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Online ride hailing (ORH) services enable a rider to request a driver to take him wherever he wants through a smartphone app on
short notice. To use ORH services, users have to submit their ride information to the ORH service provider to make ride matching,
such as pick-up/drop-oft location. However, the submission of ride information may lead to the leakages of users’ privacy. In this
paper, we focus on the issue of protecting the location information of both riders and drivers during ride matching and propose a
privacy-preserving online ride matching scheme, called pRMatch. It enables an ORH service provider to find the closest available
driver for an incoming rider over a city-scale road network, while protecting the location privacy of both riders and drivers against
the ORH service provider and other unauthorized participants. In pRMatch, we compute the shortest road distance over
encrypted data by using road network embedding and partially homomorphic encryption and further efficiently compare
encrypted distances by using ciphertext packing and shuffling. The theoretical analysis and experimental results demonstrate that

pRMatch is accurate and efficient, yet preserving users’ location privacy.

1. Introduction

The widespread adoption of smartphones embedded with
GPS, combined with the availability of digital road maps,
provides the necessary enabling technologies for online ride
hailing (ORH) services, such as Uber (http://www.uber.
com), Lyft (http://www.lyft.com), and DiDi Chuxing
(http://www.didiglobal.com). As reported in [1], 30% urban
American adults had used ORH services, which have already
far out-paced the growth of traditional carsharing services of
the past. The general feature of ORH services is the ability for
arider to request a driver to take him exactly where he needs
to go, via his ORH app. Upon receiving a rider’s request, the
ORH service provider makes ride matching between the
rider and available drivers and forwards the request to the
closest driver.

Unfortunately, along with the high convenience of ORH
services come some important privacy concerns [2, 3]. To
provide better services, ORH services require users to submit
ride information to make ride matching, such as riders’ pick-
up and drop-oftlocations. This private information is usually

sensitive and can be used to identify an individual or infer
his/her daily activity. For example, if a driver Bob accepts a
ride request: picking up a rider Alice at a particular location /
at time ¢, it reveals that both Bob and Alice will be at location
[ at time t. Actually, an ORH service provider is not always
fully trusted, it might collect users’ ride information to
profile them or infer additional sensitive information from
harvested data for purpose of economic benefit. Further-
more, even if an ORH service provider is honest, it may be
attacked by other adversaries. Nowadays, risks of data
leakage happen more frequently than ever before. The
leakages of users’ ride information may pose threats on
users’ financial or personal safety. Therefore, it is a major
technical challenge to enable ORH services while protecting
users’ privacy.

Many privacy-enhanced solutions for ORH services are
proposed to protect users’ privacy during ride matching.
These solutions are based on either nonencryption or en-
cryption. Nonencryption solutions usually employ spatial
cloaking [4], geographic masking [5], mix-zone [6], and
differential privacy [7] to trade-oft between the level of
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privacy preserving and the quality of ORH service. These
solutions are of high-efliciency, but provide limited privacy
preservation and suffer from distortion of location infor-
mation. To improve quality of services, encryption solutions
are proposed, which provide strong privacy preservation at
the cost of heavy computation and communication cost.
These encryption-based solutions integrate well-established
cryptographic tools, such as private information retrieval
(PIR) [8], secure multiparty computation (SMC) [9], private
set intersection (PSI) [10], somewhat homomorphic en-
cryption (SHE) [11], and partially homomorphic encryption
(PHE) [12] to accomplish private distance measurements for
ride matching. For efficiency, most existing encryption-
based solutions use Euclidean distance as the travel cost
metric, such as PrivateRide [4], ORide [13], and TRACE
[14]. However, Euclidean distance may lead to false hits,
because drivers always travel along road network. As
evaluated in our experiments, roughly 15% false hits exist
when using Euclidean distance to make ride matching.
Actually, road distance should be used to evaluate the travel
cost between riders and drivers, which can achieve a higher
accuracy. As studied in [15, 16], it is a complex problem to
compute the shortest road distance under city-scale road
networks in the encrypted form. Existing secure shortest
road distance approaches are not efficient enough to support
online ride matching, which requires heavy cost on shortest
road distance computation in real time. It is desired that
there exists an encryption-based scheme to efficiently make
ride matching for ORH services by using road distance.

In this paper, we focus on the issue of the leakage of
user’s location privacy during ride matching and propose a
privacy-preserving online ride matching scheme, called
pRMatch. It enables an ORH service provider to find the
closest available driver for an incoming rider over a city-
scale road network, while protecting the location privacy of
both riders and drivers against the ORH service provider and
other unauthorized participants. We summarize the fol-
lowing main contributions:

(i) We propose a privacy-preserving ride matching
scheme for ORH services (pRMatch), which enables
an ORH service provider to select the closest driver
for an incoming rider by using approximate road
distance, while preventing users’ location privacy
from disclosing to the ORH service provider and
other curious participants.

