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+e rapid development of the Internet leads to a surge in the amount of information transmission and brings many security
problems. For multimedia information transmission, especially digital images, it is necessary to compress and encrypt at the same
time.+e emergence of compressive sensing solves this problem. Compressive sensing can compress and encrypt at the same time,
which can not only reduce the transmission bandwidth of the network but also improve the security of the system. However, when
using compressive sensing encryption, the whole measurement matrix needs to be stored, and the compressive sensing can be
combined with a chaotic system, so only the generation parameters of the matrix need to be stored, and the security of the system
can be further improved by using the sensitivity of the chaotic system. +is paper introduces a secure and efficient image
compression-encryption scheme using a new chaotic structure and compressive sensing. +e chaotic map used in the scheme is
generated by our new and universal chaotic structure, which not only expands the chaotic range of the chaotic system but also
improves the performance of the chaotic system. After analyzing the performance comparison of traditional one-dimensional
chaotic maps and some existing methods, the image compression-encryption scheme based on a new chaotic structure and
compressive sensing has a good encryption effect and large keyspace, which can resist brute force attack and statistical attack.

1. Introduction

With the advent of the fifth-generation mobile networks
(5G) era, the amount of information transmission is grad-
ually increasing, and the requirements for transmission
speed are also increased significantly, which requires more
effective compression sampling methods to achieve higher
sampling rates and signal processing speeds. Due to the
security problems of the network itself, multimedia data are
vulnerable to various attacks in the process of storage and
secure transmission in the network, so it is particularly
important to ensure the security of media information data
[1, 2]. In order to carry out multimedia communication
more effectively, the original image must be compressed and
encrypted at the same time, and the emergence of com-
pressive sensing can solve this problem. In 2006, Donoho [3]
and Candès et al. [4] formally proposed the theory of

compressive sensing (CS). Compressive sensing is an im-
provement on the Nyquist sampling, which can sample
sparse signals nonuniformly with the number of samples far
less than Nyquist sampling law and recover the original data
with the reconstruction performance lower than Nyquist
sampling. It is widely used in wireless sensor networks,
image encryption, image data hiding, etc.

Due to the use of compressive sensing for encryption, the
whole measurement matrix needs to be stored, which re-
quires a large amount of storage space. However, it is
possible to use the chaotic system that only needs to store the
generation parameters of the measurement matrix, instead
of storing the characteristics of the whole measurement
matrix to reduce the storage space. Because of their chaotic
characteristics, such as sensitivity to initial values and pa-
rameters [5, 6], ergodicity [7, 8], and uncertainty [9, 10],
chaotic systems have been widely used in encryption fields
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[11–13]. +erefore, researchers have designed many image
encryption algorithms that combine compressive sensing
with chaotic systems [14–16].

Peng et al. [14] proposed a security and energy-saving
scheme in wireless body area networks, which can solve both
energy-saving and data security problems. Compared with the
traditional encryption scheme, which only used one matrix to
encrypt, they use any one of Chebyshev map, Logistic map, and
Tent map to generate two chaotic matrices to encrypt at the
same time, which increased the security and solved the security
problem in a wireless volume domain network.Wang et al. [15]
proposed a visual security image encryption scheme with
parallel compressive sensing and designed a visual security
encryption scheme with parallel compressive sensing counter
mode and embedding technology. In order to achieve a higher
security level, the Logistic-Tent chaotic system and 3D Cat map
are introduced to construct the measurement matrix, and
Zigzag confusion is used for interference. Chai et al. [16]
proposed an image encryption method based on the combi-
nation of a magnetically controlled memristive chaotic system
and compressive sensing.+is scheme uses the technologies of a
magnetically controlled memristive chaotic system, Secure
Hash Algorithm- (SHA-) 512, and cellular automata. In this
scheme, cellular automata are used in the diffusion stage to
enhance the security of the encryption system, and SHA-512 is
used to calculate the initial value of the chaotic system and
further generate a measurement matrix, which makes the
measurement matrix used in encrypting different types of data.
+is scheme can improve the correlation between the original
image and the algorithm and resist known plaintext attacks and
selected plaintext attacks. Chanil et al. [17] proposed a chaotic
structure and applied a Logistic map and Sine map into their
structure. In order to verify the performance of the proposed
chaotic structure, they proposed a new bit-level color image
encryption scheme. +rough simulation analyses of the bi-
furcation diagram and Lyapunov exponent, it was proved that
their chaotic structure was correct and the range of chaotic
parameters was expanded.

