Hindawi

Security and Communication Networks
Volume 2020, Article ID 4087873, 10 pages
https://doi.org/10.1155/2020/4087873

WILEY

Hindawi

Research Article

Parallel and Regular Algorithm of Elliptic Curve Scalar
Multiplication over Binary Fields

Xingran Li 123 Wei Yu®,"® and Bao Li'*>

IState Key Laboratory of Information Security, Institute of Information Engineering, CAS, Beijing 100093, China
2School of Cyber Security, University of Chinese Academy of Sciences, Beijing 100049, China
*Data Assurances and Communications Security, Institute of Information Engineering, CAS, Beijing 100093, China

Correspondence should be addressed to Wei Yu; yuwei_1_yw@163.com
Received 17 October 2019; Accepted 8 May 2020; Published 24 June 2020
Academic Editor: Benjamin Aziz

Copyright © 2020 Xingran Li et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Accelerating scalar multiplication has always been a significant topic when people talk about the elliptic curve cryptosystem. Many
approaches have been come up with to achieve this aim. An interesting perspective is that computers nowadays usually have
multicore processors which could be used to do cryptographic computations in parallel style. Inspired by this idea, we present a
new parallel and efficient algorithm to speed up scalar multiplication. First, we introduce a new regular halve-and-add method
which is very efficient by utilizing A projective coordinate. Then, we compare many different algorithms calculating double-and-
add and halve-and-add. Finally, we combine the best double-and-add and halve-and-add methods to get a new faster parallel
algorithm which costs around 12.0% less than the previous best. Furthermore, our algorithm is regular without any dummy

operations, so it naturally provides protection against simple side-channel attacks.

1. Introduction

The elliptic curve was first imported into the world of
cryptography by Neal Koblitz and Victor Miller indepen-
dently in 1985 [1, 2] and is now increasingly used for a wide
range of cryptography primitives in practice such as public
encryption and digital signature. More than 30 years after its
introduction to the cryptography field, the practical ad-
vantages of elliptic curve cryptosystem (ECC) are clear and
well-known: it has richer algebraic structures, a smaller key
size, and relatively faster implementations to achieve the
same level of security compared with other deployed
schemes such as RSA. Based on the above benefits, ECC is
particularly suitable for resource-constrained devices.

The efficiency of ECC is dominated by the speed of
calculating scalar multiplication. Namely, given a rational
point P of order r on elliptic curves, it requires to compute
kP=P+P+---+P (k times), for a given scalar k € [0,r).
Obviously, there are similar features between scalar multi-
plication and exponentiation in a general multiplicative fi-
nite group. Therefore, inspired by the repeated “square-and-

multiply” algorithm, the normally used binary method called
“double-and-add” for scalar multiplication over elliptic
curves has been regarded as a fundamental technique.

In constrained environments, scalar multiplication is
easily implemented by “double-and-add” variant of Horn-
er’s rule, providing binary expansion of scalar k = ¥k, - 2/.
However, each bit of k implies different algorithmic path
during each iteration, that is, if k; = 0, only a point doubling
is necessary. Whereas if k; = 1, a point doubling followed by
a point addition is involved. As a consequence, different
power and time consumption of this two prominent
building blocks can be detected by simple power analysis
(SPA) [3] and timing attack—this naive implementation
leads to information leakage of secret scalar k.

Protecting against simple side-channel attacks (SSCA)
can be achieved by recoding scalars in a regular manner,
meaning that scalar multiplications are executed in the same
instructions in the same order for any input value. Coron
introduced a countermeasure against SSCA named “double-
and-add always” algorithm [4]. By inserting a dummy op-
eration when necessary, it evaluates scalar multiplication by

mailto:yuwei_1_yw@163.com
https://orcid.org/0000-0002-2057-8737
https://orcid.org/0000-0002-9015-9351
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/4087873

executing a doubling and an addition in each loop. However,
it was soon found to be vulnerable to safe-error fault attacks
[5, 6]. By timely inducing a fault at one iteration during the
point addition, an adversary can determine whether the
operation is dummy or not by checking the correctness of
the output.

A measurement against safe-error fault attacks performs
scalar multiplication in a predictable pattern. Besides the
most commonly used Montgomery-ladder algorithm [7],
another efficient method is m-ary recoding [8]. This algo-
rithm recodes a scalar in a sequence of m — 1 zeros and a
nonzero with the percentage of nonzero numbers (1/m).
However, scanning from look-up table could be dangerous if
this step cannot be proceeded in constant-time.

Another increased interest-focused field of regular ex-
ecuting scalar multiplication is exploiting efficient curve
forms that allow complete addition law. For any pair of
k-rational points on elliptic curves (or in desired subgroup),
complete addition law can compute the correct result, ig-
noring whether two addends are identical or not. As a
corollary of the main results in [9], elliptic curves embedded
in any projective spaces of dimension #n by a symmetric line
bundle admit a complete system of addition laws of bidegree
(2,2). The later work of Bosma and Lenstra [10] shows that,
when suitably chosen, a single addition law is able to act as
add operation for all pairs of k-rational elliptic points. One
of the well-studied examples is Edwards curves [11, 12], of
which exceptional pairs for addition law exist outside
k-rational points. A recent work [13] proposed an optimized
algorithm that adds any pair of k-rational points for prime
order elliptic curves defined over field of characteristic
different from 2 and 3.

