additional improvement algorithms.

8 Security and Communication Networks

① C2,2 � (C1,2/(rkid1⟶ id2)) � m · (e(g
s
,H1(id1)

r
)/

e(C1, H2(Kid1 ,id2‖id1‖id2) · skid1)) � m · (e(g
s
,

H1(id1)
r
)/(e(g

r
, H2(Kid1 ,id2‖id1‖id2)) · e(g

r
,

H1(id1)
s

))) � (m/e(g
r
, H2(Kid1 ,id2 |id1|id2)))

② Kid2 ,id1 � e(skid2, H1(id1)) � e(H1(id2)
s,

H1(id1))�e(H1(id1)
s,H1(id2))�e(skid1,

H1(id2)) � Kid1 ,id2
③ C2,2 · e(C2,1, H2(Kid2 ,id1‖id1‖id2)) � (m/e(gr,

H2(Kid1 ,id2‖id1‖id2)) · e(gr, H2(Kid2 ,id1‖id1‖
id2))) � m

4.4. Security Analysis of the Proposed Scheme. In this study,
two reencryption key generation algorithms are employed,
the reencryption key generation algorithm for ciphertext
update is a new one, and the other for the delegation is an
improved one. In an event where the delegatee colludes with
the proxy, it can obtain the value e(gr, skid1) rather than skid1
which means achieving collusion safety.)e ciphertext
obtained by the former one is in the same format as the
ciphertext is generated directly with the new identity id1′. So
the security analysis is the same as the scheme [18].

In addition, we analyze the possible security problems
caused by the collaboration of two reencryption key gen-
eration algorithms.)e delegatee and the proxy conspire to
compute a value e(gr, skid1) from the delegation key. If an
attacker constructs another pair such as (gr′ , e(gs,

H1(id1′)
r′)), a new update key rkid1⟶ id1′ � (gr′ ,

e(gs,H1(id1′)
r′)/e(C1, skid1)) can be calculated. If the proxy

updates the ciphertext with this forged key, a spoofing attack
will happen. However, we have assumed that the user can
securely send the reencryption key to the proxy and the user
needs to be authenticated, and the proxy is semitrusted, so
the unauthenticated attacker cannot update the ciphertext
even if he has built a new update key.

Next, we present the formal security proofs for the
proposed scheme in the random oracle model as follows.

Theorem 1. Suppose the DBDH assumption holds, our
IBPRE-CE scheme is IND-PrID-CPA secure in the random
oracle model.

Proof. Let A be a PPT algorithm that has a nonnegligible
advantage ϵ in attacking the proposed scheme. We use A to
construct a second algorithm B, which has a nonnegligible
advantage at solving the DBDH problem in G1 and G2.
Algorithm B accepts as input a properly distributed tuple
(G1 � g, ga, gb, gc, T) ∈ G4

1 × G2 and outputs 1 if
T � e(g, g)abc. A interacts with algorithm B as follows.

First, algorithmB treats the hash functionsH1 andH2
as random oracles and performs the following simulation:

(1) Simulation of H1: 0, 1{ }∗ ⟶ G1. When a query for
identity id is received, simulator searches the hash

table L1 which includes some tuples like (id, h, z, α).
If the id exists in the L1, return h as the query result.
Otherwise, flip a weighted coin that the probability of
heads is c (represented as Pr[α � 1] � c) to get a
random α ∈ 0, 1{ }. Select z ∈ Z∗q randomly and
compute h. If α � 1, set h � gz; otherwise, set
h � (gc)z. No matter α � 1 or 0, h is correctly
distributed.

(2) Simulation of H2: 0, 1{ }∗ ⟶ G1. When a query for
string X like K‖id1‖id2 where K � e(skid1,H1(id2))
is received, simulator simply returns x ∈ G1 and
records tuple (X, x) into table L2.

)en, the interaction simulation proceeds as follows:

(1) Select. A selects i from set 0, 1{ }.
(2) Setup. B generates the system’s master public pa-

rameters mpp � (H1,H2, g, ga, q) and sends it to A.
(3) Phase 1. A adaptively issues a series of queries.

(1) Private key query.WhenA sends an identity id to
B to query its corresponding private key, B
evaluates H1(id) as above to get (id, h, z, α) and
returns skid � (ga)z to A.

(2) Update key query. When A sends an update key
query from identity id to id′,B selects r, r′ ∈ Z∗q
randomly and evaluates H1(id) and H1(id′) to
obtain (z, α) and (z′, α′).

If α � 0, B computes rkid⟶id′
� (e(ga,H1

(id′)r′)/ Tz) and returns it to A. Note that this
update key is incorrectly formed.

If α � 1, B computes rkid⟶id′
�

(e(ga,H1(id′)
r′)/e(gr, ga)z) and returns it to A.

