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Generalized Feistel structures are widely used in the design of block ciphers. In this paper, we focused on retrieving impossible
differentials for two kinds of generalized Feistel structures: CAST256-like structure with Substitution-Permutation (SP) or
Substitution-Permutation-Substitution (SPS) round functions (named CAST256SP and CAST256SPS, respectively) andMARS-like
structure with SP/SPS round function (named MARSSP and MARSSPS, respectively). Known results show that for bijective round
function, CAST256-like structures and MARS-like structures have (m2 − 1) and (2m − 1) rounds impossible differentials, re-
spectively. By our observation, there existed (m2 + m) rounds impossible differentials in CAST256SP and (3m − 3) rounds
impossible differentials in MARSSPS (this result does not require the P layer to be invertible). When the diffusion layer satisfied
some special conditions, CAST256SPS had (m2 + m − 1) rounds impossible differentials and MARSSPS had (3m − 3) rounds
impossible differentials.

1. Introduction

-e architecture is one of themost important parts of a block
cipher. It will directly affect the implementation perfor-
mance and the round number. Among them, SP structure
[1], Feistel structure [2], and generalized Feistel structure [3]
are the most often used architectures. -e SP structure is a
simple and clear block cipher model which is designed to
implement Shannon’s suggestions of confusion and diffu-
sion. -is architecture was adopted by the famous block
cipher AES [1]. Besides, many block ciphers, including
Camellia, E2, and CLEFIA [4–6] adopt such kind of round
functions. Except for the SP structure, the Feistel structure is
another important structure, and there are a lot of block
ciphers employing this architecture, such as DES, GOST, E2,
and Camellia [2, 4, 6, 7]. In [3], Nyberg first introduced
generalized Feistel structures. -e generalized Feistel
structures are generalized forms of the classical Feistel ci-
pher. -ese structures reserve some advantages of the

classical Feistel cipher such as encryption-decryption sim-
ilarity and flexibility in the design of round functions. A
large number of ciphers like CAST256, MARS, CLEFIA
[5, 8, 9], etc. use these structures as their architectures.

Impossible differential cryptanalysis was first proposed
by Knudsen [10] and Biham et al. [11]. -is cryptanalysis
uses impossible differentials to discard the wrong keys. -is
cryptanalysis has been used to attack Skipjack, AES, Ca-
mellia, ARIA [11–14], etc. and get many good results. -e
key step of impossible differential cryptanalysis is to find the
longest impossible differentials [15]. For generalized Feistel
structures, since only part of the data was processed in each
round, there always exist long rounds impossible differen-
tials, and this makes these ciphers vulnerable to impossible
differential cryptanalysis.

Since the powerful efficiencies of impossible differ-
ential cryptanalysis, many experts work on finding im-
possible differential distinguisher for several block cipher
structures, and lots of remarkable results are achieved. In
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[16], u-method was provided by Kim et al. to find im-
possible differentials of block ciphers structures and was
later extended by Bouillaguet et al. [17]; this method uses
the inconsistencies of the elements in set u to find im-
possible differentials. It is worthwhile for the declaration
that several longest impossible differentials of some fa-
mous block cipher structures are obtained by this method.
As is mentioned in [16], for m-dataline CAST256-like
structure and m-dataline MARS-like structure, existed the
longest round number of impossible differentials are m2

and 2m respectively. However, u-method is too general
and some important longer impossible differentials are
ignored [12], and the longest differential distinguishers of
several architectures like GF-NLFSR [18, 19], Feistel ci-
phers [15], SPN [20], and MISTY [21] are obtained by
other methods. In [22], a new automatic method was
proposed to find more impossible differentials.

It is well known that nonzero linear combinations of
several linearly independent vectors cannot be zero. Based
on this matter of fact, we present some new inconsis-
tencies to construct impossible distinguishers of
CAST256-like structures and MARS-like structures with
SP and SPS round function. To our knowledge, the best
result is m-dataline CAST256-like cipher has m2 rounds
impossible differential distinguisher and m-dataline
MARS-like cipher has 2m rounds impossible differential
distinguisher. Our results show that for m-dataline
CAST256SP and CAST256SPS, there exists (m2 + m − 1)
rounds impossible differential distinguishers and for
MARSSP and MARSSPS, there exists (3m − 3) rounds im-
possible differential distinguishers.

-is paper is organized as follows: Section 2 introduces
some preliminaries. Section 3 focuses on finding impossible
differential distinguisher of m-dataline CAST256-like
structures with SP/SPS round function. Section 4 works on
finding impossible differential distinguisher of m-dataline
MARS-like structures with SP/SPS round function. Section 5
concludes this paper.