(ii) We propose an efficient shortest road distance com-
putation approach, which computes the shortest road
distance over encrypted data by using road network
embedding and partially homomorphic encryption.

(iii) We design a secure comparison protocol, which
efficiently compares encrypted distances by using
ciphertext packing and shuffling.

(iv) We implement pRMatch and perform extensive
experiments to validate its accuracy and efficiency.
Experimental results demonstrate that pRMatch is
secure without hampering the functionality of ORH
services.
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The remainder of this paper is structured as follows: in
Section 2, we describe the system model and give the
problem definition; in Section 3, we list necessary prelim-
inaries; in Section 4, we describe pRMatch scheme in details;
in Section 5, we discuss theoretical analysis of pRMatch; in
Section 6, we present the evaluation; in Section 7, we review
the related literature. Finally, we summarize this paper.

2. Models and Problem Definition

2.1. System Model. Over a city-scale road network, pRMatch
provides strong privacy guarantees to both drivers and riders
during ride matching, without sacrificing the usability of the
ORH services. As shown in Figure 1, pRMatch involves four
participants:

(i) SP. The ORH service provider (SP) handles in-
coming ride hailing requests and matches riders
with available drivers, based primarily on their
encrypted locations.

(ii) Proxy. The proxy is a third party that offers efficient
key management. With the proxy, heavy crypto-
graphic operations can be relieved from users.

(iii) Rider. A rider u is the user who submits his
encrypted pick-up location I, to the SP to request a
nearby available driver.

(iv) Driver. A driver d is the user who updates his
encrypted current location /; to the SP and waits for
a new rider to serve.

Here, we assume a ride/driver has a smartphone em-
bedded with GPS to obtain own location at anytime and
anywhere, and he also installs and registers to an ORH App
offered by the SP.

In our system model, we consider single-rider multi-
driver ride matching, which prefers instant feedback to the
users without batch processing requests at a fixed time
interval. The batch processing may achieve better system
optimization but sacrifice the user experience, e.g., a rider
may wait for a while to retrieve the matching result. This
single-rider multidriver ride matching is widely practised in
user-centered services, such as [4, 13, 14, 17], which do not
try to violate user experience to improve the overall system
optimization.

2.2. Threat Model. The threat model of pRMatch is assumed
as follows:

(i) The SP and the proxy are honest-but-curious, which
try to learn additional information from received
message and intermediate information during the
scheme execution.

(ii) Users (including riders and drivers) are also honest-
but-curious. That is, riders submit valid request and
drivers update correct locations, but they try to
harvest other unmatched users’ location
information.

(iii) There is no collude among the participants, in-
cluding the SP and the proxy, the SP and users, the
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FIGURE 1: The system model of pRMatch.

proxy and users. In practice, the SP and the proxy
are usually a large service provider (e.g., Uber and
Google) which understand the importance of rep-
utation. Active attacks like collusion are easy to
detect and will seriously damage their reputation
once caught.

(iv) Drivers are independent contractors rather than the
SP’s employees; thus, the SP has no authority to
access to the location information they hold.

(v) No external adversary can truncate or tamper the
communications among the participants.

pRMatch focuses on the following representative attacks
inspired from [2, 13]:

(i) A1 (SP/Proxy — D/R, Daily Routines Tracking
Attack). The SP or the proxy might attempt to
precisely track riders or drivers during their daily
routines online or offline.

(ii) A2 (SP/Proxy — D/R, Large-Scale Inference At-
tack). The SP or the proxy might attempt to collect
rides” or drivers’ rides deliberately and perform a
large-scale inference attack to learn additional users’
privacy, e.g., their home/work addresses, behaviors,
and interests.

(iii) A3 (D/R — R/D, Unauthorized Ride Harvesting
Attack). A driver/rider might attempt to harvest
additional unauthorized ride information of other
unmatched users.

2.3. Problem Definition. The problem that we focus on is
defined as follows: given a set of drivers D that travel along
the road network and an incoming rider u, to find the driver
with minimum road distance to serve the rider, while
preserving the location privacy of both the rider and the
drivers. The problem is represented as

d¥ = argmindkeDdiStR(lu’ldk)’ (1)

where [, is the pick-up location, I, is the current location of
driver d, and disty, (-, -) represents the shortest road distance
between two locations.

Our design goals contain the following three-fold:

(i) Accuracy. pRMatch should provide accurate ride
matching results. That is, the matched driver is the
closest one to serve the given request with a high
probability.

(ii) Efficiency. pRMatch should be efficient to support
large-scale ORH services. That is, the computation
and communication cost should be low enough to
make ride matching over large-scale users.