We propose a secure and effective image compression-
encryption scheme using the new chaotic structure and com-
pressive sensing. +e chaotic map used in the compression-
encryption scheme is to apply the commonly used traditional
one-dimensional chaotic maps to the new and general chaotic
structure proposed by us. In this encryption scheme, com-
pressive sensing is used for sampling, which can reduce storage
space and transmission bandwidth. +e chaotic system only
needs to store matrix generation parameters, which can further
reduce transmission bandwidth. Arnold interference technol-
ogy and the SHA-256 function are also used, and the SHA-256
function makes different original images have different keys.
Firstly, theDiscreteWavelet Transform (DWT) is used to sparse
the original image, and then Arnold interference is applied to
the sparse image. +e interference parameters of Arnold in-
terference are generated by the SHA-256 function. +en,
compressive sensing is used to compress and sample the in-
terference images. Finally, a chaotic sequence is used to perform
row and column cyclic shift interference on the compressed and
sampled image. Simulation results show that the compression-

encryption scheme has a large parameter space and keyspace,
which can prevent the statistical attack and brute force attack.

+e rest of this paper is arranged as follows. Section 2
introduces the related basic knowledge. Section 3 describes
the proposed chaotic structure and chaotic map under a new
structure. Section 4 describes our encryption and decryption
scheme. Section 5 simulates and evaluates our encryption
scheme. Section 6 summarizes the research content carried
out in this paper.

2. Fundamental Knowledge

+is section gives a brief introduction to the traditional one-
dimensional chaotic maps and compressive sensing.

2.1. Chaotic Maps. +e commonly used traditional one-
dimensional chaotic systems are the Sine map, Logistic map,
Chebyshev map, and Tent map.

(1) Sine map
Sine map is a very simple and commonly used
chaotic system [18]. Sine map is denoted as

sn+1 � rs × sin π × sn( 􏼁, (1)

where rs is the chaotic parameter of the Sine map,
and sn ∈ [0, 1] is the Sine chaotic sequence.

+e bifurcation diagram and Lyapunov exponent dia-
gram of the traditional Sine map are shown in Figures 1(a)
and 2(a). +e Lyapunov exponent indicates that the chaotic
system must have at least one positive Lyapunov exponent.
When the Lyapunov exponent is positive, the chaotic
characteristics of the system can be quantified; that is, a
chaotic system is sensitive to initial conditions. +e larger
the Lyapunov exponent is, the more sensitive to initial values
the chaotic system is. As can be seen from Figures 1(a) and
2(a), the Sine map has chaotic behaviors when the chaotic
parameter rs is in the range rs ∈ [0.867, 1].

(2) Logistic map
+e logistic map is also a very simple but widely used
chaotic system [19]. Its performance is similar to that
of a Logistic map, and it is defined as

ln+1 � rl × ln × 1 − ln( 􏼁, (2)

where rl is the chaotic parameter of the Logistic map,
and ln ∈ [0, 1] is the Logistic chaotic sequence.
+e bifurcation diagram and Lyapunov exponent
diagram of the traditional Logistic map are shown in
Figures 1(c) and 2(c). As can be seen from
Figures 1(c) and 2(c), the Logistic map has chaotic
behaviors when the control parameter rl is in the
range rl ∈ [3.5, 4].

(3) Chebyshev map
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Figure 1: Continued.
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Figure 2: Continued.
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Figure 1: Bifurcation diagrams of the traditional one-dimensional chaotic maps and the corresponding new one-dimensional chaotic maps
under our chaotic structure: (a) the traditional Sine map, (b) Sine map under our chaotic structure, (c) the traditional Logistic map, (d)
Logistic map under our chaotic structure, (e) the traditional Chebyshev map, (f ) Chebyshev map under our chaotic structure, (g) the
traditional Tent map, and (h) Tent map under our chaotic structure.
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Like the Logistic map and Sine map, the Chebyshev
map is also a commonly used one-dimensional
chaotic map [20], and it is defined as follows:

cn+1 � cos rc × arccos cn( 􏼁, (3)

where rc is the chaotic parameter of the Chebyshevmap,
and cn ∈ [− 1, 1] is the Chebyshev chaotic sequence.
+e bifurcation diagram and Lyapunov exponent
diagram of the traditional Chebyshev map are shown
in Figures 1(e) and 2(e). Chebyshev map has chaotic
behaviors when the chaotic parameter rc takes values
in the range rc ∈ [2, 4].

(4) Tent map
Tent map is defined as follows [21]:

tn+1 � 1 − rt × tn − 0.5
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (4)

where rt is the chaotic parameter of the Tent map, and
tn ∈ [0, 1] is the chaotic sequence of the Tent map.
+e bifurcation diagram and Lyapunov exponent di-
agram of the traditional Tent map are shown in
Figures 1(g) and 2(g). Tent map has chaotic behaviors
when the chaotic parameter rt is in the range rt ∈ (1, 2].

2.2. Compressive Sensing. Candès et al. [22] proposed that if
x ∈ RN is an unknown vector, which is sparse or com-
pressible on a set of orthogonal bases, the unknown vector x
can be accurately recovered by fewer random measured
values y. And this sampling process can be described by a
mathematical model as follows:

y � Φx, (5)
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Figure 2: Lyapunov exponent diagrams of the traditional one-dimensional chaotic maps and the corresponding new one-dimensional
chaotic maps under our chaotic structure: (a) the traditional Sine map, (b) Sine map under our chaotic structure, (c) the traditional Logistic
map, (d) Logistic map under our chaotic structure, (e) the traditional Chebyshev map, (f ) Chebyshev map under our chaotic structure, (g)
the traditional Tent map, and (h) Tent map under our chaotic structure.
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whereΦ is thematrix is of sizeM × N, M<N, and y ∈ RM is
the sampling value.