In [14], the authors introduce a new approach for scalar
multiplication called Montgomery-halving algorithm which
is a variation of the original Montgomery-ladder point
multiplication. Besides, they present a new strategy for
parallel implementation of point multiplication over elliptic
curves by running the Montgomery-halving algorithm with
the original Montgomery-ladder algorithm in parallel to
calculate scalar multiplication concurrently. Moreover, this
parallel algorithm can achieve protecting against SSCA.
However, in their scheme, affine coordinate has to be used
for halving, because the projective form of the Montgomery-
halving algorithm could not be used to save operations.

In this paper, we provide a similar parallel imple-
mentation method using regular recoding technique which
should be highly efficient by parallel processing doubling
and halving operations in two different coprocessors. It can
be concluded as two main contributions.

The first contribution is that we give a new regular
algorithm computing halving operation called zero-less
signed-digit (ZSD) halve-and-add which saves around
32.7% and 33.0% cost compared with Montgomery-
halving method in [14] with m =233 and m =409. The A
projective coordinate system could offer projective co-
ordinates saving inversions. This is especially useful for
our ZSD halve-and-add algorithm (Algorithm 1). For
halving operation, the best coordinate is A affine coor-
dinate. For the following addition operation, the better

Security and Communication Networks

choice is A projective coordinate. The Montgomery-
halving algorithm in [14] has to exploit affine coordinate
for its special structure without other choices, while our
Algorithm 1 could make use of A projective coordinate for
its different structure design, where R, can always be in A
affine coordinate for halving and R, can always be in A
projective coordinate for addition so that A projective
mixed addition law could be used and no more coordinate
transformation needed. In addition, the regular recoding
technique ensures the secure implementation of scalar
multiplication against SSCA.

The second contribution concerns the new mixed-par-
allel algorithm. After analyzing all the algorithms in Table 1,
we combine the fastest double-and-add method and
Montgomery double-and-add method, in [14], and the
fastest halve-and-add method, our ZSD halve-and-add al-
gorithm, in this paper. A new efficient and secure mixed-
parallel algorithm just comes into being, the mixed-parallel
method, which costs around 11.7% and 12.0% less than
Montgomery-Parallel approach in [14] when m =233 and
m =409, respectively. The more thorough analysis will be
exhibited in Section 4, and the related estimate results are all
displayed in Tables 1 and 2.

The rest of this paper is organized as follows. In the next
section, we introduce the related arithmetic knowledge of
binary elliptic curves, especially on efficient A coordinate
point representation, twisted y,-normal form, and how to
evaluate scalar multiplication in parallel by combining point
halving and doubling operations. In Section 3, our new
regular algorithm for halve-and-add is provided. Moreover,
a similar parallel strategy as the one detailed in [14] shows
how to efficiently implement scalar multiplication in a
regular and parallel manner. Cost comparison and expected
performance analysis are presented in Section 4. Finally, we
conclude this paper and give the new mixed-parallel algo-
rithm after analyzing.

2. Preliminaries

We focus on elliptic curves E defined over binary fields % .,
by the Weierstrass equation:

y2+xy:x3+ax2+b, (1)

where a,b € F,. = F,[t]/ (f (1), f(t) € F,[t] is an irre-
ducible polynomial of degree m. Isomorphic to the divisor
class group of degree 0, the rational points P(x, y) on E
together with the point at infinity © form an abelian group,
of which the basic group operation—addition—is algebra-
ically interpreted by the tangent-and-chord law.

Given two points P, = (x;, y,) and P, = (x,, y,) on
E(#,.), where P, = +P,, if the addition of the two points is
presented by Q=P,+P,, then the coordinates of
Q = (x5, y3) can be computed according to the following
formula:

{x3=A2+A+x1+x2+a, 2
Y3 =A(x +x3) + x5+ yy,

with A = (y; + y,)/ (7 + x3).

Security and Communication Networks

Output: 2"k - P
(1) Ry«—P/2; R;«<P/2
(2) Fori=n-1 down to 1 do
(3) te—(-D""
(4) R, «—R,/2; Ry«—R, +t- R,
(5) End for
(6) Ry —Ry —Ry
(7) Return R,

Input: P € E(F,.) of odd order r, k = (k,_,k,_, - -

ko), with K, , =1

ALGORITHM 1: Regular ZSD halve-and-add (left-to-right) method.

TaBLE 1: Complexity comparison for m-bit k in different single algorithms.

Method Point operations Field operations (I=10M) m = 233 m = 409
Montgomery-D mD,, + mAy, 6mM +10M + 1 1418M 2474M
Montgomery-H mH, + mA, 3mM+m 2M+1) 3495M 6135M
Algorithm 2-D (A-projective) mDAP + mAAP 10mM + 11M +1 2351M 4111M
Algorithm 2-D (twisted u,) mD, +mA, ImM+ 11M+1 2118M 3702M
Algorithm 1-H mH, +mA) 10mM+ 11M +1 2351M 4111M

Montgomery-D = Montgomery double-and-add algorithm, Montgomery-H = Montgomery halve-and-add algorithm, Algorithm. 2-D (A-Projective) = Algorithm 2 using
the A-projective coordinate system, Algorithm. 2-D (twisted y,) = Algorithm 2 using the twisted y, coordinate system, Algorithm. 1-H = Algorithm 1 for halve-and-add.

TaBLE 2: Complexity comparison for m-bit k in different parallel algorithms.