2. Guidelines for Manuscript Preparation

-roughout this paper, we will use the symbols, described in
Table 1.

It is well known that if f is a linear bijection, then
Δf(Δx) � f(Δx), else Δf(Δx) may have several possible
values; in this case, we can choose any one for further
discussion, and we will use Δ(i)

f (Δx) to distinguish them.
Next, we will first describe these two structures, and then

lay out some basic definitions and notations.

2.1. CAST256-like Structure. An m-dataline CAST256-like
network consists of r rounds, each round is defined as
follows.

Let (Xi−1
1 , Xi−1

2 , . . . , Xi−1
m ) be the input of the i-th round,

(Xi
1, Xi

2, . . . , Xi
m) and ki be the output and the round key of

the -th round, resp(i � 1, 2, . . .).
(Xi

1, . . . , Xi
m) � RoundCAST256(Xi−1

1 , . . . , Xi−1
m ) is defined

as

X
i
1 � X

i−1
m ,

X
i
j+1 � X

i−1
j , 1≤ j≤m − 1;

X
i
m � F ki, X

i−1
m􏼐 􏼑⊕X

i−1
m−1,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1)

where F is the round function (Figure 1 describes one round
of 4-dataline CAST256-like network).

2.2. Mars-like Structure. An m-daaline MARS-like network
consists of r rounds; each round is defined as follows.

Let (Xi−1
1 , Xi−1

2 , . . . , Xi−1
m ) be the input of the i-th round,

(Xi
1, Xi

2, . . . , Xi
m) and ki be the output and the round key of

the -th round, resp(i � 1, 2, . . .).
(Xi

1, . . . , Xi
m) � RoundMARS(Xi−1

1 , . . . , Xi−1
m ) is defined

as

X
i
j � F ki, X

i−1
1􏼐 􏼑⊕X

i−1
j+1, 1≤ j≤m − 1;

X
i
m � X

i−1
1 ,

⎧⎪⎨

⎪⎩
(2)

where F is the round function (Figure 2 describes one round
of 4-dataline CAST256-like network).

2.3. Notations. According to the definition of round func-
tion f, these two cipher structures can be classified into many
substructures. Major round functions under study are based
on SP structure and SPS structure, which are two basic
structures of modern ciphers.

Definition 1 (See [1]) (SP network). Let S1, . . . , Sn: 0, 1{ }d

⟶ 0, 1{ }dbe nonlinear bijections, P

0, 1{ }
nd⟶ 0, 1{ }

nd (3)

be a linear transformation (there is no limit that P is a bi-
jection), k � (k1, . . . , kn) ∈ 0, 1{ }nd is the round key, then the
round function Roundsp

0, 1{ }
nd

× 0, 1{ }
nd⟶ 0, 1{ }

nd
, (4)

of SP network (SPN) is defined by

RoundSP(x, k) � P S1 x1⊕ k1( 􏼁, . . . , Sn xn⊕ kn( 􏼁( 􏼁. (5)

We use CAST256SP (resp. CAST256SPS) to denote
CAST256-like structure with SP(resp. SPS) type round
function and MARSSP (resp. MARSSPS ) for MARS-like
structure with SP(resp. SPS) type round function.

Definition 2 (See [15]). (χ − function) χ: Fn
2d⟶ Fn

2 is de-
fined as

χ x1, . . . , xn( 􏼁 � θ x1( 􏼁, . . . , θ xn( 􏼁( 􏼁 (6)

where θ: F2d⟶ F2 is defined by

θ(x) �
1, if x≠ 0;

0, if x � 0.
􏼨 (7)

Let X � (x1, . . . , xn), function χs: Fn
2d⟶ F2 is defined

by χS(X) � θ(xS).
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Definition 3 (φ − function). Let 1≤ r≤ n; then φr: Fn
2d⟶

F2d is defined as φr(x1, . . . , xn) � xr.

Definition 4 (See [1]) (differential branch number). Let
f(x) � Mx be a linear mapping, where M is a matrix over
GF(2d). -en the differential branch number of f is defined
by

Br(f) � min
x≠0

w(x) + w(M × x){ }. (8)

3. Impossible Differential Distinguishers of
Cast256-like Structure

3.1. Two Important Differential Characteristics of CAST256-
like Structure

Lemma 1 (See [23]). For the m-dataline CAST256-like
structure, any nontrivial differential characteristic of the
round function must be with the following form:

ΔXi
1, . . . ,ΔXi

m−1,ΔX
i
m􏼐 􏼑⟶ ΔXi

m,ΔXi
1, . . . ,ΔXi

m−2,Δy⊕X
i
m−1􏼐 􏼑.

