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Although distracted driving recognition is of great significance to traffic safety, drivers are reluctant to provide their own
personalized driving data to machine learning because of privacy protection. How to improve the accuracy of distracted driving
recognition on the basis of ensuring privacy protection? To address the issue, we proposed the federated shallow-CNN recognition
framework (Fed-SCNN). Firstly, a hybrid model is established on the user-side through DNN and shallow-CNN, which rec-
ognizes the data of the in-vehicle images and uploads the encrypted parameters to the cloud. Secondly, the cloud server performs
federated learning on major parameters through DNN to build a global cloud model. Finally, The DNN is updated in the user-side
to further optimize the hybrid model. The above three steps are cycled to iterate the local hybrid model continuously. The Fed-
SCNN framework is a dynamic learning process that addresses the two major issues of data isolation and privacy protection.
Compared with the existing machine learning method, Fed-SCNN has great advantages in accuracy, safety, and efficiency and has

important application value in the field of safe driving.

1. Introduction

With the rapid development of the economy, the frequency
of traffic accidents is increasing year by year. Distracted
driving is one of the main causes of traffic accidents [1].
Recognition based on distracted driving is a problem that
needs to be solved urgently. Distracted driving is driving
while doing another activity that takes your attention away
from driving, such as editing SMS and calling, which seri-
ously threatens traffic safety. According to the National
Highway Traffic Safety Administration (NHTSA), nearly
30% of traffic accidents in the United States are related to
driving distraction [2]. Due to the fast speed of the car, when
the driver edits WeChat while driving, his sight will leave the
road for about 4 seconds, almost covering the length of the
football field at 60 mph.

With the indepth study of machine learning (ML), the
classification algorithms represented by SVM [3, 4], Ada-
Boost [5], and Bayesian networks [6, 7] are widely used in
the field of distracted driving, the core of which is to extract

latent association features to identify distracted driving.
Although the simulation experiment has achieved good
results, it is limited by various conditions, and the actual
effect is poor [8]. Therefore, the recognition of distracted
driving still faces two major challenges [9]:

Driving behavior data involve personal privacy issues,
which often exist in the form of islands, and a large
number of data owners are reluctant to share

The large amount of data produced by users each day is
limited by the environment of mobile driving, resulting in
poor interactivity and hindered data communication.

Based on the above two challenges, the recognition of
distracted driving cannot obtain the data of a large number
of users in practical applications, which seriously restricts
the development of this research.

With the promulgation of the General Data Protec-
tion Regulation (GDPR) [10] in EU, the traditional
method of sharing private data was banned, and a large
amount of isolated data could not fully enjoy the divi-
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dends brought by big data and cloud computing, which
caused a great waste of resources. Fortunately, federated
learning (FL) [11], a new distributed ML framework, was
proposed by Google, which not only meets the needs of
privacy protection but also fully participates in large-
scale machine learning. Since then, many research in-
stitutions have also begun to study FL [12-14], especially
in the fields of finance, medical care, and advertising,
which have achieved many impressive achievements.

Based on this, a federated shallow-CNN [15] recogni-
tion framework for distracted driving (Fed-SCNN) is
proposed. Firstly, a hybrid model is established on the user-
side through deep neural networks (DNN) [16] and
shallow-CNN, which recognizes the data of the in-vehicle
images and uploads the encrypted parameters to the cloud.
Secondly, the cloud server performs FL on major param-
eters through DNN to build a global model. Finally, the
DNN is updated in the user-side to further optimize the
hybrid model. The above three steps are cycled to iterate the
local hybrid model continuously. Fed-SCNN can not only
protect personal privacy and effectively solve the problem
of data islands but also have higher recognition accuracy,
which has important application value in the field of safe
driving, which provides a new idea for distracted driving.
The framework proposed in this paper is a dynamic
learning process, which not only continuously enhances
the recognition ability of distracted driving on the basis of
privacy protection but also can support users to join
friendly, which has better scalability.

2. Related Work

2.1. Overview of Federated Learning. Federated learning is an
emerging technology of ML, which was first proposed by
Google in 2016. The key idea is to protect user data during
the process [12]. As a distributed ML method, it supports
model training on large corpus distributed data. The training
process is to fit the global optimal statistical model through
the combination of training parameters, which can be
expressed as minimizing the following objective function:

min F (w),
m piFp (w), (1)
where F (w) = Zpk e
k=1

where m is the total number of devices, p, >0, and the sum
of p; is 1; F; (.) is the objective function of the k-th device.
The local objective function is often defined as empirical
risks related to local data, ie., cross-entropy. Federated
learning is expected to become the basis for the next gen-
eration of collaborative computing [13]. Since the advent of
federated learning, a variety of research studies based on FL
have emerged, e.g., privacy-preserving ML [17], federated
multitask learning [18], as well as personalized federated
learning [19]. The scene containing two data owners (e.g.,
enterprises A and B) is taken as an example to introduce the
architecture of federated learning. The specific architecture
principle is shown in Figure 1.