(iii) Privacy Preservation. In pRMatch, the location
privacy of both riders and drivers should be secret to
the SP, the proxy, and other users beyond
authorization.

3. Preliminaries

3.1. Paillier Cryptosystem. 'The Paillier cryptosystem [12] is a
widely used PHE that supports additive homomorphic
encryption. We brief it to help illustrate and understand our
scheme as follows:

(i) Key Generation ((pk, sk) <—KeyGen(1)‘)). Choose
two primes p, g and compute N = px g and A =
lem(p - 1,9 - 1). Then, select a random g € Z},
such that gcd(L(g)‘mod N?),N) = 1, where L (x) =
(x = 1)/N. The public key and private key are pk =
(N, g) and sk = A, respectively.

(ii) Encryption (c < E(m, pk)). Let me Zy be a
plaintext and r € Z); be a random number. The
ciphertext is given by ¢ = E(mmodN;rmod
N) = g"rNmodN>.

(iii) Decryption (m«D/(c,sk)). Given a ciphertext
¢ € Zyp, the corresponding plaintext can be derived
as

L(c*modN?)

m L(g*mosz)mOd (2)

The Paillier cryptosystem has homomorphism proper-
ties: for any m,,m,,r,r, € Zy, we have

E(my, 1)) E(my,1,) = E(m, +m,,r,r,)modN?, )
E™ (my,r,) = E(m;m,, *)modN>.



3.2. Road Network Embedding. The road network embed-
ding (RNE) technique [18] is used to convert the road
network into a high-dimensional space, where complex
shortest road distance computation can be converted to
simple computation supported by existing cryptographic
primitives.

A road network can be modeled as a weighted graph
€ = (V,E,W). Let |V| be the number of vertices in & (i.e.,
road intersections) and |E| be the number of edges in & (i.e.,
road segments). Define R as a set of O (log2|V|) subsets of V,
ie.,

R={V, . Vi Ve Vagh (4)

where & = f = O (log|V|) and Vjisa subset composed of 2/

random vertices of V. Given a vertex v and a subset V, ;, the
shortest road distance between them is defined as
distR(v, Vi,j) = min, ¢y, dist (v, V'), (5)

where R defines a high-dimensional embedding space,
where the coordinate of a vertex v € V is a O (log™|V)-di-
mensional vector:

¢, =(distg(v, V), ..., distg(v, Vi), .-

6
distg (v, V5, )5 - - diste(v, Vg ). ©

The embedded road network of & is represented as
Q={c,|veV}

For a location I on the road segment (v,,v,) € E, its
coordinate can be represented as

¢ =(distg(LVy,), .., distg(LV )5
distg(L Vg, ), - .- distp(L V5 ),

where distg (L V) = min{distR (Lvy) +distg (v, V),
disty (1, v) + distg (v4, Vi)j)}.

Without loss of generality, we assume the dimension of
the embedded network is w, s.t., w < [log2|V|-|. Given two
locations I and I, the shortest distance between them can be
approximated through computing the chessboard distance
between ¢; and ¢, denoted by

distg (I,,1;) = distc(cls,c,d)
= maxvi)jeR'distR(lS, Vi)j) - distR(ld,V,-,j)'

(7)

= max,i |, [ - ¢, 1],

(8)

where dist., (-, -) represents the chessboard distance between
two coordinates.

4. pRMatch Scheme

In this section, we present our pRMatch scheme. We begin
with an overview of the scheme and then detail its
operations.
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4.1. Overview. As shown in Figure 1, the proxy generates
keys and broadcasts the public key to other participants.
Drivers periodically report to the SP the geographical zones
where they are located. These zones are defined by the SP to
prefilter drivers quickly. When a rider wants to hail a driver,
he generates the encrypted request and sends it to the SP.
Then, the SP prefilters all drivers on the basis of zone in-
formation and obtains candidate drivers. All candidate
drivers send their encrypted locations to the SP. Upon re-
ceived above ciphertexts, the SP computes all shortest road
distances from the candidate drivers to the rider in
encrypted form. The SP and the proxy perform secure
comparison protocol to select the driver with the minimum
road distance to serve the rider. Finally, the ride matching
result is sent to the matched rider and driver.

4.2. Ride Prerequisites. Given the road network & = (V,E,
W) and the dimension w of the embedded road network,
several offline initialization works need to be executed:

(i) The proxy generates a pair of keys (pk,sk). The
public key pk is open to other participants, and the
secret key sk is kept by itself.

(ii) The SP computes the coordinate of each vertex in &
to generate the embedded road network
Q = {c, | v € V} by using RNE technique introduced
in Section 3.2, where each coordinate is represented
as a w-dimensional vector. To support drivers
prefiltering, the SP partitions the road network &
into the set of zones G = {z;} Note that Q) and
G are public to all users.