Algorithm Split (1) Estimate (m =233) Split (¢) Estimate (m =409)
Montgomery-parallel 67 1028M 118 1782M
Our mixed-parallel 87 908M 153 1568M

Similarly, given P = (xy, y,) € E(%), where P+ —P,
if the doubling of the point P is presented by 2 - P, then the
coordinates of 2P = (x3, y5) can be computed according to
the following formula [15]:

b
T+ 2

! (3)

x;=AM+l+a=x

V3 = X2+ Ax; + X3,

with A = x; + y,/x,.

From the above formulas, it is easy to notice that there are
inevitable inversion operations in the base field, which would
consume much time. Usually, the projective coordinate system
is more welcome for its inclusion of no field inversions. In
practice, various kinds of coordinate systems are already
available to be used. The work in this paper prefers to exploit
the state-of-the-art coordinate systems: A coordinate and the
projective coordinate system of twisted y,-normal form. They
perform excellently in different situations.

2.1. A Coordinates. Efficient point representation is of great
importance to accelerate scalar multiplication. Inversion in
the base field takes a large amount of time; however, they are
indispensable if points are represented in affine coordinate.
The homogeneous projective coordinate system (also called
standard projective coordinate system) is usually used to
eliminate this obstacle by injecting any k-rational affine
point P(x,y) € A% into one of its projective copies

(X,Y,Z) = (x,y,1) € P?, where x=X/Z,y=Y/Z,Z+#0.
When one of the projective copies (X,Y,Z) = (x,y,1)
corresponds to the affine point (x,y), where
x=X/Z%y=Y|Z? Z+0, it is the Jacobian projective co-
ordinate system. Later, Lopez and Dahab proposed a new
and efficient projective coordinate system. Compared with
the above coordinate systems, the difference is x = X/Z, y =
Y/Z?,Z +0 here [16], denoted as LD coordinate for short.
Later, Kim and Kim presented a four-dimensional LD co-
ordinate system for binary curves which represents P as
(X,Y,Z,T), with x = X/Z, y =Y/T, T = Z* and Z#0.
The A coordinate system was firstly noticed by Knudsen
[17] when studying halving operations on binary elliptic
curves. Oliveira [18] further surveyed its comprehensive
arithmetic. Given a point P = (x, y) € E(F,») with x =0,
the A affine representation of P is defined as (x, 1), where
A =x+y/x. So, it is easy to derive point addition and
doubling formulas of points in A affine coordinates from the
normal affine ones. Let P = (xp,Ap) and Q = (xq, 1) be
two points on E (#,.), where P# +Q, then the formula for
P +Q = (xp,q,Ap.q) can be given by the following formula:

Xpiq = LxQz (Ae +),
(.xp + xQ

(4)

2
X\ X + X
AM:MM},H,

XpiQ - Xp

Referring to doubling operation, 2P = (x,p,A,p) is given
as follows:

_ 92
Xp =Ap+Ap+a,

p 5)
Lp=-L 4 +a+l
Xap

As for projective conditions, the translation between
affine representation (x, y) and A projective representation
(X,L,Z) is defined by x = X/Z, A = L/Z with A = x + y/x.
The negative element of (X, L, Z) is (X, L + Z, Z). Assumed
two points P (Xp, Lp, Zp) and Q (X, Lo, Zy) represented in
A model on binary elliptic curves, similar to the affine case,
the addition arithmetic could be described as the following
formulas:

(A=Ly-Zo+ Lo Zp,

B=(Xp Zo+Xq-Zp)

{ Xpg= A+ (Xp Zo) (Xq Zp) - 4
Lpg=(A-(Xq-Zp)+B) +(A-B-Zo)- (L + Zp),
[Zpo=(A-B-Zg) Zp,

(6)
and for 2P = (X,p, L,p, Z,p), it could be given as follows:
T=L+(Lp-Zp)+a-Z3,
Xop=T7
Zyp=T-Z,
Lyp = (Xp- ZP)2 +Xop+ T+ (Lp-Zp) + Zop.

(7)

The associated group addition P + Q and doubling 2 - P
operations can be calculated by 11M +2S and 3M + 48,
respectively, where M denotes a field multiplication and S
denotes a squaring.

Having the above formulas, a direct thought is to
combine doubling and addition formulas to obtain a for-
mula evaluating 2Q + P, which is of great importance in the
latter part of this paper.

Let P = (xp,Ap) andQ = (X, Ly, Zg) be points of
E(Fm), then 2Q+ P = (Xyq,p Lygips Zogip) can be
computed as follows:

T=13+(Ly Zg)+a-Zk,

)
(

2
>

A=XY ZH+T (Ly+ (a+1+)p)- Z3),
| B=(xp25+T)
Xaqwp = (x5~ 23) - A%,
Zoqur = (A-B-Z3),

| Ligip =T (A+ B + (Ap +1) - Zyg p.

(8)

Using this, 2Q + P operations can be calculated efficiently
by 10M + 6S instead of 11M +2S +3M +4S = 14M + 6S,

Security and Communication Networks

where M denotes a field multiplication and S denotes a
squaring [18].

2.2. Twisted u,-Normal Form. Twisted p,-normal form [19]
can be seen as the complement and extension of y,-normal
form [20]. The related definitions, theorems, equation forms,
and group laws of twisted y,-normal form and p,-normal form
are given by Kohel’s series of papers [19-22]. There are three
forms for (twisted) p,-normal form, called (twisted) y,-normal
form, (twisted) semisplit y,-normal form, and (twisted) split
uy-normal form separately. Yet, for practical consideration,
only twisted spilt y,-normal form will be used here.