+is mathematical representation is also a description of the
standard framework of compressed perceptionwhich is a special
case of underdetermined linear equations. Since there are in-
finitely many solutions in equation (5), the original signal x
cannot be recovered directly from the sampled value y. How-
ever, if x reflects sparsity in the sparse dictionaryΨ [23], that is,

x � Ψa, (6)

where a is K-sparse and is denoted as a ∈ ΣK, so we have

y � Φx � ΦΨa � θa, (7)

where θ � ΦΨ is the measurement matrix in compressive
sensing. So we can recover x from y. a is recovered by

min
a

‖a‖l0, where, y � θa. (8)

Equation (8) is a l0 optimization problem. Under certain
conditions, the l0 optimization problem can be transformed
into a l1 optimization problem. +e typical conditions include
Null Space Property (NSP) and Restricted Isometry Property
(RIP). And the equivalent solution can be obtained by [24]

min
a

‖a‖l1, where, y � θa. (9)

For the measurement matrix, spark property should be
satisfied, that is, the minimum number of linear correlation
of the columns of the measurement matrix, and the formula
is

spark(θ) � min
a≠0

‖a‖0, where, θa � 0. (10)

Donoho [25] pointed out that if spark(θ)> 2K, for any
vector y ∈ RM, there is at most one signal a ∈ ΣK that makes
y � θa.

Because solving a sparse solution is an NP-hard problem,
it is impractical to solve the measurement matrix θ that
satisfies this condition from the perspective of computation
[26]. In order to recover sparse signals in reality, Candès
et al. [4] introduced the RIP that there is a constant
δK ∈ (0, 1). Equation (11) holds true for all a ∈ ΣK.

1 − δK( 􏼁‖a‖
2
2 ≤ ‖θa‖

2
2 ≤ 1 + δK( 􏼁‖a‖

2
2. (11)

Although RIP provides a theoretical guarantee for recov-
ering K-sparse signals, it is relatively complex to verify that a
measurement matrix θ meets RIP characteristics. +erefore, in
many cases, it is necessary to use the correlation μ(θ) of the
measurement matrix θ to provide a more specific recovery
guarantee. Correlation μ(θ) refers to themaximum value of the
normalized inner product of two columns randomly selected in
θ [27], namely,

μ(θ) � max
1≤i≠j≤N

〈θi, θj〉
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

θi

����
����2 θj

�����

�����2

, (12)

where θi is the i-th column of θ. For any vector y, if
μ(θ)≤ 1(2K − 1), there is at most one signal a ∈ ΣK, making
y � θa.

Common recovery algorithms include Matching Pursuit
(MP) algorithm [28], Orthogonal Matching Pursuit (OMP)
algorithm [29], Orthogonal Matching Pursuit (StOMP) al-
gorithm [30], and Compressive Sampling Matching Pursuit
(CoSaMP) algorithm [31].

3. New Chaotic Structure

In this section, we firstly describe a new chaotic structure in
detail, and secondly, we describe the new chaotic maps
generated by applying the Sine map, Logistic map, Che-
byshev map, and Tent map to the new chaotic structure.

3.1. New Chaotic Structure. +e new chaotic structure is
given as follows:

yn+1 � F b, yn, k( 􏼁 � mod Fchaos b, yn( 􏼁 −
y2n
3

􏼠 􏼡 × 2k
, 1􏼠 􏼡, k≥ 0,

(13)

where Fchaos(b, yn) is the traditional one-dimensional cha-
otic map mentioned in Section 2, F(b, yn, k) is a new chaotic
map generated under our new chaotic structure, yn ∈ [0, 1]

is the chaotic sequence, b is the chaotic parameter of the
proposed chaotic structure, and b can take any value. mod is
a modulus function, which ensures that the values of the
generated chaotic sequence are in the range [0, 1]. 2k is an
adjustment function about the iteration parameter k, which
is iterated through adjustments to eliminate the transient
effect. +e values of b, k in this chaotic structure should be
specifically analyzed according to the embedded map; that is
to say, when different chaotic maps are applied to the
proposed chaotic structure, the values of b, k will have
different value ranges.

3.2. Application and Analysis of Our New Chaotic Structure.
In this subsection, we give the detailed analyses of new
chaotic maps generated by our new chaotic structure.