1<i<n’

(iii) A driver d, periodically reports to the SP the
geographical zone z; where he is located.

4.3. Ride Matching. When a rider hails a driver using the
ORH service, the operations performed by the rider, the
drivers, the SP, and the proxy are as follows (Figure 2):

(1) The rider u first computes the coordinate of his pick-
up location [, in the embedded road network Q
according to equation (7), denoted as ¢, =
(c,[1],...,¢,[w]), and the zone where he is located,
denoted as z,,. Then, the rider encrypts each element
in ¢, with the public key pk using Paillier crypto-
system, denoted as

[c,] = (E(c,[1]), ..., E(c,[w])). (9)

Finally, the rider u sends his request R, = ([¢c,],z,)
to the SP.

(2) Upon receiving the request R,, the SP selects the
candidate drivers D* that is located in the zone z,
and the adjacent zones of z,,. Then, the SP asks the
candidate drivers to update their encrypted current
locations.

(3) For d;, € D*, the driver d;, computes the coordinate
of his current location I; in the embedded road
network Q according to equation (7), denoted as
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FIGURE 2: The framework of pRMatch.

4 = (cdk[l],~--,cdk [w]). Then, the driver encrypts
each element in ¢; with the public key pk using
Paillier cryptosystem, denoted as

[eg ] =(E(cy [1]), ..., E(cy [0])). (10)

Finally, the driver d, sends his encrypted current
location [[cd ] to the SP.

(4) Upon receiving {[ch ]]} deD the SP computes the
shortest road distances from all candidate drivers D* to

Note that E(2%) is used to ensure all elements in
[dist(d,u)] are positive. To prevent the proxy from
inferring the locations of u and d,,, the SP shuffles these
encrypted values in [dist (d, u)]. For every element in
the new vector, no one knows its position in the original
vector. Consequently, the release of the index of the
minimum in a shuffled vector is meaningless and does
not reveal any private information. With the random
permutation function s, the original vector
[dist (ds,u)] is permuted into the shuffled vector:

the rider u in ciphertext domain. Assume the upper [[cﬁgt(dk,u)]] =( [ dist, dou)] ... . [dist, (dk,u)]])

bound of road distance in the road network is a £-bit
integer. Given d; € D*, the SP computes the shortest
road distance between /; and ], according to equation
(8). Concretely, the SP computes the following vector
[dist (dy,u)] over ciphertexts [[cdk]] and [c,] based on
homomorphism properties of the Paillier cryptosystem:

[dist (d;, u)] =(E(cy [1] - ¢,[1]+2°),...
E(cy [0] - ¢, [w] +2°))
= (E(eq, 1)E" (<4, [)E(). .
ECARINCAD )E(ze))

(11)

=(E(cg [ ()])E™" (cq [ (D])E(2),..

E( e, b (@)™ ([ (@)))E(2)).
(12)

It is worth noting that this permutation prevents the
proxy from knowing the original position of any ele-
ment in [dist (d, u)]. To improve the efficiency, the SP
uses ciphertext packing technique to pack multiple
ciphertexts into one single ciphertext, because the
plaintext space of the Paillier cryptosystem is much
greater than that of the upper bound of road distance.
In the Paillier cryptosystem, the number of slots in a



packed ciphertext is p = [N/ (€ + 1)], that is, we can
pack p ciphertexts into one single packed ciphertext.
The basic idea of ciphertext packing is introduced as
follows. Suppose a,, - - -, a; are €-bit integers (1 << p),

their corresponding ciphertexts are [a,],---, [a;]. We
construct the packed ciphertext by
!
& (1-i)
[la 11~ I0a]] = [ ] 1,0 (13)

i=1

We only need one decryption to obtain the packed

plaintext
[a,]--la;] = Za !0, (14)

and then recover a,, - - -, a;. Based on above ciphertexts
packing, the SP packs all encrypted elements of
[dist(d,,u)] into one single packed ciphertext:

[dist (dy, u)] = [[dist, (d;, )] - |[dist, (d;, u)]]

2[ w—1)

ﬁ [dist, (d;, u) ,
i=1

(15)

s.t, p>w. To protect the real identifiers of drivers
against the proxy, the SP generates an one-time

Eseudonym for each driver d; € D*, denoted as
d, = 7' (d,), and we have
D*:{dk:ﬂ' dk |dkED*}. (16)

Finally, the SP sends a set of packed ciphertexts
{[Idlst(dk,u)]]} ~ to the proxy.