Let C' be an elliptic curve over characteristic-two finite
field in the twisted split y,-normal form:

2
Xo+X; = (X, X5 +a(X, +X,)), o)
X3+ X5 =X X,

and let (X, X,,X;,X,) and (Y,,Y,,Y;,Y,) be two points
on the curve. A complete system of addition laws is given by
the two following two maps:

((Ugo +Us)%c(UggUyy + UpyUss +aG), (Uyy +Usy)P,
c(UyUs; + Uy Uy, +aG)),

((Uss +Us)% c(UggUsy + UngUys + aF), Uy, +Uy),
c(UypU,;3 +UyUs, +aF)),

(10)
respectively, where
Uy = XYy
F =V (U +Uy) (11)

G=V(Uy +Up),
V= (X, +X5)(Y, +Y5).

For the point (X, X,, X3, X,), the doubling map sends
it to

(x5 +X3) se(XoXT + X5X3) (X1 + X3) 1 o(X0 X3 + X1X3)),
(12)
if a =0, and to
((xg + X;*) : c(X§X§ + Xfxg) : (X‘I* + X;‘) : c(XﬁXf + Xﬁxﬁ)),
(13)

ifa = 1. In twisted split 4,-normal form, addition operations of
generic points can be evaluated by 9M + 2S and doubling
operations of a generic point can be evaluated by 2M + 58 with
notations M for field multiplication and S for squaring [19].

Among all the studied coordinate systems on binary
curves, twisted y,-normal form and A projective coordinate
appear to be faster. The difference is twisted y,-normal form
is better calculating double-and-add, while A projective
coordinate can be used in halving operation. The costs of
different point operations using various point representing
systems are shown in Table 3.

Security and Communication Networks 5
TaBLE 3: Cost comparison.
Homogeneous Jacobian LD A Twisted p,
Addition 14M + 1S 14M + 58 13M +4S 11IM+ 2S OM + 28
Mixed-addition 1IM+1S 10M + 3§ 8M +5S8 8M+2S8 7M+2S
Doubling 7M + 3§ 4M +5S 3M+5S 3M+4S 2M+S

2.3. Halving Operation. The main ingredient we consider is a
cyclic subgroup in E (%) of odd order r, denoted as &. The
multiple-by-2 isogeny [2]: P — 2P on & is an isomor-
phism, so is its inverse map halving operation
[1/2]: P — (1/2)P. The use of point halving to speedup
scalar multiplication was firstly investigated by Knudsen
[17]. Given a point Q = (u,v) € &, it allows to compute
another point P = (x, y) € ¥ satisfying Q = 2P in the cost of
a field multiplication, calculating a square root and solving a
quadratic equation, which could be directly understood
from the formulas below:

X+y

,A:)
X

u=22+\1+a, (14)

L v=x?+u(d+1).

The most commonly used method is to solve the second
equation for A, then the third one for x, and finally the first
one for y.

When A coordinate like (x,1) is used instead of affine
coordinate (x,y), where P = (x,Ap)andQ = (u,1y), the
halving operation formulas would be changed as follows:

{u:AIZJ+AP+a,

x2=u(u+/1Q+/1P+1). (15)
This time we just need two steps, that is to say, solve the
first equation for A, and then the second one for x. Without
computing y, the halving point coordinates P = (x,1p) of
Q = (4,Aq) can be obtained more simply.
As proved in [23], solving a quadratic equation x> + x =
t on binary curves with Tr(a) = 1 equivalents to computing
the half-trace function H (t) = Zg"’l)/ztzm. Although extra
memory resources are needed, Fong et al. [23] showed a
technique to significantly reduce the required time and
space. With dedicated implementation, a point halving is
approximately twice the time of a field multiplication, sig-
nificantly faster than the customarily used point doubling.
From the algorithmic view, the halve-and-add method
[17] expands a scalar k in radix- (1/2) representation system.
Let I be the binary length of r, first compute k' = k - 2!
modr = YUK, - 27, that is, k = k'/2' mod r = Y/20k; - 21/2! =
Zf;(l,k,',i,l(I/Z)”l. Much similar to double-and-add, point
multiplication,
I-1 p

P P P
kP = Zkl/—i—l F: k;,l E+kl,,2?+"'+k(;—
i=0

> 19

can be eficiently computed by applying point halving on an
accumulator. It can be further optimized combining
methods like w-NAF to get a better implementation per-
formance, as shown in [23].

Enlightened by the treatment in halve-and-add, if we
choose an appropriate number less than /, the scalar k can
be split into two parts naturally. In consequence, the halve-
and-add method is easy to be concurrently implemented
with the double-and-add algorithm in parallel model,
making use of increasing cores in modern processors,
which would be a lot faster than applying one algorithm
without parallel implementation (some inevitable com-
putation load should be considered in advance). Specifi-
cally speaking, if the lengths of r is and a proper ¢ has been
chosen, the scalar k can be split into two portions applying
halve-and-add and double-and-add algorithms simulta-
neously, which can be indicated as follows—the length of
each part (t and [—t) depends on actual implementation
speed of halving and doubling which can be found
experimentally:

kK =2"-kmodr. (17)

If we already have the binary expression of k' = Zi;ék;Zi
with odd order r, then it is easily derived that k=
K'-27tmodr=(kj_ - 27" +---+ky-27") + (k. - 251+
.-+ k;) modr. The scalar multiplication k - P of P is then
split into two parts directly:

k-P=(k[_1-2_1 +---+k6-2"t)-P
(18)
+(k;_1 bt +---+k;)-P.