(1) New Sine map under our new chaotic structure
+e new Sine map under our new structure is defined
as follows:

Sn+1 � mod bS × sin π × Sn( 􏼁 −
S
2
n

3
􏼠 􏼡 × 2kS , 1),

(14)

where Sn ∈ [0, 1] is the new Sine chaotic sequence
which is generated by our new chaotic structure, and
S0 is the initial value of the new Sine chaotic se-
quence. bS is the chaotic parameter of this new Sine
map, and kS is the iterations parameter of the new
Sine map.
+e bifurcation diagram and Lyapunov exponent
diagram of the new Sine map under our new
structure are shown in Figures 1(b) and 2(b). It can
be seen from Figures 1(b) and 2(b) that the new Sine
map under our new structure has a much larger
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chaotic parameter range than the traditional Sine
map and the Lyapunov exponent that are all positive
numbers, which proves the superiority of the pro-
posed Sine map. When kS ∈ [6, 28] and bS ∈ [0, 30],
the state of the new Sine map under our new
structure is fully chaotic.

(2) New Logistic map under our new chaotic structure
+e new Logistic map generated by our new chaotic
structure is presented as follows:

Ln+1 � mod bL × Ln × 1 − Ln( 􏼁 −
L
2
n

3
􏼠 􏼡 × 2kL , 1), (15)

where Ln ∈ [0, 1] is the new Logistic chaotic se-
quence which is generated by our new chaotic
structure, and L0 is the initial value of the new
Logistic chaotic sequence. bL is the chaotic parameter
of the new Logistic map, and kL is the iterations
parameter of the new Logistic map.
+e bifurcation diagram and Lyapunov exponent
diagram of the new Logistic map under our new
structure are shown in Figures 1(d) and 2(d). Like the
new Sine map under our new structure, its chaotic
range and performance are much better than the
traditional Logistic map. When kL ∈ [7, 21],
bL ∈ [0, 30], the Logistic map under our new
structure is in a fully chaotic state.

(3) New Chebyshev map under our new chaotic structure
+e new Chebyshev map under our new structure
can be expressed as follows:

Cn+1 � mod cos bC × arccos Cn( 􏼁( 􏼁 −
C
2
n

3
􏼠 􏼡 × 2kC , 1),

(16)

where Cn ∈ [0, 1] is the new Chebyshev chaotic se-
quence which is generated by our new chaotic
structure, and C0 is the initial value of the new
Chebyshev chaotic sequence. bC is the chaotic pa-
rameter of this new Chebyshev map, and kC is the
iterations parameter of the new Chebyshev map.
+e bifurcation diagram and Lyapunov exponent
diagram of the new Chebyshev map under our new
structure are shown in Figures 1(f ) and 2(f ). When
kC ∈ [8, 29] and bC ∈ [0, 30], the state of the Che-
byshev map under our new structure is fully chaotic.

(4) New Tent map under our new chaotic structure
+e new Tent map under our new structure is de-
fined as follows:

Tn+1 � mod 1 − bT × Tn − 0.5
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 −
T
2
n

3
􏼠 􏼡 × 2kT , 1),

(17)
where Tn ∈ [0, 1] is the new Tent chaotic sequence
which is generated by our new chaotic structure, and T0

is the initial value of the new Tent chaotic sequence. bT

is the chaotic parameter of the new Tent map, and kT is
the iterations parameter of the new Tent map.
+e bifurcation diagram and Lyapunov exponent di-
agram of the new Tent map under our new structure are
shown in Figures 1(h) and 2(h). +e Tent map under
our new chaotic structure is fully chaotic when
kT ∈ [5, 21], bT ∈ [0, 30].

4. The Proposed Compression-
Encryption Scheme

In this section, a secure and effective image compression-
encryption scheme is proposed by using the new chaotic
map under a new structure and compressive sensing.

4.1. Key Generation

(1) +e generation of the Arnold interference parame-
ters k1, k2 and the interference number k3: calculate
the 256-bit hash value H according to the original
image X with SHA-256 function, then divide H into
two blocks, and three initial values n0, a0, b0 are
randomly selected. SHA-256 function can be used to
calculate the key according to the original image, and
different original images have different Arnold in-
terference effects and different chaotic sequence
parameters, so as to achieve different effects of
original images and different measurement matrix.
+e specific formula of SHA-256 function can be
expressed as follows:

H � h1, h2, . . . , h31, h32,

k1 � n0 + h1⊕h2⊕ · · ·⊕h15⊕h16( 􏼁,

k2 � k1 + a0 × h17⊕h18⊕ · · ·⊕h31⊕h32( 􏼁,

k3 � k1⊕k2( 􏼁 + b0.

(18)

(2) +e generation of two improved chaotic sequences
z0, z1: we use the new chaotic maps proposed in this
paper to generate chaotic sequences. Two improved
chaotic sequences are generated according to the
initial values z0′, z1′ and control parameters u0, u1.
Take a new Tent map and new Chebyshev map as
examples:

z0 � mod cos u0 × arccos z0′( 􏼁( 􏼁 −
z
2′
0
3

⎛⎝ ⎞⎠ × 216, 1),

z1 � mod 1 − u1 × z1′ − 0.5
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 −
z
2′
1
3

⎛⎝ ⎞⎠ × 216, 1).