(9)

And Δy denotes the output difference of the round
function. From Lemma 1, we have.

Proposition 1. Let (ΔX) be one round differential charac-
teristic of m-dataline CAST256-like structure, then the fol-
lowing equations hold with probability 1.

(1) ΔXi
k � ΔXi−1

k−1 for 2≤ k≤m − 1
(2) ΔXi

1 � ΔXi−1
m

(3) ΔXi−1
m � ΔF(ΔXi−1

m )⊕ΔXi−1
m−1

Proposition 1 can be verified directly from Lemma 1.
In the following, we concentrate on two special differ-
ences which will help us to find the impossible
differentials.

Observation 1. Let 1≤ k0 ≤m − 2 and (ΔXi−1
1 , . . . ,

ΔXi−1
m )⟶ (ΔXi

1, . . . ,ΔXi
m) be the same as in the previous

observation, if ΔXi−1
k �

O, k≠ k0
α, k � k0

􏼨 , then

ΔXi
k �

O, k≠ k0 + 1,

α, k � k0 + 1.
􏼨 (10)

Observation 2. Let 1≤ k0 ≤m − 2 and (ΔXi+m
1 , . . . ,ΔXi+m

m )

be the output difference of the (i + m) round, if

ΔXi+m
j �

O, j≤ k0;

U, k0 ≤ j≤m − 2;

Δ, j � m − 1;

α, j � m.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

, then

ΔXi
j �

O, j≤ k0 − 1;

U, k0 − 1≤ j≤m − 2;

Δ⊕ΔF(α), j � m − 1;

α, j � m.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(11)

We can conclude the following Lemma.

Lemma 2. For the m-dataline CAST256-like structure, there
exists a rounds differential characteristic

Table 1: Symbols.

⊕ XOR operation
Δx -e XOR difference of x and x′
ω(X) -e number of nonzero components of vector X

Δf(Δx) -e output difference of f when the given input difference is Δx
| Matrices concatenation
g°

f(x) Composition of function f and g, i.e., g(f(x))

M(i) -e i-th column of matrix M � (Mi,j)n×n

ei1 ,...,ir
Vector with nonzero values only in the i1, . . . , ir-th components

0 n-dimension zero vector
U Uncertain difference

F

X1
i–1 X2

i–1 X3
i–1 X4

i–1

X2
i X3

i X4
iX1

i

Figure 1: One round of 4-dataline CAST256-like structure.

X1
i–1 X2

i–1 X3
i–1 X4

i–1

F

X2
i X3

i X4
iX1

i

Figure 2: One round of 4-dataline MARS-like structure.
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(α, O, . . . , O)⟶ (2m−1)−round
U, . . . , U,ΔF2(α),ΔF(α), U( 􏼁⟶ 1−round

U, . . . , U,ΔF2(α), U( 􏼁. (12)

from encryption direction and an m(m − 1) rounds differ-
ential characteristic

U, . . . , U, ⊕
m−1

k�1
Δ(k)

F (α), α􏼒 􏼓 ⟵
m(m−1)−round

(O, . . . , O, α),

(13)

from the decryption direction, both with probability 1.

Proof. If the input difference is chosen as (ΔX0
1, . . . ,

ΔX0
m) � (α, O, . . . , O), according to Observation 1,

ΔXm−2
1 , . . . ,ΔXm−2

m􏼐 􏼑 � (O, . . . , O, α, O). (14)

Applying Proposition 1 repeatedly, the following
equations must hold

ΔXm−1
m−1 � ΔXm−2

m−2 � O,

ΔXm−1
m � ΔF ΔX

m−2
m􏼐 􏼑⊕ΔXm−2

m−1 � α,

ΔXm
m−1 � ΔXm−1

m−2 � ΔXm−2
m−3 � O,

ΔXm
m � ΔF ΔX

m−1
m􏼐 􏼑⊕ΔXm−1

m−1 � ΔF(α).