(3) Delegation key query. When A sends a delega-
tion key query from identity id1 to identity id2,B
selects r1 ∈ Z∗q and evaluates H1(id1) and
H1(id2) to obtain (z1, α1) and (z2, α2), com-
putes rkid1⟶ id2 � e(gr1, (ga)z1 · H 2(e((ga)z1,

H1(id2))‖id1‖id2)), and returns it to A. Note that
when α � 1, this delegation key is correctly
formed; when α � 0, this delegation key is in-
correctly formed.

(4) Challenge phase. At the end of phase 1, A submits
challenge identity id∗ and two same length message
m0, m1 ∈ G2 to B who will evaluate H1(id

∗) and
look for tuple (id∗, h, z, α) from table L1 and return
challenge ciphertext c∗ � (gb, mi · Tz) to A. Note
that there are following restrictions on id∗ to avoid
trivial decryption:

(1))e private key corresponding to id∗ has not
been queried.

(2) If a series of update key queries which originate
from id∗ to id1, next from id1 to id2,. . ., from

Security and Communication Networks 9

idn− 1 to idn have been issued, the private key of
any id in set ID= {id1, id2, . . . idn} has not been
queried.

(3) If the delegation key query from id∗ to idj has
been issued, the private key of idj has not been
queried.

(4) If a series of update key queries which originate
from id∗ to id1, next from id1 to id2,. . ., from
idn− 1 to idn have been issued and delegation key
from any id in set ID= {id1, id2, . . . idn} to idj has
been queried, the private key of idj has not been
queried.

(5) Phase 2. A issues query as in phase 1 except re-
strictions as above.

(6) Guess. A outputs its guess i′∈ 0, 1{ }. If any of the
following conditions are false, B aborts the simu-
lation. Otherwise, if i′ � i, B outputs 1 or 0
otherwise. □

4.4.1. Conditions for Abort

(1) When the private key query for id∗ is issued, α is
chosen to be 1.

(2) When the private key queries for other id except id∗
are issued, α is chosen to be 0.

(3) When the update key queries from idj to idj

(rkidi⟶ idj
) are issued, if idi⟶ idj lies along a path

leading from id∗, the value α for idj is chosen to be 1.
Or idi⟶ idj does not lie along a path leading from
id∗, the value α for idi is chosen to be 0.

(4) When the delegation key queries from idi to idj

(rkidi⟶ idj
) are issued, if idi⟶ idj lies along a path

leading from id∗, the value α for idj is chosen to be 1.
Or idi⟶ idj does not lie along a path leading from
id∗, the value α for idi is chosen to be 0.

Claim. If B does not abort during the game, then A’s
view is identical to the real attack, except reencryption keys
of the form rkid∗ ⟶ ···.)e discussion of this case can refer to
[18]. If the input to B is a DBDH tuple, then the challenge
ciphertext c∗ is correct encryption of mi under id∗ and
hence (subject to the definition of A and the argument
above) |Pr[i′ � i] − (1/2)|≥ ε. When the input to B is
random, c∗ represents the encryption of a random element.
Since A is unable to distinguish between the simulation and
a real attack, it must hold that Pr[i′ � i]≥ ϵ + (1/2) for a
nonnegligible ϵ. Hence, B succeeds with nonnegligible
advantage.

5. Application Scenario Implementation of the
Proposed Scheme

In this section, we introduce a secure cloud data manage-
ment scenario and apply the improved algorithms men-
tioned above to implement three secure data management
functions:

(1) Update ciphertext and update the key to achieve
access permission revocation

(2) Reauthorization after the ciphertext is updated
(3) Conditional reservation authorization

5.1. SecureCloudDataManagementScenario. In a cloud data
sharing environment, the user encrypts data with the
identity and uploads it to the cloud server. User data may be
encrypted and uploaded to the cloud server at different
times. Usually, the same random number r is selected to
encrypt several files at the same time, while different random
number r is chosen to encrypt files at different times. In
order to share the encrypted data to others, the user needs to
calculate the corresponding reencryption key for the ci-
phertext. Table 1 shows the relations of plaintext, ciphertext,
random number, and time (can be utilized to compute the
lifetime of the key) during encryption and reencryption keys
list (REK list) for delegation. In Table 1, the random value
and the time can be the same which means that these data
were encrypted at the same time, where Ci � (gri , mi · e

(gs,H1(id1)
ri)), and REKi ⊆ rkid1⟶ id2, rkid1⟶ id3, . . .􏽮 􏽯 is a

reencryption key list that contains some reencryption keys
corresponding to the delegation. If this set is empty, this
means the data are not allowed to be shared with others.