Security and Communication Networks

The advantage of federated learning is that private data
never leave the local area, which meets the needs of user
privacy protection. At the same time, it can take advantage of
big data to effectively solve the problem of data islands,
which guarantees that federated models are better than
isolated models in machine recognition.

According to the distribution of user data dimensions,
Yang et al. [13] divided federated learning into three cate-
gories: horizontal federated learning (HFL), vertical feder-
ated learning (VFL), and federated transfer learning (FTL).
Fed-SCNN belongs to federated transfer learning category. It
is the first of its kind tailored for distracted driving.

2.2. Recognition of Distracted Driving. Rao et al. defined the
distracted driving as a dangerous behavior in which drivers
turn their attention to the activities unrelated to driving
tasks, resulting in the decline in drivers’ vision, con-
sciousness, decision-making, and operational ability [20].
Distracted driving has a serious negative impact on normal
driving, which leads to a large number of vicious traffic
accidents every year. There are three main types of dis-
traction [21]:

Visual: taking your eyes off the road
Manual: taking your hands off the wheel

Cognitive: taking your mind off of driving

Many experts and scholars have conducted lots of studies
on the recognition of distracted driving. Yang et al. [22] used
the vehicle motion parameters collected by the on-board
GPS and established a Gaussian mixture model (GMM) to
identify whether the driver was distracted. Jin et al. [23]
collected vehicle data in the driving state through CAN and
established a recognition model through SVM; Tango and
Botta collected detailed operating dynamic parameters in the
cab and used a variety of machine learning methods to
identify distracted driving; Liang and Lee [24] found that
distracted driving is highly time-dependent and proposed a
dynamic Bayesian Network cognitive distraction detection
model. Wollmer et al. [25] proposed an online driver dis-
traction detection model, which utilizes long short-term
memory neural network (LSTM-NN) to detect distraction
status.

However, these studies are based on data collected under
limited driving conditions or simulated driving environ-
ments, which leads to certain limitations. More seriously, the
current research mainly considers the accuracy and effi-
ciency of distracted driving recognition, but they ignore
privacy protection, especially uploading personal privacy to
the cloud, which also brings serious security risks [26]. For
example, private data stored in the cloud may be stolen by
cloud providers and other cloud clients. Therefore, this
paper takes smart-mobile driving as the research back-
ground and fully considers the actual communication ca-
pabilities. It aims to solve the protection of personal privacy
in the cloud environment through federated learning. At the
same time, the shallow hybrid model is adopted by the user-
side to identify whether the driver is distracted, which gives
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FIGURE 1: The example of vertical federated learning architecture [13].

the necessary warning to prevent the potential risk of traffic
accidents.

3. The Proposed Framework of Fed-SCNN

3.1. Overall Design of Fed-SCNN. In response to the two
major challenges faced by distracted driving recognition, a
federated shallow-CNN recognition framework for dis-
tracted driving (Fed-SCNN) was proposed. The proposed
framework mainly includes two machine learning tech-
niques: federated learning and shallow-CNN (SCNN). The
former mainly uses distributed data to build a global sta-
tistical model through DNN to improve the recognition
accuracy, and at the same time, upload the major parameters
under the homomorphic encryption condition. Convolu-
tional neural network (CNN) [27], which has the advantage
of image feature extraction, is responsible for extracting
user-side differentiated features, that is, the personalization
of the local model. In order to take into account the loT
hardware level, we decided to use SCNN to meet the needs of
the current cab, which can improve the efficiency of rec-
ognition. The overall framework design is shown in Figure 2,
which briefly expresses the process of Fed-SCNN.

During driving, the RGB image of the driver as the
subject object, which is obtained through the built-in HD
camera probe, is used as the input of the hybrid model. At
the same time, it is assumed that the Internet of Vehicles can
communicate with the cloud normally. The framework of
Fed-SCNN is a dynamic process, the core of which is
summarized in five steps:

(1) Local users independently perform recognition
learning tasks through local DNN and SCNN

(2) Transmit the parameters of the local DNN model to
the cloud in homomorphic encryption

(3) Establish a global cloud model in the cloud through
federated learning

(4) Update local DNN parameters when requested by
local users

(5) The fully connected layer of local DNN and SCNN is
fused, and the final hybrid model is established after
adjusting the parameters

The above is a brief introduction to Fed-SCNN for
distracted driving. According to actual needs, it may be
considered to regularly update the parameters of the DNN
model, e.g., updating the major parameters once every night.
The operation process is shown in Algorithm 1.