(5) Upon receiving these packed c1phertexts, the proxy
decrypts each ciphertext in {[[dlst (dk, u)]]}gkéﬁ* with

its secret key sk and then unpacks them to obtain

{dist(dio )l 5. ={(disty (o). dist, (o)L .
(17)

dist,,(d

Then, the proxy runs Algorithm 1 to obtain the
shortest road distances between the candidate drivers
D* and the rider u and then selects the driver with the
minimum road distance as the matched driver,
denoted as d*. Finally, the proxy sends d* to the SP.

(6) When receiving d*, the SP can learn the real iden-
tifier of d* is d*. Then, the match result is sent to the
driver d* and the rider u.

5. Theoretical Analysis

5.1. Complexity Analysis. We analyze the online computa-
tion (comp.) cost and communication (comm.) cost for
different participants in pRMatch. For the Paillier crypto-
system, we set N and g to 1024 bits and 160 bits, respectively.
Under this assumption, one encryption (Enc) needs two
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1024-bit exponentiations and one 2048-bit multiplication,
and one decryption (Dec) costs essentially one 2048-bit
multiplication, and a ciphertext is 2048 bits. Let mul and exp
denote one 2048-bit multiplication and one 2048-bit ex-
ponentiation, respectively.

At the user side, a rider (resp. driver) needs to perform w
Enc to obtain the encrypted request (resp. current location).
Accordingly, w ciphertexts need to be transferred to the SP.
Thus, the comm. cost between the SP and a user is roughly
2048w bits.

At the SP side, the SP performs 2w mul and w exp to
compute one shortest road distance. The total cost of the
shortest road distance computation is 2w|D*| mul and w|D*|
exp. Besides, the SP packs w|D*| ciphertexts into [w|D*|/p]
packed ciphertexts, where p =[1024/(¢+ 1)]. The comp.
cost of above packing is w|D*| mul and w|D*| exp. The SP
sends [w|D*|/p] packed ciphertexts to the proxy, thus the
comm. cost between the SP and the proxy is roughly
[2048w|D*|/p] bits.

At the proxy side, the proxy primarily performs
[w|D*|/p] Dec to decrypt receiving ciphertexts. Afterwards,
it returns one plaintext to the SP.

5.2. Security Analysis. The SP cannot harvest any rider’s
pick-up location ¢, from [c,], and any driver’s current
location ¢, from [c; ||, because they are encrypted by the
Paillier cryptosystem that has semantic security. The SP only
learns the zone information of users and the match result,
rather than the exact locations of users.

The proxy also cannot learn any rider’s pick-up location ¢,

and any driver’s current location ¢; from {de] (dy,u) }E o
keD*

because each location coordinate in the road network em-
bedded space has been shuffled and the real identifiers of
drivers have been replaced by pseudonyms. Given dist (d,, u),
the proxy infers dist(d,, u) with the probability (1/w!).

Next, we present an attack analysis to demonstrate that
pRMatch effectively addresses the attacks described in
Section 2.2.

(i) Against Al. To launch a daily routines tracking at-
tack to a user, the SP/proxy needs to know his exact
pick-up/drop-off location and time. In pRMatch,
the drop-off event is not reported to the SP/proxy.
As aforementioned, the SP cannot learn any rider’s
pick-up location or any driver’s current location
from the received ciphertext. Moreover, the SP only
knows the rough pick-up time and the zone in-
formation, which is not enough to track the user.
The proxy knows nothing about a ride, because each
location coordinate have been shuffled. Above
analysis indicates that pRMatch can tackle daily
routines tracking attacks.

(ii) Against A2. To launch a large-scale inference attack
to a user, the SP/proxy needs to learn his identity
and at least his pick-up location and time. We have
analyzed that the pick-up location of a rider and the
current location of a driver are never exposed to the
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Input: {(figt(;lk,u)}
Output: d*.
(1) for 1<k<|D*| do
2) for 1<i<w do

dieD*

(16) end for _
(17) return d*;

= {(dist, (d}, w), -, dist,, (dy, w))}

3) if dist; (dj, u) <2¢ then
(4) dist; (dy,u) — 2° - dist, (d,, u);
(5) else o
(6) dist; (d,., u) « dist, (d, u) - 2
(7) end if o
(8) if i =1 or dist < dist; (d;, u) do
) dist — dist; (dy, u);

(10) end if

@1 end for

12) if k =1 or dist” > dist do

(13) dist” « dist;

(14) d* —dy;

15) end if

dkeD*'

ALGORITHM 1: Best driver selection (BDS).

SP or the proxy. The proxy does not even know the
user’s identity, because it is replaced by pseudo-
nyms. Note that the zone size should be well-de-
fined, because unreasonable zone size cannot
protect users’ location privacy against known
background knowledge attack. For instance, if there
is only one semantic location in a zone, then the SP
will learn riders in the zone are likely to be picked up
at this semantic location. From the above analysis, it
is clear that it is difficult for the SP and the proxy to
profile riders’ and drivers’ activities.

