
Research Article
TZ-MRAS: A Remote Attestation Scheme for the Mobile Terminal
Based on ARM TrustZone

Ziwang Wang, Yi Zhuang , and Zujia Yan

Department of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210008, China

Correspondence should be addressed to Yi Zhuang; zy16@nuaa.edu.cn

Received 27 October 2019; Revised 7 July 2020; Accepted 7 September 2020; Published 23 September 2020

Academic Editor: Leonardo Mostarda

Copyright © 2020 ZiwangWang et al.-is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the widespread use of mobile embedded devices in the Internet of-ings, mobile office, and edge computing, security issues
are becomingmore andmore serious. Remote attestation, one of the mobile security solutions, is a process of verifying the identity
and integrity status of the remote computing device, through which the challenger determines whether the platform is trusted by
discovering an unknown fingerprint. -e remote attestation on the mobile terminal faces many security challenges presently
because there is a lack of trusted roots, devices are heterogeneous, and hardware resources are strictly limited. To ARM’s mobile
platform, we propose a mobile remote attestation scheme based on ARM TrustZone (TZ-MRAS), which uses the highest security
authority of TrustZone to implement trusted attestation service. Compared with the existing mobile remote attestation scheme, it
has the advantages of wide application, easy deployment, and low cost. To defend against the time-of-check-to-time-of-use (TOC-
TOU) attack, we propose a probe-based dynamic integrity measurement model, ProbeIMA, which can dynamically detect
unknown fingerprints that generate during kernel and process execution. Finally, according to the characteristics of the improved
dynamic measurement model, that is, the ProbeIMA will expand the scale of the measurement dataset, an optimized stored
measurement log construction algorithm based on the locality principle (LPSML) is proposed, which has the advantages of
shortening the length of the authentication path and improving the verification efficiency of the platform configuration. As a proof
of concept, we implemented a prototype for each service and made experimental evaluations. -e experimental results show the
proposed scheme has higher security and efficiency than some existing schemes.

1. Introduction

With the popularity of the Internet of -ings, edge
computing, and FIDO (Fast IDentity Online) devices,
more and more enterprises are launching different devices
to provide services to customers. -e security-critical and
privacy-sensitive data stored on these devices is also in-
creasing, and the security of mobile devices has caused
great concern in the industry and academia. Currently,
ARM processors occupy the processor market for most
mobile and embedded devices, providing more than 60%
support for all embedded devices and more than 4.5
billion mobile phones [1]. Among them, ARM processor
chips account for more than 95% of the processor chips of
smart mobile phones, and ARM equipment is estimated to
reach 1 trillion by 2035 [2]. However, the security risks of

ARM terminals have become an essential factor in limiting
their development, especially the application and popu-
larization of smartphones and the Internet of Vehicles.
Untrusted terminals may bring severe security and privacy
problems to enterprises and individuals. ARM TrustZone
is a hardware solution for trusted computing [3], which
can produce a highly secure isolation environment that
provides users with data, firmware, and peripheral se-
curity. Profiting from the fact that TrustZone technology
has been applied to most mobile embedded devices,
TrustZone has become the de facto standard for mobile
devices to implement trusted computing, providing
trusted security services. According to statistics, about 1
billion wearable devices, mobile devices, industrial de-
vices, and other IoTdevices used TrustZone-based trusted
execution environments in 2017 [4].

Hindawi
Security and Communication Networks
Volume 2020, Article ID 1756130, 16 pages
https://doi.org/10.1155/2020/1756130

mailto:zy16@nuaa.edu.cn
https://orcid.org/0000-0003-0706-0148
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/1756130

At present, technologies to improve the security of
mobile devices include intrusion detection, malicious code
analysis, and virtualization. However, these techniques are
based on the same assumption that the mobile operating
system kernel or the hypervisor is trusted and that the
technology itself does not guarantee the trustworthiness of
the entity. -e remote attestation can effectively solve this
problem to a certain extent. According to the remote at-
testation framework defined by the Trusted Computing
Group (TCG), the current implementation of the standard
remote attestation (RA) is based on integrity measurement,
and the measurement result for the remote attestation is
stored in an isolated trusted component called the trusted
platform module (TPM) [5]. To extend the RA to mobile
embedded devices, TCG proposed a specification for mobile
trusted modules (MTM) [6]. -e specification supports the
implementation of the TPM as an integrated solution or
firmware using processor technologies such as the trusted
execution environment (TEE).-e TEE quickly becomes the
primary trusted root for mobile embedded devices, sur-
passing other security solutions on resource-constrained
devices [7], e.g., secure element (SE). -is means that a
software trusted platform module (STPM) can be imple-
mented in the TEE’s secure environment, with security
provided by the TEE’s hardware mechanisms, providing
practical, secure, and interoperable standard TCG access for
mobile devices.