(15)

-en we arrive to

ΔXm+2
1 � ΔXm+1

m � ΔF ΔX
m
m( 􏼁⊕ΔXm

m−1 � ΔF2(α),

ΔX2m−1
m−1 � ΔXm+1

1 � ΔF(α),

ΔX2m−1
m−2 � ΔX2m

m−1 � ΔXm+2
1 � ΔF2(α),

(16)

which implies the differential

(α, O, . . . , O)⟶ (2m−1)−round
U, . . . , U,ΔF2(α),ΔF(α), U( 􏼁⟶ 1−round

U, . . . , U,ΔF2(α), U( 􏼁 (17)

exists.
From the decryption direction, if the output difference is

set as (O, . . . , O, α), then by Observation 2, after m rounds
decryption, the input difference (from the encryption di-
rection) is (O, . . . , O,ΔF(α), α), and applying Observation
(2m − 2) times, we may clarify this Lemma (in Tables 2 and
3, we listed the whole procedure).

3.2. Impossible Differentials for CAST256-like Structure with
SP/SPS Round Function

Theorem 1. Assume A is the permutation layer of
CAST256SP, where A is a n × n matrix over GF(2d). Let
Ω1 � i1, . . . , ix, Ω2 � j1, . . . , jy⊆1, 2, . . . , n, if Ai1

, . . . , Aix
,

Aj1
, . . . , Ajy

are linearly independent, then for any n-dimen-
sion vector eΩ1, eΩ2,

eΩ1, O, . . . , O􏼐 􏼑⟶ O, . . . , O, eΩ2􏼐 􏼑 (18)

is an m2 + m − 1 rounds impossible differential of
CAST256SP.

Proof. According to Lemma 2, we have ΔX2m−1
m−1 � ΔF(Ω1) �

ΔP°S(eΩ1) from the encryption direction and ΔX2m−1
m−1 �

⊕m−1
k�1 Δ

(k)
F (Ω2) � ⊕m−1

k�1 Δ
(k)
P°S(Ω2) from the decryption

direction.
By the definition of eΩ1, we get

ΔP°S eΩ1􏼐 􏼑 � ΔP ΔS eΩ1􏼐 􏼑􏼐 􏼑 � ⊕
x

u�1
φu ΔS eΩ1􏼐 􏼑􏼐 􏼑 × A iu( ).

(19)

Similarly,

⊕
m−1

k�1
ΔP°S eΩ2􏼐 􏼑 � ⊕

m−1

k�1
ΔP Δ

(k)
S eΩ2􏼐 􏼑􏼐 􏼑 � P ⊕

m−1

k�1
Δ(k)

S eΩ2􏼐 􏼑 � A × ⊕
m−1

k�1
Δ(k)

S eΩ2􏼐 􏼑􏼒 􏼓 � ⊕
y

v�1
φv ⊕

m−1

k�1
Δ(k)

S eΩ2􏼐 􏼑􏼒 􏼓 × A jv( ). (20)

Since Ai1
, . . . , Aix

, Aj1
, . . . , Ajy

are linearly independent
and ΔS(eiu

)≠ 0, we have

⊕
x

u�1
φu ΔS eΩ( 􏼁( 􏼁 × A iu( )􏼒 􏼓⊕ ⊕

y

v�1
φv ⊕

m−1

k�1
Δ(k)

S eΩ2􏼐 􏼑􏼒 􏼓 × A jv( )􏼠 􏼡≠ 0.

(21)

-is indicates ΔP°S(eΩ1)≠⊕
m−1
k�1 Δ

k
P°S(eΩ2), which means

(eΩ1, O, . . . , O)⟶ (O, . . . , O, eΩ2) is an (m2 + m − 1)
rounds impossible differential of CAST256SP.

For most designs of permutation layer, we can easily find
these i1, . . . , ix, j1, . . . , jy, which satisfy the condition of
-eorem 1.

Corollary 1. AssumeA is the diffusion layer of CAST256SP, if
A is a n × n invertible matrix, Ω1 � i1, . . . , ix,
j1, . . . , jy⊆1, 2, . . . , n and Ω1 ∩Ω2 � ∅, then for any n-di-
mension vector eΩ1, eΩ2, (eΩ1, O, . . . , O)⟶ (O, . . . , O, eΩ2)

is an (m2 + m − 1) rounds impossible differential of
CAST256SP.
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By considering the 2m rounds differential proposed in
Lemma 2, we can find an m2 + m round impossible dif-
ferential. And the result is concluded as follows.

Theorem 2. Assume n × n matrix A is the permutation layer
of CAST256SP and Br(A)> 2, then for any n-dimension
vector α, if w(α) � 1, then (α, O, . . . , O)⟶ (O, O, . . . , α) is
an (m2 + m) rounds impossible differential of CAST256SP.

Proof. Let the input and output difference of (m2 + m − 1)
rounds CAST256SP be (α, O, . . . , O) and (O, . . . , O, α), re-
spectively. By Lemma 2, we can conclude that from the
encryption direction, the difference of the 2nd left most
branch of 2m round is ΔP°S°P°S(α), while from the decryption
direction, this difference is ⊕m−1

k�1 Δ
(k)
P°S(α).