(iil) Against A3. A driver can learn a rider’s ride in-
formation if and only if he is matched to the rider;
otherwise, the driver harvests nothing. Likewise, a
rider only receives the information of his matched
driver. Obviously, unauthorized ride harvesting
attacks are hard to be launched.

6. Experimental Evaluation

Our experiments are performed on the real road network
of California (http://www.cs.utah.edu/lifeifei/SpatialDataset.
htm) (Figure 3(a)), which contains 21048 vertices and 21693
edges. We generate riders and drivers on the edges in a
random fashion (Figure 3(b)) and set the bit length of the
upper bound of road distance to 16, ie., £ =16. We im-
plement a proof-of-concept pRMatch in C++, by relying on
the Paillier cryptosystem library (http://acsc.cs.utexas.edu/
libpaillier). All our experiments are conducted and executed
on a PC running Ubuntu 18.04 LTS, with an Intel i7 pro-
cessor at 3.4 GHz and 16 GB RAM.

pRMatch is compared with the state-of-the-art privacy-
preserving schemes ORide [13] and pRide [17] under the
same road network. ORide utilizes the Euclidean distance
metric for ride matching, and pRide is the first privacy-
preserving ride matching scheme using road distance

metric. We build ORide on FV scheme [11] inspired from
NFLIlib (github.com/quarkslab/NFLlib) and FV-NFLIib
(github.com/CryptoExperts/FV-NFLIib) and implement
pRide on the same Paillier cryptosystem library and Obliv-
C [19]. For pRide, the length of a wire in Yao’s garbled
circuits [9] is set to 80 bits, and the security parameter for
blindness is set to 32 bits to achieve statistical security
roughly 2715,

We evaluate the accuracy and the efficiency of pRMatch
by varying the dimension of the embedded road network or
driver scale, where the dimension w is the element number
of a coordinate in the embedded road network, as defined in
equation (8), and driver scale |D] is the total number of
available drivers on road.

Accuracy: we use the matching success rate (MSR) to
evaluate the accuracy. A matching is successful if the
matched driver is the actual driver with the minimum
road distance. We define MSR = N, .//N, where N
is the total number of matchings and N, is the

number of success matchings.

Figure 4(a) depicts the MSRs of pRMatch, pRide, and
ORide by varying the dimension w from 4 to 32. We can
see the MSRs of pRMatch and pRide raise steadily as
the dimension of the embedded road network in-
creases, which is more than 95% if the dimension is
higher than 24. That is because higher dimension
means higher accuracy of shortest road distance
computation. In contrast, Euclidean distance com-
putation in ORide is irrelevant to the dimension, thus
the MSR of ORide always stays around 85%. When the
dimension is higher than 8, pRMatch and pRide
outperform ORide in the terms of accuracy. This is of
no surprise because both pRMatch and pRide choose
road distance to make ride matching, which is more
accurate than Euclidean distance. Figure 4(b) depicts

suc
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FIGURE 3: Dataset for experiments. (a) The road network of California (b) The user generation over the road network.
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FIGURE 4: The accuracy of pRMatch, ORide, and pRide, when the number of zones is 25. (a) The MSR under a different dimension of the
embedded road network, when |D| = 2000. (b) The MSR under a different driver scale, when w = 24.

the MSRs of pRMatch, pRide, and ORide by varying
the driver scale from 1000 to 4000. As shown in
Figure 4(b), the MSRs of pRMatch and pRide are
always high under any driver scale. This demonstrates
the accuracy of pRMatch is not affected by big-scale
drivers. The MSR of ORide gradually rises as the driver
scale increases, because larger driver scale indicates
there may exist closer drivers located around riders.
However, the MSR of ORide is still less than 90%.
Above experimental results demonstrate that
pRMatch can reach a higher accuracy due to the
choice of road distance.

Efficiency: we use average online comp. cost and comm.
cost for per ride matching to evaluate the efficiency.