(19)

(3) Calculate the cyclic sequence bitRow in the row
direction. Randomly select the cycle number keyRow
of the cyclic shift in the row direction, and generate
LogisticRow according to the initial value

Security and Communication Networks 7



LogisticRow′ and control parameter ω0. +e steps
can be expressed as follows:

LogisticRow � zero(keyRow,Rows),
bitRow � zero(keyRow,Rows),

for i � 2: keyRow: Rows,
LogisticRow(i) � ω0 × LogisticRow(i − 1)

×(1 − LogisticRow(i − 1)),

bitRow(i) � rem(round(LogisticRow(i)

× 100, 000),Columns),
end,

(20)

where LogisticRow is the traditional Logistic map
which is used to interfere with the sequence in the
row direction, Rows is the numbers of rows, and
Columns is the numbers of columns. +e number of
cycles on the row is once per row, so it needs Rows
time. +e interference in the row direction is per-
formed according to the cycle number keyRow of the
cyclic shift in the row direction. Since the number of
interference in the row direction will not be greater
than the number of Columns, the number of cycles
can be set to Columns.

(4) Calculate the cyclic sequence bitColumn in the
column direction. Randomly select the cycle number
keyColumn of the cyclic shift in the column direc-
tion, and generate LogisticColumn according to the
initial value LogisticColumn′ and control parameter
ω1. +e steps can be expressed as follows:

LogisticColumn � zero(keyColumn,Columns),
bitColumn � zero(keyColumn,Columns),

for i � 2: keyColumn: Columns,
LogisticColumn(i) � ω1 × LogisticColumn(i − 1)

×(1 − LogisticColumn(i − 1)),

bitColumn(i) � rem(round(LogisticColumn(i)

∗ 100, 000),Rows),
end,

(21)

where LogisticColumn is the traditional Logistic map
which is used to interfere with the sequence in the column
direction. Similarly, the number of cycles on the column is
one for each column, so it takes Columns time. Inter-
ference in the column direction is performed according to
the number of cycles keyColumn of cyclic shift in the
column direction. Since the number of interference in the
column direction will not be greater than the number of
Rows, the number of cycles can be set to Rows.

4.2. Compression-Encryption Scheme. +e chaotic map
proposed in this paper is used to construct the measurement
matrix for compression and encryption. Specific encryption
steps can be described as follows:

Step 1: firstly, an original image X with the size of m × n

is obtained.
Step 2: the original image X is sparse by Discrete
Wavelet Transform (DWT), and the sparse image X1
with the size m × n is obtained.
Step 3: Arnold interference is carried out on a sparse
image X1 according to Arnold interference parameters
k1, k2 and interference number k3. +e interference
image is represented by X2 with size m × n.
Step 4: according to the z0, z1 chaotic sequences, two
measurement matrices are obtained. One measurement
matrix is represented by Φ1 and the size is p × q. p is a
random number as the number of rows of the measure-
ment matrix. +e number of columns of the measurement
matrix is the same as the number of rows of the measured
image, that is q � m, which is used for compression and
sampling, and the othermeasurementmatrix is represented
byΦ2, whose size is p × q. +e compression and sampling
process using compressive sensing is expressed as follows:

X3 � Φ1 × X2 + Φ2, (22)

where X3 is the image after compressed sampling, and
its size is p × n.
Step 5: then perform cyclic shift encryption in the row
direction to obtain the encrypted image X4 in the row
direction, wherein the size is p × n, and the encryption
steps in the row direction are expressed as follows:

for r times � 1: keyRow,

for i � 1: p,

X4(i, : ) � circshift X3(i, : ), [0 bitRow(

− (r times, i)]),

end,

end,

(23)

where r times is the number of bit cycles to be per-
formed in all row directions for the control as a whole.
circshif function has two parameters, one to control the
row and the other to control the column. Now, as long
as the column is operated, circshif function is set to
[0 bitRow − (r times, i)].
Step 6: then, perform cyclic shift encryption in the column
direction to obtain the encrypted image Y in the column
direction with size p × n, and the encryption steps in the
column direction are expressed as follows:

for c times � 1: keyColumn,

for i � 1: q,

Y(i, : ) � circshift X4(i, : ), [bitColumn − (c times, i) 0]( 􏼁,

end,

end,

(24)
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where c times is the number of bit cycles to be per-
formed in all column directions for the control as a
whole. Now, as long as the row is operated, so the
circshif function is set to [bitColumn− (c times, i) 0].