3.2. Federated Model. Inspired by the research of Rao et al.
[20], this paper also focused on distracted driving recognition
based on images of driving behavior. However, the current
research studies mainly consider the accuracy of recognition
and do not pay attention to privacy protection, especially
uploading personal privacy to the cloud, which brings serious
security problems. Therefore, the framework of Fed-SCNN
performs the training and sharing of encryption model through
federated learning. The key entities are mainly divided into the
cloud and a large number of user-side. Major parameter in-
formation can be transmitted between the cloud and the user in
encrypted form, while any information is not transmitted be-
tween the users, which leads to the phenomenon of data islands.

In this paper, we use deep neural networks to learn
cloud models and user-side DNN models. DNN, which is
essentially multiple linear regression, performs end-to-
end feature learning and classifier training by inputting
the user’s original data. Considering the characteristics of
federated learning, this paper makes significant im-
provements to local DNN network, that is, the major
parameters before the last hidden layer are shared, and
the parameters between the last hidden layer and the
output layer are not shared. The detailed reasons are
explained in the following section.
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FIGURE 2: The overall framework design of Fed-SCNN.

3.2.1. Cloud Model. The cloud server uses public data and
the parameters uploaded by the user to establish a global
cloud model f. The objective optimization process during
training can be expressed as

argminL = 3 I(y, f.(x;)), )
i

where [ (-, -) denotes the loss function of the training model,
e.g., cross-entropy loss function. {x;, y;} represents sample
x;, and the corresponding label y;, n, denotes the sample size
of public data. ® represents the parameter matrix that needs
to be learned, including the weights and bias of the hidden
layers (the parameters between the last hidden layer and the
output layer are not included). After the cloud model is
established, the parameter © is distributed to all users.

3.2.2. User-Side DNN Model. The user also builds a local
DNN model like the cloud model. The training process
remains basically the same, except that the sample data are
relatively small and belong to personal privacy data. For any

user u, the local DNN model is expressed as f,, and the
objective function can be expressed as

argminL = Y 1, £, (1) ()
i=1

Asan important parameter of local DNN, ®" is uploaded
to the cloud in the encrypted form. The cloud trains the
parameter set {®',07%,...,0@"}, to update the global cloud
model and the parameter ®, and then distributes the
updated parameter © to all users. According to actual needs,
local parameters can be updated regularly, such as daily
updated once a night. The whole process above is a dynamic
process of iterative optimization, which continuously im-
proves the recognition ability of the model.

In addition, the parameter ® in the communication
process can avoid information leakage through homo-
morphic encryption [28]. Homomorphic encryption can
operate in the ciphertext domain, which is suitable for cloud
computing. This paper briefly introduces the addition ho-
momorphism as an example, which is defined as follows.
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Initialize local DNN and the final model with random weights 6 of DNN. Local SCNN has been trained;
Input: n: number of driving loT; f: update frequency
while cloud server is running do
1) 0,1 — driving loT-n performs DNN
(2) if t% f == 0 then
3) for i=0; i<n; i++ do
(4) Send 6;; to the cloud;
(5) end
(6) labels =Fed (6,5 02 - .., O,¢)
(7) end
(8) if service request = True then
9) Generate 0.,,q base on labels; send 0.,.q to local users;
(10) elocal = transfer (ecloud)
11 update DNN with 6,ca
12) Final Model = mix{DNN, SCNN}
13) end
(14) end

ALGORITHM 1: Processing algorithm in Fed-SCNN.

Definition 1 (addition homomorphism). The encryption
function E satisfies

E(x+y)=E(x)®E(y), (4)

where x and y are not leaked in the whole process, so the
algorithm & is homomorphic addition [29].

According to the characteristics of Definition 1, the
weight matrix and the bias vector are operated in the
encrypted, so that the original data will not be leaked, which
meets the needs of Fed-SCNN.

3.3. Shallow Hybrid Model. Due to the limited driving en-
vironment, federated learning can effectively solve the
problem of data islands to build a general model. But for
distracted driving, another important issue is personaliza-
tion. Even if we can use the global model through the cloud,
its performance on specific users is still very poor because
there is a distribution difference between any user and cloud
data. At the same time, DDN can only learn common
features, but it fails in learning the fine-grained information
on a particular user.