The first part is easily executed in the halve-and-add
method; meanwhile, the second part can be performed
through a double-and-add approach, in two different
threads.

As far as side-channel attacks being concerned, noticing
that double-and-add can be implemented using Mont-
gomery-ladder point multiplication, Negre and Robert [14]
presented analogous Montgomery-halving algorithm.
During each iteration, two registers hold fixed difference---
2P, and the algorithm processes a point halving and an
addition in each iteration. However, as noticed by the au-
thors, this parallel algorithm can only be implemented in
affine coordinate, since halving operation cannot be
implemented in the projective coordinate efficiently. To
overcome this drawback, we present another regular
recoding algorithm that can be used when implementing
parallel halve-and-add/double-and-add in the projective
coordinate system.

3. Regular Implementation

Protecting the implementation of scalar multiplication
against SSCA can be achieved by many methods. Compared
with unprotected implementation, algorithmic counter-
measures like recoding scalars in a regular manner always
sacrifice efficiency, yet may be easily mitigated by taking
advantage of inherent parallelism of modern processors.

3.1. Zero-Less Signed-Digit Expansion. In general, point
addition and doubling of elliptic curves are very different
from the usual arithmetic operations, which are so
complicated and time consuming that plenty of scholars
have been sparing no effort to find efficient approaches to
speed them up like work in this paper. As is well known,
the negative of a point is a very cheap operation ensuring
subtraction of points on elliptic curves being just as ef-
ficient as addition. This motivates modifying the binary
method to signed-digit representations, that is to say, the
scalar k is usually represented by digits in the set of
{-1,0, 1} instead of {0, 1}. As we all know, there are many
kinds of signed-digit representations. For achieving our
aim, in this paper, zero-less signed-digit expansion is
chosen to be used to come up with regular algorithms
improving the resistance of scalar multiplication against
timing attack and SPA.

Zero-less signed-digit expansion [24] (ZSD) is a highly
regular scalar recoding algorithm that expresses an odd
integer k with digits in {-1,1}. —1 is usually denoted as 1.
Since bit 0 is avoided in recoded sequence, each iteration of
point multiplication requires a double-and-add operation,
providing a natural protection against timing attack and
SPA.

Let (k,_;,k,_,...,k,) be the binary expansion of a
scalar k. Note that for any sequence of consecutive w bits
00---01, the above expansion can be rewritten as 111---1,

ie, P=2“P-29'P—...—2P - P. Similar treatment is
able to be applied to radix-(1/2) expansion of k, since
P/2¢7t =P~ (P/2) - (P/2®) —---— (P/2°"!). When ap-

plying halve-and-add algorithm, any consecutive w bits
00---01 can be rewritten as w bits 111 ---1 as well. So if k is
an odd integer, its radix-2 ZSD expansion k = Y 'k; - 2/ (or
its corresponding one based on radix- (1/2) represented by
27"k = Z:’:_OIE - (1/277)) with k; € {~1,1} can be obtained
from

n-1 = L,
;= (1R (19)

for0<i<n-2.

k
k

From a security standpoint, every bit should be nonzero.
When k is even, it requires a special treatment. This can be
circumvented by computing kP with the least significant bit
of k forced into 1 and finally subtracting P (or (1/2")P in the
corresponding condition) from the so-obtained result if bit
k, is zero. The three algorithms in this paper applied this way
to deal with kP or 27"kP correctly whether the input k is
even or not.

Security and Communication Networks

Having known enough about ZSD expansion, we will
get regular algorithms combining ZSD expansion and
common binary methods to calculate the scalar multi-
plication. Algorithm 2 illustrates the regular ZSD dou-
ble-and-add method based on radix-2 expansion from
left to right, while Algorithm 3 does it from the opposite
side.

Algorithms 2 and 3 give regular binary methods to
evaluate elliptic scalar multiplication based on radix-2 ex-
pansion. When it comes to calculating 27"kP, a similar
condition based on radix-1/2 has to be considered, for which
the halve-and-add method is needed. Referring to Algo-
rithms 2 and 3, with a slight modification, we get Algo-
rithm 1 for regular halving operation.

3.2. Parallelized Regular Scalar Multiplication. Let
P ¢ E(%,.) be the point of odd order r with bit length / and
a scalar k € [0,r — 1]. The parallelized double-and-add/
halve-and-add algorithm for scalar multiplication can be
described in the following three parts including pre-
processing, implementing, and postprocessing. Moreover,
we may have a better view of the whole process from
Figure 1.

Preprocessing: select a proper t € (0,]) and compute
k' =2'-kmodr.

So k=2""k'=[Kk'/2']+ (K'mod2') - 27! = k,'+
k; - 27%, where kj is the most significant [— ¢ bits and k,
is the least significant ¢ bits of k'. This equation indi-
cates kP = (k'/2")P = k,P + (k,/2")P.

Implementing: point multiplication can be done by
concurrently implementing kP in the binary method,
(k,/2")P in radix-1/2 method in two different threads.
In detail,

(1) Feed parameters k, and P as inputs to the regular
double-and-add algorithm, exploiting Algorithm 2
or Algorithm 3, in one thread. The final result point
P, is stored in the register.