4.3. Decryption Scheme. +e decryption scheme is actually
the reverse operation of the encryption scheme, and its
principle is the same as that of the encryption scheme. +e
specific decryption steps can be described as follows:

Step 1: first obtain the encrypted image, which is
represented by Y′ and size is p × n.
Step 2: according to the cycle number keyColumn of
the cyclic shift in the column direction sent by the
encryption party, a bit cyclic sequence bitColumn for
decryption in the column direction is constructed.
Step 3: decrypt the encrypted image with a cyclic shift in
column direction according to keyColumn and
bitColumn and obtain the cyclic shift in the column
direction to decrypt image X4′ , with size p × n. +e
steps are as follows:

for c times � 1: keyColumn,

for i � 1: q,

X4′(:, i) � circshift(Y′(:, i), [p − bitColumn(c times, i) 0]),

end,

end,

(25)

Step 4: according to the cycle number keyRow of the
cyclic shift in the row direction sent by the encryption
party, construct the bit cyclic sequence bitRow used for
encryption in the row direction.
Step 5: perform cyclic shift decryption on the cyclic shift
decrypted imageX4′ in the column direction according to
the cycle number c0 of cyclic shift encryption in the row
direction sent by the encrypting party to obtain the cyclic
shift decrypted image X3′ in the row direction with size
p × n. +e steps are as follows:

for r times � 1: keyRow,

for i � 1: p,

X3′
(:, i) � circshift X4′(:, i), [0 q − bitColumn(r times, i)]( 􏼁;

end,

end.

(26)

Step 6: generate the improved chaotic sequence
according to the improved chaotic sequence initial
values u0,ω0 sent by the encryption party to construct
the random measurement matrix, which is used for
decompression sampling. And X3′ is recovered by the
OMP algorithm to obtain a decompressed image,
which is represented as X2′ with size m × n.

Step 7: Arnold inverse interference is performed on X2′
according to Arnold interference parameters k1, k2 and
interference number k3 sent by the encryption party,
and the image after inverse Arnold interference is
represented as X1′ with size m × n.
Step 8: image X1′ is subjected to inverse sparsity
processing by Inverse Discrete Wavelet Transform
(IDWT), and the final decrypted image X′ with size
m × n is obtained.

+is allows the receiver to decrypt the encrypted image
and retrieve the original message. +e flow chart of en-
cryption and decryption is shown in Figure 3.

5. Simulation Result and Discussion

In this section, we simulate and evaluate the safe and ef-
fective image compression-encryption scheme, using
MATLAB R2018a to simulate. +e size of the selected image
is 256 × 256, and the size of the constructed random mea-
surement matrix is 230 × 256. And n0 � 4, a0 � 3, b0 � 2, the
initial values of all chaotic sequences are set to 0.3, and
u0 � 0.3, u1 � 0.4,ω0 � 3.87,ω1 � 3.95. +e cycle number of
row cyclic shift encryption is keyRow � 6, and the cycle
number of column cyclic shift is keyColumn � 5. DWT is
used to perform the sparse operation, and the OMP algo-
rithm is used for recovery.

5.1. Encryption Effect. We select “Lena,” “Boom,” “Moon,”
and “Rice” images for encryption to analyze the encryption
and decryption effect. We use four new chaotic maps
proposed in this paper to perform chaotic encryption. +e
encryption effect is shown in Figure 4.

It can be seen from Figures 4(a) and 4(c) that the original
image becomes disorganized and irregular after encryption,
and the data of the original image cannot be identified,
which proves that the encryption scheme proposed in this
paper has a good encryption effect.

5.2. Histogram Analysis. +e histogram represents the dis-
tribution of the pixel intensity of digital images in a graphical
way, which can intuitively show the pixel distribution states
of the original image and the encrypted image. When the
pixel distribution is not uniform, it may cause the loss of
image details. +e histogram of the original image is unique
and vulnerable to statistical attack. To prevent this attack, the
histogram of the encrypted image must be relatively uniform
and different from that of the original image.

From Figures 4(b) and 4(d), the histograms of the
original images are not uniformly distributed, while the
encrypted histograms are uniformly distributed. It can be
seen that the proposed chaotic maps applied to the en-
cryption field have a strong resistance to statistical attack.

5.3. Key Sensitivity Analysis. We use the proposed Logistic
map under our new structure for testing. Firstly, we give a set
of encryption keys to encrypt the original image and then
decrypt it with the same key. We randomly use a set of keys
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0.568 0.265 1.25 23.26 456.2 256.2 2 1􏼂 􏼃 to encryption.
When we use 0.568 0.265 1.25 23.26 456.2 256.2 2 1􏼂 􏼃

to decrypt, we can get the decrypted image. But when we
use 0.568 0.265 1.25 23.26 456.2 256.2 2.0000000000000001 1􏼂 􏼃

to decrypt, we could not get the decrypted image. As shown
in Figure 5, even if the decryption keys differ by
0.0000000000000001, the decrypted image cannot be ob-
tained; thus, the useful information cannot be obtained,
which shows that new chaotic maps have high sensitivity.