For personalized difference learning, convolutional
neural networks (CNN) can learn higher-level features in
learning tasks, that is, personalized features can be learned
on the basis of a general model. This method greatly im-
proves the recognition accuracy at the expense of a small
amount of computational efficiency, which can more ac-
curately predict distracted driving.

Taking into account the hardware conditions of the loT,
we decided to adopt a shallow-CNN (SCNN), which can
reduce the dependence on high-performance hardware. As
an important part of the shallow hybrid model, SCNN
mainly extracts high-level features to make up for the
shortcomings of the local DNN model. The following
structural block of SCNN is represented by C2D-BN-LR:
conv2d — batch normalization — leaky ReLU. The spe-
cific network structure of SCNN is: HPF — two C2D-BN-

LR layers — one connected
function.

After updating the local DNN model, the two networks
are merged to obtain a shallow hybrid model, as shown in
Figure 3. The last hidden layer in the local DNN is merged
with the fully connected layer of the local SCNN, and then
the output layer is connected. Through the fusion of the two
models, we continually iteratively optimize and finally
achieve local optimal prediction. For any user u, the ob-
jective function optimization process of the local mixed
model can be expressed as

fully layer — sigmoid

fu(x)) = soft max{{DNN[tSCNN) * A} (=)

n (5)
argminL =3 1(y}, £, (x})),

i=1

where softmax {-} is used as the output operation and {:|-)
denotes the network fusion layer. It should be noted that A
represents the parameter matrix to be learned between the
network fusion layer and the output layer. Through proper
training and optimization of the shallow hybrid model, the
final local recognition model can be obtained.

4. Experiment Analysis

4.1. Dataset. At present, there are few open source datasets
for distracted driving, and the annotation quality of the
datasets is poor [30]. Therefore, the simulation experiment
in this paper first built its own dataset, which mainly in-
cludes three key steps: (1) collection of images set related to
the recognition of the driver distraction behavior; (2) pre-
processing images in the dataset; and (3) classification of
data and marking. The experimental data mainly come from
open source datasets such as ImageNet [31] and Open
Images [32]. To prevent overfitting, we perform pre-
processing operations on the data set, such as rotation,
translation, and scaling, while the image size is cropped to
224 x 224 to reduce redundant data, which facilitates SCNN
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FiGURE 3: The principle structure of the shallow hybrid model.

analysis. The self-built data, a total of 4233 pictures, are
divided into twelve different behavior categories, as shown
in Table 1.

In general, each image corresponds to only one category.
Figure 4 is an example of dataset classification. It should be
noted that some sample images may also have multiple
labels, for example, the driver makes a phone call with his
right hand and leaves the steering wheel with left hand,
which belongs to both C3 and C12. At the same time, in
order to verify the experiment, the dataset is randomly
divided into two parts, the training data occupies 90%, and
the rest is used for testing.

4.2. Experimental Setup. In this experiment, both cloud and
user perform DNN based on TensorFlow Federated
Framework (TFF) [33]. At the same time, for users, SCNN is
implemented through TensorFlow. The hardware environ-
ment is shown in Table 2.

For the local SCNN model, the optimization algorithm
based on Adam is adopted, the learning rate is 0.0002, and
the loss function is expressed in binary cross-entropy.
Stochastic gradient descent (SGD) is used to iterate con-
tinuously during training samples. After the completion of
the model, the test set is used to compare the recognition
accuracy of shallow hybrid model, SCNN, and local DNN
model.

4.3. Recognition Accuracy. Our results are shown in Figure 5.
With the increase of training epochs, we compare the change
of recognition accuracy of local DNN, SCNN, and hybrid
model. The accuracy of the above three models is propor-
tional to the iteration within a certain range. Figure 6(a)
shows that when the epochs are greater than 130, the average
accuracy of the local DNN reaches 67.5%. When it exceeds

169 epochs, the accuracy rate will not increase. The rec-
ognition accuracy of local DNN is still poor, but it has made
progress compared with traditional decision trees and SVM.
Figure 6(b) shows that the average accuracy of SCNN
reaches 80.2% when the epoch is greater than 20. After more
than 40 epochs, the accuracy rate of SCNN fluctuated
slightly at 81%, which exceeded the local DNN model by
nearly 14%.

Based on the above two independent experiments, the
hybrid model is tested. Assuming that the parameters
learned by FL in the local DNN are unchanged under 150
epochs, and based on the parameters learned by SCNN in 30
epochs, the results are shown in Figure 6(c). Over 5 epochs,
the accuracy rate of Fed-SCNN can exceed 93%, and the
average accuracy rate can basically maintain 95.3% after 15
epochs. In addition, the average detection time of each frame
in Fed-SCNN is 597 ms, which has a high detection rate and
meets the real-time requirements of risk warnings.