(2) In the meanwhile, feed parameters k, and P as
inputs to regular halve-and-add algorithm, Algo-
rithm 1, in another thread. The final result point P,
is stored in the register.

Postprocessing: a single-point addition P, + P, is op-
erated to obtain the correct result of scalar
multiplication.

4. Comparison and Expected Performance

Numerous standards have included NIST-recommended
curves as implementation abelian groups for cryptographic
protocols. The general conclusion in Tables 1 and 2 is
specifically for NIST-recommended random curves having
the form y* + xy = x* + x> + b, where b is an element in
F, (t). To allow easy comparison, the two considered curves
with estimate results in this section are NIST B-233 and
NIST B-409, defined by f(t)=t*>+t*+1 and
f () =t + % + 1 over F, (1), respectively.

Security and Communication Networks

Input: P € E(F,.) of odd order r, k = (k,_,k,_5, ..., ky), with k,,_; =1
Output: k- P

(1) Ry¢«—P; R, «—P

(2) Fori=n-1 down to 1 do

(3) te—(-D""

(4) R,—2R,+t-R,

(5) End for

(6) Ry «— Ry — Ry,

(7) Return R,

ALGORITHM 2: Regular ZSD double-and-add (left-to-right) method.

Input: Pke E(%,n) of odd order 7, k = (k,_;, k5, ..., k), with k,,_; =1
Output: k- P
1) Ry «—P
(2) If ky = 0 then
3) Ry«— —-P
(4) Else
(5) R, —O
(6) Fori=1ton-1do
(7) te— (D"
(8) Ry,——Ry+t-R; R —2R,
(9) End for
(10) Ry« Ry+R,
(11) Return R,

ALGORITHM 3: Regular ZSD double-and-add (right-to-left) method.

Input: P € E(F,m) of odd order rand k € [0, r-1]

A 4

-1 _
Preprocessing: select a proper £, then k' = 2'- kmod r =" k;- 2’
=0

I-1-t . t-1 .
Split: k=27"- k' =k + K} - 27, with kK =D 'ki,,- 2" and Ky =) ki- 2’

i=0 i=0
v
Double-and-add: with P and k/, Halve-and-add: with P and k),
calculating P, = kP calculating P, = 27" k5P

Join: add P; and P,, thatis, Q=P + P,

}

Output: Q (may be transformation of coordinates needed
depending on different cases)

F1GURE 1: Parallel double-and-add/halve-and-add scalar multiplication.

4.1. Analysis. The theoretic complexity analysis of the four
considered scalar multiplication approaches is reported in
Table 1. Our work is to improve the algorithms in [14] and
give a better new parallel algorithm for evaluating scalar
multiplication (Algorithms 2 and 3 have the similar com-
plexity, and just Algorithm 2 will be talked about in the
following parts.)

For regular implementation against SSCA, the Mont-
gomery methods and our new methods here both need m
doubling and m addition point operations for double-and-
add algorithms and m halving and m addition point oper-
ations for halve-and-add algorithms. To be specific, in
Montgomery-D, D,,, and A,; mean doubling and addition
operations of a very efficient Montgomery double-and-add
algorithm in [25]. It is so excellent that only 6mM + 10M +
11 field operations are enough for Montgomery-D, where M
and I represent field multiplication and inversion. In
Montgomery-H, H, and A, are halving and addition oper-
ations in the affine coordinate. Halving usually includes
computing field multiplication, trace, solving the quadratic
equation, and computing the square root operations.
According to the analysis and experimental results in [14, 23],
we can assume halving in affine coordinate needs 3M field
operations while 2M field operations for A projective coor-
dinate. Besides, A,, addition in the affine coordinate needs
2M + 1I field operations. Unavoidably, the structure of
Montgomery-H algorithm requires to use affine coordinate
only, because no proper projective coordinate could be ap-
plied here so far, which influences its efficiency significantly. It
can be easily seen from the estimate results later.

In Algorithm 2, D, and A, represent doubling and
addition in A projective coordinate separately. D, and A,
represent doubling and addition in twisted y, projective
coordinate. As for their corresponding field operations, D),
and A, requires 3M and 11M, while D, and A, require
2M and 8M. In Algorithm 1, H) means halvmg 1n A affine
coordinate and requires 2M. Specially, if the mixed addition
operation and the formula of calculating 2Q + P in Section
2.1 could be exploited, the field operations of Algorithm 2
will be 10mM + 8M + 3M + 11 for A projective coordinate,
in which 8M is the cost of final step mixed addition in
Algorithm 2 and 3M + 11 is the cost of transforming the
final result from A projective coordinate to affine coordinate.
When it turns to twisted u, projective coordinate, 9mM +
7M + 2M + 11 field operations are needed, in which 7M is
the cost of final step mixed addition in Algorithm 2 and
2M + 11 is the cost of transforming the final result from
twisted p, projective coordinate to affine coordinate. As for
Algorithm 1, the mixed A projective coordinate system could
be applied saving inversion operations owing to the different
algorithm structures of Algorithm 1 from Montgomery-H.
Similarly, 10mM +8M +3M + 11 field operations are
supposed to be consumed here.