5.4. Keyspace Analysis. A good encryption scheme should
make the keyspace greater than 1030 in order to resist a brute
force attack.+ere are 14 keys in our encryption scheme, which
are k, n0, a0, b0, u0, u1, z0′, z1′,ω0,ω1, keyRow, LogisticRow′,
keyColumn, and LogisticColumn′. If the accuracy is set to
10− 14, then the keyspace of our encryption scheme is 10196.+is
shows that the keyspace of our encryption scheme is large
enough to resist a brute force attack.

5.5. PSNR and SSIM Analysis. In order to further verify
whether the encryption algorithm is safe and reliable, the
quality of the images before and after encryption is analyzed.
+e quality of the restored images can be evaluated using the
Peak Signal-to-Noise Ratio (PSNR) and the Structural
Similarity Index (SSIM). PSNR can be expressed as

PSNR � 10 log
2552

1/N2
􏼐 􏼑 􏽐

N
i�1 􏽐

N
j�1 P(i, j) − P′(i, j)􏼂 􏼃

2
􏼐 􏼑

,

(27)

where P(i, j) is the pixel value at the (i, j) position of the
original image, P′(i, j) is the pixel value at the (i, j) position

of the restored image, N is the size of the image selected for
the experiment, and 255 is the maximum value of the 8-bit
representation. Generally, when the value of PSNR is lower
than 28, the difference in image quality is greater. +e
smaller the PSNR, the greater the difference in image quality.
+e greater the PSNR, the less distortion the original image.

SSIM is used to measure the similarity between the
original image and the restored image, which can be
expressed as

SSIM �
2μXμY + C1( 􏼁 2σXY + C2( 􏼁

μ2X + μ2Y + C1􏼐 􏼑 σ2X + σ2Y + C2􏼐 􏼑
, (28)

where C1 � 0.01 × (28 − 1), C2 � 0.01 × (28 − 1), μX is the
mean value of the original image, and μY is the mean value
of the restored image. σ2X is the variance of the original
image, σ2Y is the variance of the restored image, and σXY is
the covariance of the original image and the restored
image. +e range of structural similarity is [− 1, 1]. In
general, the larger the SSIM values, the better the overall
quality of the reconstructed images. When the original
image and the restored image are identical, the value of
SSIM is 1.

Table 1 lists the analysis results of PSNR and SSIM. It can be
seen from Table 1 that the PSNR and SSIM of our encryption
scheme are the largest, indicating that the encryption and
decryption effect proposed in this paper is good.

5.6. Information Entropy Analysis. Information entropy is
used to measure the confusion of the image and the dis-
tribution of gray values. +e larger the entropy of the images
is, the more consistent the gray distribution of the images is.

DWT Arnold
transform CS Row encryption Column

encryption

SHA-256 k1, k2, k3

Measurement
matrix

Improved
chaotic map

Measurement
matrix

Decrypted image

IDWT Inverse Arnold
transform

OMP
reconstruction Row decryption Column

decryption

Cipher image

Plain image

Figure 3: Flow chart of encryption and decryption.
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For a gray image of size 256 × 256, the theoretical value of
information entropy is 8. An effective encryption algorithm
should make the information entropy of the encrypted
image close to the theoretical value.+e information entropy
can be expressed as

H(m) � − 􏽘
L×L

i�1
P mi( 􏼁log2 P mi( 􏼁, (29)

where P(mi) is the probability of the gray value mi, and L is
the gray level.
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Figure 4: (a) Original image, (b) original image histogram, (c) encrypted image, (d) encrypted image histogram, and (e) decrypted image.
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Table 2 lists the results of information entropy analysis.
As can be seen from Table 2, the information entropy of the
encrypted image is higher than that of the original image,
which proves that the gray distribution of the encrypted
image is more uniform than that of the original image.

5.7. Correlation Analysis. Correlation analysis mainly ana-
lyzes the correlation between pixels in adjacent locations. +e
correlation between adjacent pixels of the original image is very
high, while the correlation between encrypted cryptographic
images after an effective secure encryption system should be

(a)

(b)

Figure 5: Key sensitivity analysis. +e encryption key is 0.568 0.265 1.25 23.26 456.2 256.2 2 1􏼂 􏼃. (a) decryption key is
0.568 0.265 1.25 23.26 456.2 256.2 2 1􏼂 􏼃 and (b) decryption key is 0.568 0.265 1.25 23.26 456.2 256.2 2.0000000000000001 1􏼂 􏼃.

Table 1: PSNR and SSIM analysis.