Furthermore, the parameters are optimized. On the basis
of multiple experiments and debugging, the parameters are
kept learned by FL in the local DNN which are unchanged
under 150 epochs, and based on the parameters learned by
SCNN in 50 epochs, after 18 epochs, the recognition ac-
curacy of shallow hybrid model reaches 98.73%, as shown in
Figure 5.

4.4. Algorithm Comparison. In order to verify the superiority
of Fed-SCNN, the algorithm in this paper is compared with
the traditional ML algorithm [20]. As shown in Figure 7, the
accuracy of classic classification algorithms does not exceed
60%, such as decision trees, SVM, Naive Bayes, and MLP.
The accuracy of CNN can reach 97%, but it depends on high-
performance hardware. However, the accuracy of Fed-
SCNN is far more than 95% under the condition of low
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TaBLE 1: Twelve categories of self-built dataset.

Category Activity Sample proportion (%)
Cl Safe driving 13.7
C2 Texting—right 12.5
C3 Right-hand call 14.5
C4 Texting—left 12.3
C5 Left-hand call 11.7
C6 Adjust automobile console 12.1
Cc7 Drinking 5.2
C8 Taking the back seat items 2.7
C9 Hair and makeup 6.7
C10 Talking to passenger 8.5
C11 Smoking 5.7
C12 Keeping your hands off the wheel 42

FIGURE 4: The example of dataset classification: (a) smoking, (b) drinking, (c) right-hand call, and (d) talking to passenger.

TaBLE 2: Experimental environment of software and hardware.

Software TensorFlow federated
platform
Cloud-server CPU i7-8250U 3.2 GHz
(one device) 16 GB DDR4
RAM 1600 MHz
GPU NVIDIA 1080
Software TensorFlow v 0.12
platform
User-side (three device) CPU 157500 1.8 GHz
RAM 8 GB DDR4
1600 MHz
GPU NVIDIA 1080

hardware requirements. On the basis of 150 epochs of local
DNN and 50 epochs of SCNN, the accuracy of the shallow
hybrid model can reach 98.73% after 18 epochs, which fully
reflects the advantages of Fed-SCNN in distracted driving
recognition.

Under the condition of ensuring high accuracy, the
training efficiency of Fed-SCNN and CNN scheme are
compared. As shown in Figure 8, the average accuracy of
Fed-SCNN quickly reached 95%, while the accuracy of
CNN only reached 95% after 190 minutes of training.
Therefore, it can be shown that Fed-SCNN is superior to
the CNN scheme in terms of efficiency, which is more
suitable for mobile driving hardware environment.
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FiGure 5: The change in the recognition accuracy rate of the
shallow hybrid model after optimization.

4.5. Security Analysis. The security of Fed-SCNN is mainly
based on two aspects:

(1) Homomorphic Encryption. The security of this paper is
based on the privacy protection mechanism of federated
learning. There are three main methods of privacy
protection in federated learning: differential privacy,
homomorphic encryption, and secure multiparty
computing. Among them, homomorphic encryption
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FIGURE 6: The relationship between recognition accuracy rate and epoch of three models: (a) local DNN, (b) SCNN, and (c) shallow hybrid
model.
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FIGURE 7: The comparison of recognition accuracy between Fed-SCNN and other traditional ML algorithm [20].
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has the highest security. In this paper, the major pa-
rameters passed between the cloud and users are
encrypted using additive homomorphism, that is, the
security of the system depends on the confidentiality of
the key, which fully complies with Kerckhofls’ principle
[34].

(2) The data do not leave the local area, which is another
advantage of federated learning, and meet the GDPR
Act Requirements. In the communication process, only
the important parameters of training are passed, e.g.,
gradient parameters. It is difficult to recover the original
data by inverse operation under the existing technical
conditions, which improves the safety of the data to a
certain extent.

5. Conclusions

In this paper, a federated shallow-CNN recognition framework
for distracted driving is proposed. For distracted driving, we
innovatively propose a recognition method based on federated
learning, which provides a new research idea for distracted
driving recognition. The framework of Fed-SCNN is a dynamic
learning process, which can solve the two major problems of
data island and privacy protection. Compared with the existing
ML methods, the recognition accuracy is higher. The experi-
mental results show that Fed-SCNN has great advantages in
accuracy, safety, and efficiency and has important application
value in the field of safe driving,

On the basis of ensuring the accuracy of recognition, how to
reduce the amount of calculation and improve the recognition
efficiency of Fed-SCNN is the key research direction in the
future.
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