If differential (α, O, . . . , O) ⟵
m(m−1)−round

(O, . . . , O, α) is
possible, then equation is possible; then equation
ΔP°S°P°S(α)⊕ ⊕

m−1

k�1
Δ(k)

P°S(α)􏼒 􏼓 � A × ΔS°P°S(α)⊕ ⊕m−1
k�1 Δ

(k)
S (α)􏼐 􏼑􏼐 􏼑 � 0

(22)

is possible.
Since for any 1≤ k≤m − 1, χ(Δ(k)

S (α)) � χ(α), so
w(⊕m−1

k�1 Δ
(k)
S (α)) is at most 1. We also notice w(ΔS°P°S

(α))≥Br(A) − w(Δs(α))> 1; thus, ΔS°P°S(α)⊕(⊕m−1
k�1 Δ

(k)
S

(α)), which means that (α, O, . . . , O)⟶ (O, O, . . . , α) is an
(m2 + m) rounds impossible differential.

For CAST256SPS, we have similar results.

Theorem 3. Assume n × n matrix A is the diffusion layer of
CAST256SPS, if A has entry “0”, then there exists (m2 + m − 1)
rounds impossible differentials of CAST256SPS.

Proof. Without loss of generality, we can assume that there
exists 1≤ i, l, j≤ n, such that Al,i ≠ 0 and Al,i � 0. Let the input
and output difference of (m2 + m − 1) rounds CAST256SPS be
(ei, O, . . . , O) and (O, . . . , O, ej), respectively. Since
ΔX2m−1

m−1 � ΔF(ei) � ⊕m−1
k�1 Δ

(k)
F (ej) and F � S°P°S, we have

ΔS°P°S ei( 􏼁 � ΔS ΔP ΔS ei( 􏼁( 􏼁( 􏼁 � ΔS A × ΔS ei( 􏼁( 􏼁( 􏼁

� ΔS φi ΔS ei( 􏼁( 􏼁 × A(i)􏼐 􏼑,

⊕
m−1

k�1
Δ(k)

S°P°S ej􏼐 􏼑 � ⊕
m−1

k�1
Δ(k)

S φj Δ
(k)
S ej􏼐 􏼑􏼐 􏼑 × A(j)􏼐 􏼑.

(23)

For Al,i ≠ 0, we have χl(A(i))≠ 0, since S layer are parallel
bijections and φi(ei)≠ 0, we may obtain φi(ΔS(ei))≠ 0, so
χ(φi(ΔS(ei)) × A(i)) � χ(A(i)). And for χl(A(i) ≠ 0), we have

χl φi ΔS ei( 􏼁( 􏼁( 􏼁 × A(i) � χl A(i)􏼐 􏼑 � 1, (24)

so we conclude

χl ΔS°P°S ei( 􏼁( 􏼁 � χl ΔS φi ΔS ei( 􏼁( 􏼁 × A(i)􏼐 􏼑􏼐 􏼑 � χl φi ΔS ei( 􏼁( 􏼁 × A(i)􏼐 􏼑 � 1.

(25)

For Al,i � 0, we have χl(A(i)) � 0, which implies
χl(φj(Δ

(k)
S (ej)) × A(j)) � 0; thus, the two equations below

hold:
χl Δ

(k)
S φj Δ

(k)
S ej􏼐 􏼑􏼐 􏼑 × A(j)􏼐 􏼑􏼐 􏼑 � 0,

χl ⊕
m−1

k�1
Δ(k)

S φj Δ
(k)
S ej􏼐 􏼑􏼐 􏼑 × A(j)􏼐 􏼑􏼒 􏼓 � 0.

(26)

-is means ΔX2m−1
m−1 � ΔS°P°S(ei)≠⊕m−1

k�1 ΔS°P°S (ej) �

ΔX2m−1
m−1 , which leads contradiction. -is implies (ei,

O, . . . , O)⟶ (O, . . . O, ej) is an (m2 + m − 1) rounds im-
possible differential of CAST256SPS.

Now we consider a special case, when permutation layer
is designed as a binary matrix.

Corollary 2. Assume A is the permutation layer of CAST
256SPS, where A is a n × n binary matrix with rank(A)≥ 2;
then for some 1≤ i, j≤ n, there exists (m2 + m − 1) rounds
impossible differential (ei, O, . . . , O)⟶ (O, . . . O, ej),
where rank(A) denotes the rank of matrix A.