Chaotic map CS scheme [14] Our scheme
Lena Boom Average Lena Boom Average

PSNR

Chebyshev +Tent [14] 32.2193 23.3287 27.7740 34.7032 26.9524 30.8278
Our-Chebyshev + our-Tent 32.3556 23.4894 27.9225 35.4272 27.1717 31.2995

Sine + Logistic [17] 32.2724 23.0829 27.6777 35.1394 26.5448 30.8421
Our-Sine + our-Logistic 32.2654 23.5357 27.9006 35.3708 26.9977 31.1843

SSIM

Chebyshev +Tent [14] 0.7517 0.6227 0.6872 0.8118 0.7872 0.7995
Our-Chebyshev + our-Tent 0.7528 0.6394 0.6961 0.8184 0.7971 0.8078

Sine + Logistic [17] 0.7538 0.6450 0.6994 0.8164 0.7883 0.8024
Our-Sine + our-Logistic 0.7512 0.6664 0.7088 0.8194 0.7955 0.8075
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relatively low, with the correlation coefficient close to 0. +e
correlation calculation can be expressed as

rxy �
cov(x, y)
���������
D(x)D(y)

􏽰 ,

cov(x, y) �
1
N

􏽘

N

i�1
xi − E(x)􏼂 􏼃 yi − E(y)􏼂 􏼃,

D(x) �
1
N

􏽘

N

i�1
xi − E(x)􏼂 􏼃

2
,

E(x) �
1
N

􏽘

N

i�1
xi,

(30)

where x and y represent the gray values of two adjacent pixels.
Table 3 lists the correlation coefficient analysis results of

the safe and effective image encryption scheme. It can be
seen from Table 3 that, compared with the correlation co-
efficient of the original image, the correlation coefficient of
the encrypted image is greatly reduced and close to 0, which
indicates that the abovementioned security theoretical
scheme has a good encryption effect.

6. Conclusion

We propose a safe and effective image compression-encryption
scheme based on a new chaotic structure and compressive
sensing. +is scheme uses a new chaotic structure proposed by
ourselves and applies the commonly used traditional one-di-
mensional chaotic maps to the proposed chaotic structure to
generate corresponding new one-dimensional chaotic maps.
+eproposed new chaoticmaps not only keep the advantages of
simple structure and easy implementation of a traditional one-
dimensional chaotic map but also expands the parameter range
space of traditional one-dimensional chaotic maps. It is useful
whenever chaotic digital sequences are needed. In addition,
compressive sensing is used for sampling in this encryption
scheme, which can reduce the storage space and transmission
bandwidth. +e chaotic system only needs to store matrix
generation parameters, which can further reduce the band-
width. Simulation results show that the proposed chaotic
structure and chaotic maps have a good chaotic effect and high
chaotic intensity, and the output sequence has strong chaos in a
very large area of parameter space and can prevent phase space
reconstruction. It can be applied to the image encryption
scheme in this paper and has a large parameter space and

Table 3: Correlation analysis.

Image Direction Correlation coefficient
of plain image

Correlation coefficient of cipher image

Chebyshev +Tent [14]
Our-

Chebyshev +
our-Tent

Sine + Logistic [17]
Our-

Sine + our-
Logistic

CS scheme
[14]

Lena
Horizontal 0.9343 − 0.0407 0.0098 − 0.0568 − 0.0251
Vertical 0.9715 − 0.0549 − 0.0324 0.0943 0.0107
Diagonal 0.9271 0.0343 − 0.0047 0.0633 0.0624

Boom
Horizontal 0.8544 − 0.0195 − 0.0011 0.0521 0.0372
Vertical 0.8311 0.0402 0.0287 − 0.0149 − 0.0236
Diagonal 0.7576 − 0.0608 0.0293 0.0459 − 0.0438

Average
Horizontal 0.8944 −0.0301 0.0044 −0.0024 0.0061
Vertical 0.9013 −0.0074 −0.0019 0.0397 −0.0065
Diagonal 0.8424 −0.0133 0.0123 0.0546 0.0093

Our scheme

Lena
Horizontal 0.9278 0.0393 − 0.0058 − 0.0010 0.0012
Vertical 0.9688 0.0352 0.0197 0.0428 − 0.0306
Diagonal 0.9031 0.0140 0.0246 − 0.0023 − 0.0197

Boom
Horizontal 0.8685 − 0.0125 − 0.0105 − 0.0123 − 0.0126
Vertical 0.8247 − 0.0278 − 0.0156 − 0.0814 0.0181
Diagonal 0.7623 − 0.0173 − 0.0149 0.0226 0.0344

Average
Horizontal 0.8982 0.0134 −0.0082 −0.0067 −0.0057
Vertical 0.8968 0.0037 0.0021 −0.0193 −0.0063
Diagonal 0.8327 −0.0017 0.0049 0.0102 0.0074

Table 2: Information entropy analysis.

Chaotic map CS scheme [14] Our scheme
Lena Boom Average Lena Boom Average

Information entropy

Chebyshev +Tent [14] 7.2172 7.2735 7.2454 7.6397 7.8880 7.7639
Our-Chebyshev + our-Tent 7.5729 7.5738 7.5734 7.9820 7.9895 7.9858

Sine + Logistic [17] 7.2750 7.2735 7.2743 7.6658 7.6945 7.6802
Our-Sine + our-Logistic 7.5612 7.5940 7.5776 7.9812 7.9840 7.9826
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keyspace, which can prevent brute force attacks and statistical
attacks.
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