Figures 5(a)-5(d) depict the comp. cost of pRMatch
and pRide for per-matching varying the dimension

of the embedded road network or driver scale. At the
user (including riders and drivers) side, a user needs
to encrypt its location coordinate in the embedded
road network. As shown in Figure 5(a), the comp.
cost of the rider (and the driver) in pRMatch raises
with the dimension increases. The reason is that
higher dimension requires more encryption oper-
ations over a location coordinate. Figure 5(b) shows
the comp. cost of the rider (and the driver) stays
steady under any driver scale. In addition, pRMatch
costs more execution time at the user side, because it
cannot pack encrypted coordinate into one single
ciphertext. Nevertheless, pRMatch is still practical at
the user side for resource-constrained devices. For
instance, a user requires roughly 0.1 second to en-
crypt a 24-dimensional location coordinate. As
shown in Figure 5(c) and 5(d), the comp. cost at the
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FiGure 5: The efficiency of pRMatch and pRide, when the number of zones is 25. (a) The comp. cost of a user (including the rider and
candicate drivers) under different dimension of the embedded road network, when |D| = 2000. (b) The comp. cost of a user (including the
rider and candicate drivers) under a different driver scale, when w = 24. (c) The comp. cost of the servers under a different dimension of the
embedded road network, when | D| = 2000. (d) The comp. cost of the servers under a different driver scale, when w = 24. (¢) The comm. cost
between the SP and a user (including the rider and candicate drivers) under a different dimension of the embedded road network, when
|D| = 2000. (f) The comm. cost between the SP and a user (including the rider and candicate drivers) under a different driver scale, when
w = 24. (g) The comm. cost between the servers under a different dimension of the embedded road network, when |D| = 2000. (h) The
comm. cost of between servers under a different driver scale, when w = 24.

server (including the SP and the proxy) side in
pRMatch and pRide increases almost linearly as the
dimension or the driver scale increases. It is obvious
that the comp. cost at the server side in pRMatch is
much lower than that in pRide. For instance,
pRMatch requires about 1 second for per-matching
when the dimension is 24 and the driver scale is
2000, but pRide requires more than 6 seconds.
Moreover, we can see that the SP undertakes most
comp. cost at the server side, and the proxy always
has low comp. cost with big-scale drivers (less than
0.15 second).

Figures 5(e)-5(h) depict the comm. cost of pRMatch and
pRide for per-matching by varying the dimension of the
embedded network or driver scale. As shown in Figures 5(e)
and 5(f), pRMatch requires more comm. cost between the
SP and the rider (and the driver) as the dimension increases,
while the comm. cost is not affected by the driver scale. We
can also see that the comm. cost between the SP and the rider
(and the driver) in pRMatch is higher than that in pRide, but
it is quite acceptable for resource-constrained devices. As
shown in Figures 5(g) and 5(h), pRide requires very heavy
comm. cost between the two servers, and it needs even more
as the dimension or the driver scale increases. In contrast,
the comm. cost between the SP and the proxy in pRMatch
slowly grows with the increase of the dimension or driver
scale, and it always stays low, about two orders of magnitude
less than that in pRide. For instance, pRMatch requires less
than 27kBs comm. cost at the server side when the di-
mension is 24 and the driver scale is 2000, but pRide requires
roughly 24 MBs.

Compared with ORide, pRMatch reaches higher accu-
racy. Compared with pRide, pRMatch achieves higher ef-
ficiency at the server side; especially, it brings an order-of-

magnitude improvement in comm. cost. pPRMatch requires
more cost at the user side than pRide, but the cost is quite
acceptable for resource-constrained devices.

7. Related Work

The rapid adoption of ORH services poses significant
challenges for users’ privacy disclosure, as there are a few
studies that have emphasized the importance of privacy-
preserving solutions in ORH services [2]. PrivateRide [4] is
the first system to enhance location privacy for riders in
ORH services. It uses spatial cloaking regions to replace their
actual locations. But obfuscate locations, instead of the
actual locations, affect the accuracy of ride matching; the
matched driver may not be the optimal one and has to drive
extra distance to pick up the rider; meanwhile, the rider may
wait extra time to get the ride. Moreover, PrivateRide only
provides limited privacy guarantees for drivers and offers
less accountability features. Later, ORide [13] is proposed to
address these limitations, which provides stronger privacy
and accountability guarantees for both riders and drivers
based SHE and anonymous credentials. In addition, ORide
applies optimizations for ciphertext packing and trans-
formed processing, hence enabling a notable boost in per-
formance and a reduction in overhead. TRACE [14]
supports privacy-preserving spatial query based on random
masking technique and point-in-polygon strategy. CoRide
[20] is a blockchain-assisted system model for several SPs to
establish private collaborative-rides. To achieve efficiency,
these schemes utilize the Euclidean distance metric for ride
matching, because it is easy to compute over encrypted data.
But Euclidean distance may lead to false hits, because drivers
always travel along road network. As evaluated in our ex-
periments, it roughly 15% false hits exist when using
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Euclidean distance to make ride matching. pRide [17] uses
PHE and Yao’s garbled circuits to compute road distance for
ride matching, but its comp. cost and comm. cost at server
side are very heavy. IpRide [21] adopts modified PHE and
ciphertext blinding to compute the shortest road distance for
ride matching without two noncollusion servers assumption.
For both accuracy and efficiency, our pRMatch uses road
distance as the travel cost metric to make ride matching over
encrypted data without any heavy cost.