Proof. Since rank(A)≥ 2, we know there exist some
1≤ i, j, l≤ n, such that A(i) ≠A(j) and Al,i ≠Al,j. -is means

Al,i � 1
Al,j � 0􏼨 or

Al,i � 0
Al,j � 1􏼨 . -us, by -eorem 3, we can con-

clude the result.
Corollary 2 indicates that for binary permutation layer, if

its rank exceeds 2, then we can find such impossible dif-
ferentials. Obviously, this condition is compatible for almost
every design.

Table 2: (2m−1) rounds differential characteristics of the m-dataline
CAST256-like structure from the encryption direction.

Round/output diff↓ α O O . . . OOtextbf0
1 O α O . . . O O

. . . . . .

m − 1 O O O . . . O α
m α O O . . . O ΔF(α)

m + 1 ΔF(α) α O . . . O ΔF2(α)

. . . . . .

2m − 1 U U U . . . ΔF(α) α
2m U U U . . . ΔF2(α) U

Table 3:m(m − 1) rounds differential characteristics of them-dataline
CAST256-like structure from the decryption direction.

1 U U U . . . ⊕m−1
k�1 Δ

(k)
F (α) α

2 α U U . . . U ⊕m−2
k�1 Δ

(k)
F (α)

. . . . . .

m(m − 3) + 1 O O O . . . ⊕2k�1Δ
(k)
F (α) α

. . . . . .

m(m − 2) + 1 O O O . . . Δ(1)
F (α) α

. . . . . .

m(m − 1) O O O . . . α O

Round/input diff↑ O O O O α
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4. Impossible Differential Distinguishers of
MARS-like Structure

4.1. Two Important Differential Characteristics of MARS-like
Structure. -e following lemma is trivial.

Lemma 3. For the m-dataline MARS-like cipher, any
nontrivial differential characteristic of the round function
must be with the form (ΔXi

1, . . . ,ΔXi
m−1, ΔXi

m)⟶
(ΔXi

2⊕Δy, . . . ,ΔXi
m⊕Δy,ΔXi

1), and Δy denotes the output
difference of the round function.

From Lemma 3, we can verify the properties as below.

Proposition 2. Let (ΔXi
1, . . . ,ΔXi

m−1, ΔXi
m)⟶

(ΔXi
2⊕Δy, . . . ,ΔXi

m⊕Δy,ΔXi
1) be one round differential

characteristic of m-dataline MARS-like structure, then we
have

(1) ΔXi+1
j � ΔXi

j+1⊕ΔF(ΔXi
1) for 1≤ j≤m − 1

(2) ΔXi+1
m � ΔXi

1

Observation 3. Let 1≤ r≤m − 1, then for the m-dataline
MARS-like structure, there exists the following 1 round
differential characteristic with probability 1:

Δx, . . . ,Δx,Δt1, . . . ,Δtm−r( 􏼁⟶ Δx⊕Δ, . . . ,Δx⊕Δ,Δt1⊕Δ, . . . ,Δtm−r⊕Δ,Δx( 􏼁, (27)

where Δ � ΔF(Δx).

Observation 4. Let 1≤ k0 ≤m − 1 and (ΔXi
1, . . . ,ΔXi

m)

⟶ (ΔXi+1
1 , . . . ,ΔXi+1

m ) be the same as in the previous
propositions; following this, if

ΔXi+1
k �

O, k≠ k0;

α, k � k0,
􏼨 (28)

then

ΔXi
k �

O, k≠ k0 + 1;

α, k � k0 + 1.
􏼨 (29)

Based on these two Observations, we can conclude the
Lemma below.

Lemma 4. For the m-dataline MARS-like structure, there
exists a (2m − 3) rounds differential characteristic
(O, . . . , O, α)⟶ (2m−3)round(A, A, U, . . . , U, U) from en-
cryption direction and an m rounds differential characteristic
(α,ΔF(α),ΔF(α), . . . ,ΔF(α))⟵mround

(α, O, . . . , O) from the
decryption direction, both with probability 1, where denotes
one fixed difference and denotes some uncertain difference(s).

Proof. Let (ΔX0
1, . . . ,ΔX0

m) � (O, . . . , O, α) be the input
difference, then according to Proposition 3, after (m − 1)
rounds cascade, the output difference is turned into
(ΔXm−1

1 , . . . ,ΔXm−1
m ) � (α, O, . . . , O), then by Proposition

2, it holds ΔXm
1 � · · · � ΔXm

m−1 applying Proposition 3 re-
cursively, we have ΔX2m−3

1 � ΔX2m−3
2 .