For the sake of analysis, let us assume this scenario: user
id1 has three types of files (m1, m2, and m3), which are
encrypted with the identity and stored on the cloud server.
)e first type of file m1 is some study notes shared with a
requester (a common learner with identity id2).)e second
type of file m2 is personal photos that involve some private
information and should not be allowed to be accessed by
others.)e content of the third file m3 is several relevant
information that a user (assumed as a prosumer) shares with
the utility organization or other prosumers in a microgrid.

5.2. Delegation Revocation Management. From the con-
struction of the reencryption key, we can find that the
delegation reencryption key has nothing to do with the
second part of the ciphertext but only with the random
number chosen for the ciphertext, the delegator, and the
delegatee. Assume that the files m1, m2, and m3 are
encrypted with the same random number under the identity
id1. In this situation, as long as one of the user’s files is
authorized to the requester, the proxy can use the delegation
reencryption key to delegate all other data to the requester.
So it is not security. To keep the user’s other files safe, the
user needs to revoke the delegation of the requester. Here, it
can revoke access rights by updating the ciphertext.)e
processing of revoking the requestor id2’s access permission
to files m2 and m3 is shown as follows:

Step 1: generate a new identity.)e user combines well-
known information with an attribute (manufacturer/
smart meter id: idsm) of microgrid devices (i.e., smart
meter) as a new identityid1′ � id1‖idsm for the third type
of file m3. In the same manner, the user will also
combine another attribute as an encryption identity for

10 Security and Communication Networks

the second type of filem2. Both operations are the same,
and file m3 is considered for the following analysis.
Step 2: generate a new private key.)e user sends the
new identity to the PKG to generate a new private key
skid1′ � H1(id1′)

s.
Step 3: compute a reencryption key for updating ci-
phertext.)e user chooses a random r′ ∈Z∗q and runs
algorithm RKGen2(skid1, id1′,C1,1) to generate rkid1⟶ id1′�

(R1,R2) � (gr′ ,(e(gs,H1(id1′)
r′)/e(C1,1,skid1))) and

then send it to the cloud server.
Step 4: update the ciphertext. After receiving the update
reencryption key rkid1⟶ id1′ � (R1, R2), the proxy uses
it to convert the ciphertext cid1 to a new ciphertext
cid1′ � (R1, C1,2 · R2) � (C1,1′, C1,2′), which will replace
the old ciphertext cid1 to store in the cloud server. Note
that the proxy does not save this reencryption key.
Step 5: the user (data owner) decrypts the updated
ciphertext with the new private key skid1′.)e com-
putation steps are as follows:

(1) C1,1′ � R1 � gr′ .
(2) C1,2′ � C1,2 · R2 � m3 · (e(gs,H1(id1)

r) · e(gs,

H1(id1′)
r′)/e(gr, skid1)) � m3 · e(gs,H1(id1′)

r′).
(3) (C1,2′/e(C1,1′, skid1′

)) � m3 · (e(gs,H1(id1′)
r′)/

e(C1,1′, skid1′
)) � m3 · (e(gs,H1(id1′)

r′)/
e(gr′ ,H1(id1′)

s)) � m3.

Obviously, when the requester requests the data from the
cloud server again, the new ciphertext transformed by proxy
from the updated ciphertext with old reencryption key
rkid1⟶ id2 cannot be decrypted with the requester’s private
key skid2 � H1(id2)

s because

C2,2′ � m3 ·
g

s
,H1 id1′(􏼁

r′
􏼒 􏼓

rkid1⟶ id2
�

m3 · e g
s
,H1 id1′(􏼁

r′
􏼒 􏼓

e g
r
,H2 Kid1,id2 id1

����
����id2􏼐 􏼑 · H1 id1(􏼁

s
􏼐 􏼑

.

(4)

So, when the user revokes the delegation for the re-
quester id2 by updating the ciphertext, the proxy will delete
the corresponding old reencryption key. And when the
requester id2 requests the data, the user will refuse to
generate a delegation key.

5.3. Reauthorization Management. After the above cipher-
text update operation, given that these operations were also
applied to m2. It can now only be accessible to the data
owner. However, file m3 is required to be shared with other

entities (other prosumers or the utility organization and
assume identity is id3) in the microgrid. For example, the
user needs to reauthorize to energy consumers id3, and this
process is shown as follows:

Step 1: generate the reauthorization key.)e user
(delegator) runs the algorithm RKGen1(skid1′, id1′,
id3, C1,1′) to compute a new reencryption key rkid1′⟶ id3.
)e calculation process is shown as follows:

(1) Kid1′,id3 � e(skid1′,H1(id3)).
(2) rkid1′⟶ id3 � e(C1,1′, H2(Kid1′,id3‖id1′‖id3) · skid1′).