In this work, we assume I =10M and ignore S for
squaring multiplication here referring to [14, 23]. In fact,
squaring is nearly the fastest among all the field operations
we talk about in this paper and usually S is less than 0.2M, so
we can ignore it. For I = 10M, it is a commonly used ref-
erence value. Yet on most occasions, I may be bigger than

Security and Communication Networks

10M, where Montgomery-H will be influenced most while
the other three methods are almost unaffected. This is also
the benefit of using the projective coordinate system. Having
known all above cost comparison, two examples of NIST
B-233 and B-409 are illustrated in Table 1 for easier
understanding.

For double-and-add, the Montgomery-D algorithm is so
outstanding that Algorithm 2 still could not catch up with
the speed of it even using the twisted y, projective coor-
dinate system, which is the fastest to date. For halve-and-
add, Algorithm 3 saves 32.7% and 33.0% cost compared with
Montgomery-H with m =233 and m =409. That means our
algorithm for regular halve-and-add is much more useful in
practice by using projective coordinate. When making use of
the faster algorithm, the parallel method would also be much
more efficient.

One may ask why the mixed A projective coordinate
system could not be applied to Montgomery-H. It seems that
comparing these two algorithms in different coordinate
systems is so unfair. To be honest, it is not our tricks to do
this on purpose. If we take a good look at Montgomery-H in
[14], supposing that we already have Q, in A affine coor-
dinate and Q, in A projective coordinate when k; = 0, we
would meet the dilemma of transforming Q, into A affine
coordinate for halving operation and Q, into A projective
coordinate for mixed addition operation in order to save
inversions when k;,| = 1. Every time the consecutive two bits
are different, the transformation has to be done. For a
random m bits binary number, if its leftmost bit is 1, then the
average number of 0 next to 1 or 1 next to 0 is approximately
(m — 1)/2. Transforming from A projective coordinate into A
affine coordinate equals to 2M + 11 field operations. Taking
these costs into account, Montgomery-H has to use around
(16m + 7)M field operations, which is more than applying
affine coordinate. So the best solution to deal with the
problem is to use a new structure like Algorithm 1.

4.2. Parallel and New Discovery. Negre and Robert [14] get
inspiration from [26] and utilize a split technique similar to
the one introduced in [26]. They also provide a Mont-
gomery-halving algorithm like the original Montgomery-
ladder scalar multiplication method. By carrying out these
knowledge, a parallel method using Montgomery-D and
Montgomery-H algorithms is presented. It is a pity that the
Montgomery-H method from [14] can only use affine co-
ordinate for its special structure. Aiming at solving this, we
come up with a new regular parallel approach including
Montgomery-D and Algorithm 1, which we call it mixed-
parallel.

After analyzing each algorithm in Section 4.1, we can
take a suitable split ¢ to see complexity in parallel condition.
The specific results are shown in Table 2. In the Algorithm
column, Montgomery-parallel is the parallel algorithm in
[14] meaning executing Montgomery-D and Montgomery-
H concurrently in two different threads. Our mixed-parallel
in the last line is the new united algorithm which applies
Montgomery-D and Algorithm 1 simultaneously in different
COProcessors.

Security and Communication Networks

It is evident that Montgomery-D has the least cost
among all the algorithms in Table 1. However, either
parallel method in Table 2 has less cost than Montgomery-
D. Let us compare the Montgomery-parallel and Mont-
gomery-D first. It turns out that Montgomery-parallel
algorithm saves 27.5% and 28.0% cost than of Mont-
gomery-D when m =233 and m =409. As a consequence,
parallel is indeed a good idea for computing scalar mul-
tiplication. Furthermore, if we combine the best double-
and-add Montgomery-D algorithm and the best halve-and-
add Algorithm 1-H, a new efficient parallel method, mixed-
parallel, jumps into our sight giving new hope. Estimating
results demonstrate that our mixed-parallel method costs
11.7% and 12.0% less than that of Montgomery-parallel
when m =233 and m =409, respectively. This is a new
discovery and record.

5. Conclusion

In this paper, we present a new parallel algorithm to improve
the Montgomery algorithm in [14]. The two methods both
take advantage of inherent parallelism of modern processors
constructing parallel approaches. Instead of using Mont-
gomery-like idea, a regular recoding technique is applied in
our approach which is supposed to be highly efficient by
processing double-and-add and halve-and-add in a parallel
way. The regular method could protect the computing
process against SSCA like Montgomery thought.

After the careful analysis of these algorithms, we could
draw the conclusion that our regular halve-and-add ap-
proach, Algorithm 1, could use A projective coordinate
making up for the disadvantage of Montgomery-H saving
about 32.7% and 33.0% cost compared with that of
Montgomery-H with m =233 and m =409.

As aresult, combining Montgomery-D and Algorithm 1,
a new preferable parallel approach is born, our mixed-
parallel. It costs 11.7% and 12.0% less than that of Mont-
gomery-parallel when m =233 and m =409, respectively.
This is a new record as well as a good improvement and
supplement to the previous excellent work of [14].

Data Availability

All data generated or analyzed during this study are included
in this published article.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this article.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (Nos. 61872442, 61772515,
61502487, and U1936209); the National Cryptography
Development Fund (No. MMJJ20180216); and the Beijing
Municipal Science & Technology Commission (Project
no. 2191100007119006).

References

[1] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of
Computation, vol. 48, no. 177, pp. 203-209, 1987.

[2] V. S. Miller, “Use of elliptic curves in cryptography,” in

Proceedings of the Conference on the Theory and Application of

Cryptographic Techniques, Springer, Linz, Austria, April 1985.