Also relevant are the works in privacy-enhanced ride-
sharing services. PrivatePool [22] is a privacy-preserving
protocol allowing users to check their feasible ride matches
through PSI and SHE. PRIS [23] is a privacy-preserving ride
matching scheme for selecting feasible ridesharing partners
based on PHE and bilinear pairing. SRide [24] is a privacy-
preserving ridesharing matching protocol based on users’
spatial and temporal information, which employs SHE and
SMC to compute feasible matches. Most of the previous
studies have one limit that hampers their reuse in ORH
service. That is, they require drivers offering ridesharing to
riders along the route they had already planned to travel. It is
impractical for ORH services, where riders can hail a driver
to go wherever they want. To tackle this, PSRide [25] is
proposed to make privacy-preserving ridesharing matching
for ORH systems.

There is a vast literature on protecting location privacy
against service providers in LBSs; we summarize them into
four fundamentally different ways:

Location-Based k-Anonymity. It requires that the ser-
vice provider cannot distinguish the request issuer from
k — 1 other users such that the probability of identifying
him is 1/k. To achieve this, one way is to enlarge the
issuer’s location to a cloaking region including k — 1
other users by using a hierarchical spatial partitioning
[26, 27] or space-filling curves [28]. Another way is to
generate k — 1 dummies (fake locations) together with
the actual request to perform k requests to the service
provider [29, 30]. Moreover, location I-diversity
[31, 32] is also introduced to enhance k-anonymity. The
main drawback of k-anonymity-based solutions is the
difficulty of providing provable privacy which guar-
antees to be independent of background knowledge.

Location Obfuscation. It requires blurring or perturbing
the location information contained in requests. As
reviewed in [33], obfuscation techniques can be divided
into three groups. Request enlargement techniques
[34, 35] create obfuscation areas for requests to hide
users’ locations. Dummy-based techniques [36, 37]
generate nonsensitive locations as the dummies with-
out considering other potential users (unlike k-ano-
nymity). Coordinate transformation techniques
[38, 39] change the complete coordinate reference
system using geometric transformations to confuse
adversaries. Generally, obfuscation cannot provide
provable privacy guarantees without background
knowledge, and may impact the quality of service (QoS)
of LBSs. Thus, background knowledge is necessary for
location obfuscation, e.g., PPCS [40] generates dummy
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locations based on entropy while considering semantic
location information that might be used by attackers.

Differential Privacy. Differential privacy [41] is pro-
posed in statistical databases, which is independent of
background knowledge. It can also be used for location
privacy in LBSs, such as (D, e€)-location privacy [42]
and e-geo-indistinguishability [43]. The intuitive idea
behind differential privacy is the following: the ratio
between the probabilities of obtaining a certain output
from two locations relies on their distance, that is, the
privacy level increases with their distance. To achieve
this, a fake location is probabilistically determined to
replace the actual location in requests by running
randomization functions. Differential privacy has to
make a trade-off between privacy and QoS. Several
studies focus on optimal trade-offs [44, 45], but it still
has no clear answer.

Encryption-Based Solution. Many encryption-based
solutions have been discussed above. Besides, crypto-
graphic primitives have been explored in other LBSs,
such as location-based kNN search [46, 47] and friend-
finder services [48]. Encryption-based solutions strive
for stronger, provable privacy guarantees. The essential
challenge is to allow for efficient responding to the
requests, despite the computational complexity of the
cryptographic primitives.

8. Conclusion and Future Work

In this paper, we focus on the issue of the preservation of
location privacy of both riders and drivers during ride
matching in ORH services and proposed a privacy-pre-
serving ride matching scheme, namely, pRMatch. It enables
an ORH service provider to find the closest available driver
for an incoming rider over a city-scale road network,
without leaking users’ location privacy to the ORH service
provider and other unauthorized users. In pRMatch, we
proposed an efficient shortest road distance computation
approach over encrypted data by using road network em-
bedding and PHE and further designed a secure comparison
protocol over encrypted data by using ciphertexts packing
and shuffling. We also implement pRMatch and perform
extensive experiments to validate its accuracy and efficiency.
Experimental results demonstrate that pRMatch achieves
about 95% accuracy and guarantees efficiency.

For future work, we will consider the safety issues during
ride execution in privacy-enhanced ORH services. When the
urgent safety threat happens, e.g., hijacks, a privacy-pre-
serving scheme cannot break the safety protection.

Data Availability

The road network data of California used to support the
findings of this study have been deposited in http://www.cs.
utah.edu/lifeifei/SpatialDataset.htm.
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