)en, this reencryption key is sent to the proxy to
update the reencryption key list.
Step 2: generate reauthorization ciphertext. When the
requester (delegatee) wants to access the data, the proxy
runs the algorithm REncrypt1(rkid1′⟶ id3, cid1′) to con-
vert the updated ciphertext cid1′ to a new ciphertext
cid3 � (C1,1′, C1,2′/rkid1′⟶ id3) � (C3,1, C3,2).)en, the
ciphertext cid3 is sent to the requester (delegatee).
Step 3: decrypt the reauthorization ciphertext. After
receiving the ciphertext from the proxy, the requester
decrypts the ciphertext cid3 with the private key skid3 �

H1(id3)
s to get the plaintext.)e decryption process is

shown as follows:

(1) Kid3 ,id1′ � e(skid3,H1(id1′)).
(2) m � C3,2 · e(C3,1, H2(Kid3 ,id1′‖id1′‖id3)).

5.4. Conditional Reservation Delegation Management.
)is function is added to handle the time period access
control in scenarios where a user wants to grant access to a
requester at a future time. For example, one user with a
solar energy collection system wants to sell the excess
energy to others in the microgrid. Similarly, other pro-
sumers also wish to sell their excess energy.)ese suppliers
will share their energy information to an energy consumer,
who cannot access the data containing the energy price in
advance. Otherwise, it may lead to malicious bidding or
collusion.)is situation may require conditional reserva-
tion delegation. In this work, this process is shown as
follows:

Step 1: encrypt the bidding file and upload it to the
cloud.)e user (seller, identity is id1) generates an
energy information file and encrypts it with the
identity.)e ciphertext cid1 � (C1,1, C1,2) is uploaded to
the cloud server and can be shared with other users.
Step 2: generate conditional reservation delegation key:

(1))e user assigns the combination of the requester’s
identity, another information attribute (i.e., smart
meter id), and a date constraint (i.e., trade schedule)
as the identity id3 � identity||idsm||duration.

(2))e user generates a delegation reencryption key
rkid1⟶ id3 � e(C1,1,H2(Kid1 ,id3‖id1‖id3) · skid1) and
uploads to the proxy and indicates the composition
of the delegatee’s identity.

Table 1: Plaintext, ciphertext, random, encryption time, and
reencryption key list information.

Data Random Ciphertext Time REK list
m1 r1 C1 T1 REK1
m2 r2 C2 T2 REK2
.

mn rn Cn Tn REKn

Security and Communication Networks 11

Step 3: generate a private key. At the appointed time,
the requester applies for the private key
skid3 � H1(id3)

s corresponding to the identity id3 �

identity||idsm||duration from PKG.
Step 4: generate the delegation ciphertext.)e proxy
runs the algorithm REncrypt1(rkid1⟶ id3, cid1) to
transform the ciphertext cid1

to the delegation ci-
phertext cid3 � (C1,1, C1,2/rkid1⟶ id3) � (C3,1, C3,2).
And then the ciphertext cid3 is sent to the requester.
Step 5: decrypt the delegation ciphertext.)e requester
decrypts the ciphertext cid3 with the private key skid3 �

H1(id3)
s to get the plaintext.)e process is shown as

follows:

(1) Kid3 ,id1 � e(skid3,H1(id1)).
(2) m � C3,2 · e(C3,1, H2(Kid3 ,id1‖id1‖id3)).

6. Comparison and Analysis

In this section, we compare the proposed schemewith three PRE
schemes in terms of characteristics, functionality, computation
cost, and efficiency. In literatures, several works that implement
secure data sharing with PRE can be divided into two categories.
One is based on PKI, and the other is identity-based. Identity-
based architecture can be further divided into two categories: BF
(Boneh–Franklin) [22] architecture in the random oracle model
and waters [23] architecture in the standard model. For con-
venience and simplicity of comparison and analysis, GA
(Green–Ateniese) [18] is chosen as the representative of BF
architecture, LLWS (Liang–Liu–Wong–Susilo) [10] for waters
architecture, and SHB (Shafagh–Hithnawi–Burkhalter) [6] for
PKI architecture to compare with the proposed scheme.)e
GA1 and GA2 correspond to basic IBP1 in the GA scheme, and
GA2 is an optimization of GA1 in terms of the absence of ci-
phertext expansion during reencryption but is not multiusable
and nontransferable.