From the decryption direction, if the output difference is
chosen as (ΔXm

1 ,ΔXm
2 , . . . ,ΔXm

m) � (α, O, . . . , O), then by
Observation 4, we have (ΔX1

1,ΔX1
2, . . . ,ΔX1

m) �

(O, . . . , O, α). According to Proposition 2, we may obtain
(ΔX0

1,ΔX0
2, . . . ,ΔX0

m) � (α,ΔF(α),ΔF(α), . . . ,ΔF(α)) (in
Tables 4 and 5, we listed the whole procedure).

4.2. Retrieving Impossible Differential for MARS-Like Struc-
ture with SP/SPS Round Function. Before we start this
section, we will introduce the definition of collect set.

Definition 5. (collect set) Let M be an s × t matrix over
GF(2d), x � (x1, . . . , xt) is a binary vector. -en the
collect set Col(x, M) is defined as Col(x, M) �

M(i): xi ≠ 0, 1≤ i≤ t􏽮 􏽯, the characteristic function of
Col(x, M) is defined as

Ch(Col(x, M)) �
1, the vectors in Col(x, M) are linearly independent;

0, the vectors in Col(x, M) are linearly dependent.
􏼨 (30)

-e pattern of Col(x, M) is defined as

Pat(Col(x, M)) � χ(M × y): y � y1, . . . , yt( 􏼁
T
, yi ∈ GF 2d

􏼐 􏼑, χ(y) � x􏽮 􏽯. (31)

Theorem 4. Assume n × n matrix A over GF(2d) is the
permutation layer of MARSSP, if there exists nonzero n-di-
mension vector Δx over GF(2d) such that
Ch(Col((χ(Δx) | χ(Δx)), (A | E))) � 1 then (0, . . . , 0, y)

⟶ (Δx, 0, . . . , 0) is a (3m − 3) rounds impossible differ-
ential of MARSSP, where y represents any nonzero vector.

Proof. By Lemma 4 we have
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ΔX2m−3
1 � Δx,

ΔX2m−3
2 � ΔP°S(Δx) � A × ΔS(Δx),

⎧⎨

⎩ (32)

from the decryption direction.
We assume A × ΔS(Δx) � Δx, then

(A | E) ×
ΔS(Δx)

Δx
􏼠 􏼡 � 0. (33)

-is indicates Col(χ(ΔS(Δx)) | χ(Δx), A | E) are linearly
dependent, which is contradictory with Ch(Col((χ(Δx)

| χ(Δx)), (A | E))) � 1. So A × ΔS(Δx)≠Δx, i.e., ΔXi
1 ≠ΔXi

2.
However, by Lemma 4, we have from the encryption di-
rection, and this leads to a contradiction. -us
(O, . . . , O, y)⟶ (Δx, O, . . . , O) is an impossible differ-
ential of MARSSP.

Corollary 3. Assume n × n matrix A over GF(2d) is the
permutation layer of MARSSP, if the branch number of A

is Br(A), then for any nonzero n-dimension vector Δx
over such that w(Δx)< (DA/2), then (O, . . . , O, y)⟶

(Δx, O, . . . , O) is a (3m − 3) rounds impossible differential of
MARSSP, where y represents any nonzero vector.

Proof. According to Definition 4, for any w(Δx)<
(Br(A)/2), w(A × ΔS(Δx))≥Br(A) − w(Δx)> (Br(A)/2)

which implies A × ΔS(Δx)≠Δx; thus, (O, . . . ,

O, y)⟶ (Δx, O, . . . , O) is an impossible differential of
MARSSP.

Theorem 5. Assume n × n matrix A over GF(2d) is the
permutation layer of MARSSPS, if there exists nonzero n-di-
mension vector Δx over GF(2d) such that χ(Δx) ∉ Pat
(Col(χ(Δx), A)) then (O, . . . , O, y)⟶ (Δx, O, . . . , O) is
an (3m − 3) rounds impossible differential of MARSSPS,
where y represents any nonzero vector.

Proof. By Lemma 4 we have,

ΔXi
1 � Δx,

ΔXi
2 � ΔS°P°S(Δx) � ΔS A × ΔS(Δx)( 􏼁,

⎧⎨

⎩ (34)

from the decryption direction.
Since χ(ΔS(A × (ΔS(Δx)))) � χ(A × (ΔS(Δx))) ∈

Pat(Col(χ(Δx), A)) and χ(Δx) ∉ Pat(Col(χ(Δx), A)), we
can conclude ΔX2m−3

1 ≠ΔX2m−3
2 . -us, (O, . . . , O, y)

⟶ (Δx, O, . . . , O) is a (3m − 3) rounds impossible dif-
ferential of MARSSPS.