P. Kocher, J. Jaffe, and J. Benjamin, “Differential power

analysis,” in Proceedings of the Annual International Cryp-

tology Conference, Springer, Santa Barbara, CA, USA, August

1999.

[4] J.-S. Coron, “Resistance against differential power analysis for
elliptic curve cryptosystems,” in International Workshop on
Cryptographic Hardware and Embedded Systems, Springer,
Worcester, MA, USA, August 1999.

[5] S.-M. Yen and M. Joye, “Checking before output may not be
enough against fault-based cryptanalysis,” IEEE Transactions
on Computers, vol. 49, no. 9, pp. 967-970, 2000.

[6] Y. Sung-Ming, “A countermeasure against one physical
cryptanalysis may benefit another attack,” in Proceedings of
the International Conference on Information Security and
Cryptology, Springer, Seoul, Korea, December 2001.

[7] P. L. Montgomery, “Speeding the Pollard and elliptic curve
methods of factorization,” Mathematics of Computation,
vol. 48, no. 177, p. 243, 1987.

[8] M. Joye and M. Tunstall, “Exponent recoding and regular
exponentiation algorithms,” in Proceedings of the Interna-
tional Conference on Cryptology in Africa, Springer, Gam-
marth, Tunisia, June 2009.

[9] H. Lange and W. Ruppert, “Complete systems of addition
laws on abelian varieties,” Inventiones Mathematicae, vol. 79,
no. 3, pp. 603-610, 1985.

[10] W. Bosma and H. W. Lenstra, “Complete systems of two
addition laws for elliptic curves,” Journal of Number Theory,
vol. 53, no. 2, pp. 229-240, 1995.

[11] D.J.Bernstein and T. Lange, “Faster addition and doubling on
elliptic curves,” in Proceedings of the International Conference
on the Theory and Application of Cryptology and Information
Security, Springer, Kuching, Malaysia, December 2007.

[12] H. Hisil, “Twisted edwards curves revisited,” in Proceedings of
the International Conference on the Theory and Application of
Cryptology and Information Security, Springer, Melbourne,
Australia, December 2008.

[13] J. Renes, C. Craig, and L. Batina, “Complete addition formulas
for prime order elliptic curves,” in Proceedings of the Annual
International Conference on the Theory and Applications of
Cryptographic Techniques, Springer, Vienna, Austria, May
2016.

[14] C. Negre and J.-M. Robert, “New parallel approaches for
scalar multiplication in elliptic curve over fields of small
characteristic,” IEEE Transactions on Computers, vol. 64,
no. 10, pp. 2875-2890, 2015.

[15] D. Hankerson, A. J. Menezes, and V. Scott, Guide to Elliptic
Curve Cryptography, Springer Science & Business Media,
Berlin, Germany, 2006.

[16] J. Lopez and R. Dahab, “Improved algorithms for elliptic
curve arithmetic in GF (2 n),” in Proceedings of the Inter-
national Workshop on Selected Areas in Cryptography,
Springer, Kingston, Canada, August 1998.

[17] E. W. Knudsen, “Elliptic scalar multiplication using point
halving,” in Proceedings of the International Conference on the
Theory and Application of Cryptology and Information Se-
curity, Springer, Singapore, November 1999.

[3

10

(18]

(19]

(20]

(21]

(22]

(23]

[24]

(25]

(26]

T. Oliveira, “Lambda coordinates for binary elliptic curves,” in
Proceedings of the International Workshop on Cryptographic
Hardware and Embedded Systems, Springer, Santa Barbara,
CA, USA, August 2013.

D. Kohel, “Twisted p4-normal form for elliptic curves,” in
Proceedings of the Annual International Conference on the
Theory and Applications of Cryptographic Techniques,
Springer, Paris, France, April 2017.

D. Kohel, “Efficient arithmetic on elliptic curves in charac-
teristic 2,” in Proceedings of the International Conference on
Cryptology in India, Springer, Chennai, India, 2012.

D. Kohel, “A normal form for elliptic curves in characteristic
2,” in Arithmetic, Geometry, Cryptography and Coding Theory
(AGCT 2011), Springer, Berlin, Germany, 2011.

D. Kohel, “Addition law structure of elliptic curves,” Journal
of Number Theory, vol. 131, no. 5, pp. 894-919, 2011.

K. Fong, D. Hankerson, J. Lopez, and A. Menezes, “Field
inversion and point halving revisited,” IEEE Transactions on
Computers, vol. 53, no. 8, pp- 1047-1059, 2004.

R. R. Goundar, M. Joye, A. Miyaji, M. Rivain, and A. Venelli,
“Scalar multiplication on weierstraf3 elliptic curves from Co-Z
arithmetic,” Journal of Cryptographic Engineering, vol. 1, no. 2,
pp. 161-176, 2011.

J. Lopez and R. Dahab, “Fast multiplication on elliptic curves
over GF (2 m) without precomputation,” in Proceedings of the
International Workshop on Cryptographic Hardware and
Embedded Systems, Springer, Worcester, MA, USA, August
1999.

J. Taverne, A. Faz-Hernandez, D. F. Aranha, F. Rodriguez-
Henriquez, D. Hankerson, and J. Lopez, “Speeding scalar
multiplication over binary elliptic curves using the new carry-
less multiplication instruction,” Journal of Cryptographic
Engineering, vol. 1, no. 3, pp. 187-199, 2011.

Security and Communication Networks