Table 2 shows some of the characteristics and achieved
security notion of the schemes for two functions: update and
delegation. Since the reencrypted ciphertext in scheme GA2 is
non-reencryptable [25], this method cannot be used to update
the ciphertext and not included in the comparison set sup-
porting updates. Similarly, the delegation function is not
discussed in the scheme LLWS, so it is not included in the
function comparison set of delegation. For the update function,
the decryptor is still the data owner himself regardless of the
original ciphertext or the updated ciphertext.)ere is no
change in the access right. It is of no need to consider
transferability, which is not compared in the table and filled
with “-.”)e TM and EM represent true multiuse and ex-
pansive multiuse, respectively [13]. Note that although the
reencryption key generation algorithm needs an element of the
ciphertext, the proposed scheme is still noninteractive because
the ciphertext component can be downloaded from the cloud
server without the involvement of proxy.

)e characteristic comparison in Table 2 is important for
secure data sharing application, and the definitions are
described in Section 2. In most cases, the public-key cer-
tificate has an expiration date. In addition, a user’s key (both

public and private key) needs to be changed for security
consideration.)ese changes will cause the ciphertext to be
updated.)us, in the process of user data management,
ciphertext update is a very common operation, and the
proxy reencryption algorithm must support multiple en-
cryptions (multiuse). Furthermore, reencryption that leads
to the extension of ciphertext length is not allowed.)us, the
scheme should achieve ciphertext optimization. Moreover,
in cloud servers, the delegation ciphertext is not permitted to
be shared again, which is a typical security policy for data
sharing.)us, this requires that the scheme should be
nontransferable, but the schemes GA1 and GA2 are trans-
ferable. In the PRE system, the CPA security is a minimum
requirement, and the private key of the delegator should be
safe even if the delegatee colludes with the proxy; this means
that the scheme should be collusion safe as achieved by the
proposed one. If the user data need to be shared with
multiple requesters in the PKI-based system, the user has to
maintain a lot of public-key certificates. It will induce a
higher overhead to the user. However, since the proposed
proposal is identity-based, this situation is avoided.

)e essential feature of PRE is delegation.)us, it is used
as the basis of underlying encryption in many secure data
sharing systems. However, many proposals in literature only
considered the delegation function but did not include the
function of revoking delegation. Some systems employ
conditional authorization, but very few schemes have taken
the conditional reservation delegation into account. Fur-
thermore, fewer schemes in the literature involve the ci-
phertext/key update and reauthorization, and even if there
are, the analysis is not detailed enough. Table 3 compares the
functions of some existing representative schemes and the
proposed approach. It is observed that the proposed scheme
is a comprehensive data sharing solution that supports all
the essential features of delegation, delegation revocation,
conditional reservation delegation, ciphertext update, and
reauthorization required for secure cloud data sharing.

In Table 4, the computational cost of each phase is
shown. For the sake of illustration, Setup, KeyGen, and
Encrypt denote the setup algorithm, key generation algo-
rithm, and encryption algorithm, respectively. Decrypt1
denotes the decryption algorithm used by the data owner to
decrypt the ciphertext (original or updated). Decrypt2 de-
notes the decryption algorithm used by the delegatee to
decrypt the reencrypted delegation ciphertext. RKGen1 de-
notes the delegation key generation algorithm. RKGen2
denotes an update key generation algorithm. REncrypt1
denotes the reencryption algorithm for generating a dele-
gation ciphertext. REncrypt2 denotes the reencryption al-
gorithm for updating ciphertext. tP denotes the pairing
computation time. tR denotes the time of the random
computation. tM denotes the calculation time of group el-
ement multiplication or division operations (the inverse
computation is seen as division operation). tE denotes the
computation time of a group element power operation. In
these calculations, the selection of random values, multi-
plication, division, and inverse takes tens of microseconds;
exponentiation takes several milliseconds and pairing takes
between 10 and 20 milliseconds.

12 Security and Communication Networks

Table 5 and Figure 4 show the computation time of each
phase of the five schemes. For the convenience of calcula-
tion, the hash calculation in all algorithms is not considered.
)e SHB scheme is the ElGamal algorithm based on the
elliptic curve.)e LLWS scheme is mainly used for ci-
phertext updating.)us, the run time of algorithm RKGen1
and REncrypt1 for authorization is not provided. Note that

the run time of the algorithm Decrypt1 is for decrypting the
original ciphertext, while the run time of the algorithm
Decrypt2 is for decrypting the reencrypted ciphertext, which
is updated only once.)e GA work does not include ci-
phertext update or is not suitable for updating ciphertext
(e.g., ciphertext expands with reencryption), and the time of
update key generation and ciphertext update was also not

Table 2: Comparison of the representative scheme and the proposed scheme based on essential characteristics.