According to -eorem 5, the case that the binary matrix
employment is characterized as follows.

Corollary 4. Assume n × n binary matrix A is the diffusion
layer of MARSSPS, if exists 1≤ i1 < i2 ≤ n and 1≤ j1 < j2 ≤ n,
such that i1, i2􏼈 􏼉≠ j1, j2􏼈 􏼉 and

Ai1 ,j1
� 0,

Ai1 ,j2
≠ 0,

Ai2 ,j1
≠ 0,

Ai2 ,j2
� 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(35)

then for any ej1 ,j2
and nonzero vector y, (O, . . . ,

O, y)⟶ (ej1 ,j2
, O, . . . , O) is a (3m − 3) rounds impossible

differential of MARSSPS.

Proof. We have

φi A × ΔS ej1,j2
􏼐 􏼑􏼐 􏼑􏼐 􏼑 � ⊕

n

k�1
Ai,k × φk ΔS ej1 ,j2

􏼐 􏼑􏼐 􏼑 � ⊕
k∈ j1 ,j2{ }

Ai,k × φk ΔS ej1 ,j2
􏼐 􏼑􏼐 􏼑. (36)

Which tells χi1
(ΔS(A × (ΔS(Δx)))) � χi2

(ΔS(A× (ΔS

(Δx)))) � 1. However, by the definition of e j1 ,j2{ }, we have
www and i1, i2􏼈 􏼉≠ j1, j2􏼈 􏼉. -us, χ(e j1 ,j2{ }) ∉ Pat(Col(χ
(e j1 ,j2{ }), A)).

Compared with other designs, binary diffusion layer has
an obvious advantage in implementation and thus is a very

common design, and for this case, the conditions of Cor-
ollary 4 are satiable for most of the time.

For MARSSPS, we can tell that if (ΔX3m−3
1 , ..,

ΔX3m−3
m ) � (ΔX, O, . . . , O), then ΔX2m−3

1 � Δx and
ΔX2m−3

2 � ΔS°P°S(Δx). One can see ΔX2m−3
1 � ΔX2m−3

2
can be represented by ΔS[P(ΔS(Δx))] � Δx. Notice

Table 4: -e (2m-3) rounds differential characteristics of the m-
dataline MARS-like structure from the encryption direction Δi �

ΔF(Δi−1⊕Δi−1) for 1≤ i≤m − 1 and Δ0 � Δ0 � ΔF(α).

Round/output diff↓ O O . . . O α O
1
. . . . . .

m − 1 α O . . . O O O
m Δ0 Δ0 . . . Δ0 Δ0 α
m + 1 Δ1 Δ1 . . . Δ1 U Δ0
. . . . . .

2m − 3 Δm−3 Δm−3 . . . U U Δm−4

Table 5: m rounds differential characteristics of the m-dataline
MARS-like structure from the decryption direction.

1 α ΔF(α) ΔF(α) . . . ΔF(α) ΔF(α)

. . . O O O . . . O α
m − 1 . . .

m O α O . . . O O
Round/input diff↑ α O O O O
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w(ΔS[P(ΔS(Δx))]) � w(P(ΔS(Δx))), we can change
“MARSSP” by “MARSSPS” in Corollary 3.

Corollary 5. Assume n × n matrix A over GF(2d) is the
diffusion layer of MARSSPS, if the branch number of A is DA,
then for any nonzero n-dimension vector Δx over GF(2d)

such that w(Δx) < (DA/2), then (O, . . . , O, y)

⟶ (Δx, O, . . . , O) is a (3m − 3) rounds impossible differ-
ential of MARSSPS, where y represents any nonzero n-di-
mension vector.

5. Conclusion

Generalized Feistel structures are of great importance in
modern block cipher design. Evaluating the strength of these
structures can help us in constructing a security cipher.
Among all the cryptanalysis technologies, impossible dif-
ferential cryptanalysis is one of the most powerful attacks.
-is paper provides an improvement in finding the longest
impossible differentials for two generalized Feistel structures
named the CAST256-like structure and the MARS-like
structure.

-is paper bridges some links between impossible dif-
ferentials and linear transformations. We provide some
sufficient conditions on the linear transformations. By our
results, people may find the possible longer impossible
differentials by verifying some properties of the linear
transformations. -us, the properties we list in this paper
should be considered carefully when using these two
structures.
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