Characteristics
Update Delegation

SHB LLWS GA1 Proposed SHB GA1 GA2 Proposed
Interactive Yes No No No No No No No
Multiuse TM EM EM TM No EM No No
Transitive Yes No No Yes No No No No
Transferable — — — — No Yes Yes No
Collusion safe No Yes No Yes Yes No No Yes
Ciphertext optimal Yes No No Yes Yes No Yes Yes
Achieved security CPA CPA CPA CPA CPA CPA CPA CPA
Standard model Yes Yes No No Yes No No No
Identity-based No Yes Yes Yes No Yes Yes Yes

Table 3: Functionality comparison of the different PRE schemes.

Functionalities SHB LLWS GA Proposed
Delegation Yes Yes Yes Yes
Delegation revocation Yes Yes No Yes
Conditional reservation delegation No No Yes Yes
Ciphertext update Yes Yes No Yes
Reauthorization No Yes No Yes
Detail analysis No No No Yes

Table 4: Computation cost comparison of each phase in the different schemes.

Algorithms SHB LLWS GA1 GA2 Proposed
Setup tR 3tE, (n + 7)tR tE, 2tR tE, 2tR tE, 2tR

KeyGen tE, tR

11tE, 7tR,

(n + 11)tM

tE tE tE

Encrypt 2tE, tR, tP, tM 4tE, tR, tP, tM 2tE, tR, tP, tM 2tE, tR, tP, tM 2tE, tR, tP, tM

Decrypt1 tE, tP, 2tM 3tP, 3tM tP, tM tP, tM tP, tM

RKGen1 tE, tM — 2tE, 2tR, tP, tM tP, tM 2tP, tM

REncrypt1 tP — tP, tM tP tM

Decrypt2 tE, 2tM 4tP, tE, 5tM 2tP, 2tM 2tP, tM 2tP, tM

RKGen2 tM 8tE, 3tR, tP, 5tM — — 2tE, tR, 2tP, tM

REncrypt2 tP 2tP, tM — — tM

Table 5: Comparison of the computation time (in ms) of each algorithm in different schemes.

Algorithms SHB LLWS GA1 GA2 Proposed
Setup 6.474 376.159 12.801 13.113 13.025
KeyGen 6.467 71.027 21.669 22.01 22.146
Encrypt 21.056 33.701 21.019 21.327 21.033
Decrypt1 19.552 39.174 13.121 13.255 13.009
RKGen1 6.472 — 21.103 13.278 26.068
REncrypt1 13.065 — 13.109 13.214 0.02
Decrypt2 1.557 58.607 26.215 26.52 26.076
RKGen2 0.005 59.323 — — 34.592
REncrypt2 6.453 26.089 — — 0.011

Security and Communication Networks 13

calculated.)ese performance evaluations are performed on
a computer with 3.4GHz Intel Core i5-3570 processor, 8 GB
RAM, and the operating system is Windows 7 Professional
with Service Pack 1. All the programs are based on the PBC
library [28], where the parameter is the type A curve.

In Table 5, the setup time (the length of the user’s
identity is 50 bits) of the LLWS scheme is larger than other
systems because it is a waters-based architecture and often
needs to generate more system parameters. Since the time
of hash computation in KeyGen algorithm is not included,
the computation time of this phase in the LLWS scheme is
less than the BF architecture. For the purposes of sim-
plifying comparison, the calculation times of the Setup
phase and KeyGen phase are omitted. And it is shown that
the computation time of LLWS is the longest, while SHB is
the shortest.)e computation time of Setup, KeyGen,
Encrypt, and Decrypt1 are the same in GA1 and GA2 and the
proposed proposal because these approaches are based on
BF architecture. And the computation time for Decrypt2 of

the three schemes is approximately the same. During the
RKGen1 phase, the proposed scheme needs two pairing
computations making the computation time larger than
GA1 and GA2. Although the computation time of RKGen2
is very long, the impact on the overall system will be modest
because the number of keys needed to be calculated is few
and the ciphertext update frequency is not too high.
Furthermore, the computation time of REncrypt1 and
REncrypt2 in the proposed scheme is very short.)erefore,
the proposed algorithm has the quickest processing time
when the proxy responds to the request for delegation or
update, which is especially important when there are many
access requests, or there are many ciphertexts that need to
be updated. Since in practice, once the user refreshes the
key, the ciphertext needs to be updated synchronously, and
the reencryption (update) algorithm in our scheme only
needs tens of microseconds, so it is very efficient to update a
large number of ciphertext synchronously in practical
applications.

70

Encrypt

SHB
LLWS

GA2
Proposed

GA1

Decrypt1 RKGen1 REncrypt1 Decrypt2 RKGen2 REncrypt2

60

50

40

30

20

10

0

Figure 4: Comparison of the computation time (in ms) of each algorithm in different schemes.

30000

SHB
Proposed

Comparation of the time (in s) of updating 100MB to 1GB ciphertext

25000

20000

15000

10000

5000

50

0
100MB 200MB 300MB 400MB 500MB 600MB 700MB 800MB 900MB 1GB

2625.12
5249.21

7872.40
10497.28

13121.84
15746.14

18370.12
20994.02

23619.36

26873.24

4.33 8.65 12.97 17.30
21.62 25.95 30.27 34.59 38.92 44.28

Figure 5: Computation time of updating 100MB to 1GB ciphertext in SHB and proposed scheme.

14 Security and Communication Networks

Figure 5 shows the time required to update the ciphertext
from 100MB to 1GB, respectively.)e SHB scheme needs
26,873.24 seconds to update 1GB ciphertext, while the
proposed work only needs 44 seconds.)is value plus the
time of reencryption key generation (34.592ms) is also
much less than the time required by SHB.)is means that
the proposed scheme has high efficiency and practicability in
the scenario that a lot of ciphertext needs to be updated
synchronously after the key update.

7. Conclusions

In this paper, an improved IBPRE scheme is proposed to
realize secure cloud data sharing.)e approach fully con-
siders the ciphertext update while considering the access
authorization and supports file security management op-
erations such as access authorization, authorization revo-
cation, ciphertext update, reauthorization, and conditional
reservation authorization. Moreover, the scheme included
the characteristics of unidirectionality, noninteractivity,
collusion safety, multiuse, nontransferability, ciphertext
optimization, and key optimization, which are essential and
practical for general applications. From the performed
simulation and analysis, the two reencryption algorithms in
the proposed proposal require only one multiplication of
group elements, in which the processing time of simulta-
neously responding to multiple delegation requests or
updating numerous ciphertexts is shorter compared with
other schemes. However, as of this writing, the design only
achieves CPA security in the random oracle model but aims
to achieve CCA security in the future iteration.

Data Availability

)e simulation codes based on PBC used to support the
findings of this study are available from the corresponding
author upon request.

Conflicts of Interest

)e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

)is research was partially supported by the National
Natural Science Foundation of China (Project no.
61662039), and it was supported by Institute for Information
& Communications Technology Promotion (IITP) grant
funded by the Korea government (MSIT) (Project no. 2018-
0-00508) and in part by KETEP, Korean Government,
Ministry of Trade, Industry, and Energy (MOTIE) (Project
no. 20194010201800).

References

[1] X. Zhang, H. Wang, and C. Xu, “Identity-based Key-Exposure
Resilient Cloud Storage Public Auditing Scheme from Lat-
tices,” Information Sciences, pp. 223–234, 2019.

[2] C. Ge, Z. Liu, J. Xia, and L. Fang, “Revocable identity-based
broadcast proxy re-encryption for data sharing in Clouds,”
IEEE Transactions on Dependable and Secure Computing,
2019.

[3] X. Zhang, Y. Tang, H. Wang, C. Xu, Y. Miao, and H. Cheng,
“Lattice-based proxy-oriented identity-based encryption with
keyword search for cloud storage,” Information Sciences,
vol. 494, pp. 193–207, 2019.

[4] Y. Sun, W. Susilo, F. Zhang, and A. Fu, “CCA-secure revo-
cable identity-based encryption with ciphertext evolution in
the cloud,” IEEE Access, vol. 6, pp. 56977–56983, 2018.

[5] X. Zhang, C. Xu, H.Wang, Y. Zhang, and S. Wang, “FS-PEKS:
lattice-based forward secure public-key encryption with
keyword search for cloud-assisted industrial internet of
things,” IEEE Transactions on Dependable and Secure Com-
puting, 2019.

[6] H. Shafagh, A. Hithnawi, L. Burkhalter, P. Fischli, and
S. Duquennoy, “Secure sharing of partially homomorphic
encrypted IoT data,” in Proceedings of the 15th ACM Con-
ference on Embedded Network Sensor Systems, ACM, Delft,
Netherlands, pp. 1–14, November 2017.

[7] National Institute of Standards and Technology, “Recom-
mendation for Key Management,” 2020, https://nvlpubs.nist.
gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf.

[8] P. Xu, T. Jiao, Q. Wu, W. Wang, and H. Jin, “Conditional
identity-based broadcast proxy re-encryption and its appli-
cation to cloud email,” IEEE Transactions on Computers,
vol. 65, no. 1, pp. 66–79, 2016.

[9] C. Ge, W. Susilo, J. Wang, and L. Fang, “Identity-based
conditional proxy re-encryption with fine grain policy,”
Computer Standards & Interfaces, vol. 52, pp. 1–9, 2017.

[10] K. Liang, J. K. Liu, D. S. Wong, and W. Susilo, “An efficient
cloud-based revocable identity-based proxy re-encryption
scheme for public clouds data sharing,” in Proceedings of the
European Symposium On Research In Computer Security,
pp. 257–272, Wroclaw, Poland, September 2014.

[11] C. Wang, J. Fang, and Y. Li, “An improved cloud-based
revocable identity-based proxy re-encryption scheme,” in
Proceedings of the International Conference on Applications
and Techniques in Information Security, pp. 14–26, Beijing,
China, November 2015.

[12] M. Blaze, G. Bleumer, and M. Strauss, “Divertible protocols
and atomic proxy cryptography,” in Proceedings of the In-
ternational Conference on the Beory And Applications of
Cryptographic Techniques, pp. 127–144, Espoo, Finland, May
1998.

[13] D. Nuñez, I. Agudo, and J. Lopez, “Proxy Re-Encryption:
analysis of constructions and its application to secure access
delegation,” Journal of Network and Computer Applications,
vol. 87, pp. 193–209, 2017.

[14] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved
proxy re-encryption schemes with applications to secure
distributed storage,” ACM Transactions on Information and
System Security (TISSEC), vol. 9, no. 1, pp. 1–30, 2006.

[15] R. Canetti and S. Hohenberger, “Chosen-ciphertext secure
proxy re-encryption,” in Proceedings of the 14th ACM Con-
ference on Computer and Communications Security, ACM,
Alexandria, VA, USA, pp. 185–194, October 2007.

[16] B. Libert and D. Vergnaud, “Unidirectional chosen-ciphertext
secure proxy re-encryption,” IEEE Transactions on Informa-
tion Beory, vol. 57, no. 3, pp. 1786–1802, 2011.

[17] C.-K. Chu and W.-G. Tzeng, “Identity-based proxy re-en-
cryption without random oracles,” in Proceedings of the

Security and Communication Networks 15

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf

International Conference On Information Security, pp. 189–
202, Valparaı́so, Chile, October 2007.

[18] M. Green and G. Ateniese, “Identity-based proxy re-en-
cryption,” in Proceedings of the International Conference on
Applied Cryptography and Network Security, pp. 288–306,
Zhuhai, China, June 2007.

[19] X. Liang, Z. Cao, H. Lin, and J. Shao, “Attribute based proxy
re-encryption with delegating capabilities,” in Proceedings of
the 4th International Symposium on Information, Computer,
and Communications Security, ACM, Sydney Australia,
pp. 276–286, March 2009.

[20] K. Liang, L. Fang, W. Susilo, and D. S. Wong, “A ciphertext-
policy attribute-based proxy re-encryption with chosen-ci-
phertext security,” in Proceedings of the 2013 5th International
Conference On Intelligent Networking And Collaborative
System, IEEE, Xi’an, China, pp. 552–559, September 2013.

[21] Y. Aono, X. Boyen, L. T. Phong, and L. Wang, “Key-private
proxy re-encryption under LWE,”vol. 8250, pp. 1–18, in
Proceedings of the International Conference on Cryptology in
India, vol. 8250, pp. 1–18, Lecture Notes in Computer Science,
Mumbai, India, December 2013.

[22] D. Boneh and M. Franklin, “Identity-based encryption from
the weil pairing,” in Proceeedings of the Annual International
Cryptology Conference, vol. 32, no. 3, pp. 586–615, Santa
Barbara, California, USA, August 2001.

[23] B. Waters, “Efficient identity-based encryption without ran-
dom oracles,” in Proceedings of the Annual International
Conference on the Beory and Applications of Cryptographic
Techniques, pp. 114–127, Aarhus, Denmark, May 2005.

[24] L. Wang, L. Wang, M. Mambo, and E. Okamoto, “New
identity-based proxy re-encryption schemes to prevent col-
lusion attacks,” in Proceedings of the International Conference
on Pairing-Based Cryptography, Yamanaka Hot Spring, Kaga,
Japan, pp. 327–346, December 2010.

[25] H. Wang, Z. Cao, and L. Wang, “Multi-use and unidirectional
identity-based proxy re-encryption schemes,” Information
Sciences, vol. 180, no. 20, pp. 4042–4059, 2010.

[26] J. Shao and Z. Cao, “Multi-use unidirectional identity-based
proxy re-encryption from hierarchical identity-based en-
cryption,” Information Sciences, vol. 206, pp. 83–95, 2012.

[27] Y. Zhou, H. Deng, Q. Wu, B. Qin, J. Liu, and Y. Ding,
“Identity-based proxy re-encryption version 2: makingmobile
access easy in cloud,” Future Generation Computer Systems,
vol. 62, pp. 128–139, 2016.

[28] B. Lynn, “PBC: pairing-based cryptography,” https://crypto.
stanford.edu/pbc/.

16 Security and Communication Networks

https://crypto.stanford.edu/pbc/
https://crypto.stanford.edu/pbc/