Remote attestation is a process of verifying the integrity
status and credibility of a remote computing device and a
universal protocol accepted and used by most entities [8].
-e implementation of the remote attestation is usually
divided into static attestation and dynamic attestation. Most
existing attestation techniques are based on binary finger-
prints of system memory called the binary-based remote
attestation. Most binary-based approaches are the static
attestation that collect device integrity information at a
particular time. A dynamic attestation refers to the process
of dynamically collecting device integrity information
without interrupting normal operations, including the
collection and analysis of multidimensional information
such as control flow, system calls, and memory fingerprints.
-at is, a well-designed binary-based approach can also
implement dynamic attestation. Generally, dynamic attes-
tation requires higher energy consumption and computa-
tional resources.

In the binary-based approach, a terminal device needs to
provide all platform configuration information to obtain the
trust of the remote platform, including the detail infor-
mation of the operating system and application software.
-e security vulnerability information of the device will be
leaked out and become the target of hacker attacks. Second, a
large amount of user software and system software makes
the scalability worse, which is the main bottleneck of the
binary-based approach. -e existing research gets better
protection of privacy by using Merkle hash trees [9] instead
of the linear storage solutions. However, implementing the
Merkle hash tree-based approach in embedded devices
encounters more severe challenges due to the strictly limited
performance.

1.1. Challenges. -erefore, implementing a well-perfor-
mance remote attestation for the resource-constrained
mobile embedded devices is not a trivial matter, which
mainly has the following three challenges: (1) TPM is often
not available in embedded systems [10]. -e significant
challenge is how to build the root of trust for measurement
(RTM), the root of trust for storage (RTS), and the root of
trust for reporting (RTR). (2) -e binary-based remote
attestation approach can implement to the resource-con-
strained devices with small overhead [11, 12]; how to design
an effective defense against TOC-TOU attacks for the bi-
nary-based remote attestation is another critical challenge.
(3) -e stored measurement log (SML) based on the hash
tree is a solution generally accepted by researchers. However,
the measurement data saved in the form of a hash tree will
generate a more considerable overhead in the construction
and update phase. So, how to optimize the performance of
SML construction and updates is also a challenge.

With the trend of integrating security cores and trusted
application (TA) in commercial mobile devices, TrustZone
will be the best choice for the trusted remote attestation of
heterogeneous multiplatform mobile devices based on the
ARM processor. We found it practical to use the STPM run
in the secure world to provide a trusted root service. Raj et al.
[10] implemented a fully functional trusted root module
with TrustZone, named fTPM, and gave solutions such as
trusted roots, trusted storage, security counters, and security
clocks. Based on [10], this paper develops the remote at-
testation system components with ARM TrustZone and
implements it on the hardware platform. We simulated the
core function modules such as secret key algorithm compute
unit, tamper-resistant certificate storage unit, integrity
measurement root and report root, and built a remote at-
testation system for ARM embedded devices. We implement
the required functionality, which is usually supported by the
TPM, given a solution to the challenges of missing TPM
chips in embedded devices.

-e second challenge is the same for all binary-based
attestation schemes. We designed and proposed a dynamic
SML update mechanism based on the probe mechanism
rather than a complex TOC-TOU consistency check
mechanism. -e binary-based approach captures the mea-
surement values of the entity during program loading,
reflecting the state of the code and data at the time the
measurement occurred, but a runtime state. If the system is
vulnerable, the attacker can use the TOC-TOU defects to
create an attack, that is, affecting the data fingerprint col-
lected during the measurement execution by attacking the
measurement strategy, manipulating the measurement re-
sult calculated by the prover. We proposed a probe-based
system kernel and program integrity dynamic monitoring
model (ProbeIMA). Any writes or changes to memory
fragments that affect the program and kernel’s integrity will
generate a new integrity measurement record and the
changes to essential registers that affect the application and
kernel’s integrity.

-e Merkle hash tree is a fundamental technology in
remote verification, which is flexible and protects privacy.
Many research studies have proposed to assign different

2 Security and Communication Networks

weights to the hash tree leaf nodes to achieve a better model
[13, 14]. However, the prior has not offered a feasible al-
gorithm to compute and update the weight of each leaf node.
-is paper proposes a locality principle-based hash tree
construction strategy and designs a complete construction
algorithm, providing a low-cost integrity SML solution for
mobile devices.

1.2. Contributions. Aiming to implement remote credibility
verification on the resource-constrainedmobile terminal, we
propose a TrustZone-based remote attestation scheme (TZ-
MRAS), perform real-time integrity monitoring, and
maintain the SML updates with low cost. In summary, our
contributions in this paper are as follows:

(i) We improve the existing trusted remote attestation
framework based on the trusted execution envi-
ronment. A software TPM is implemented on
mobile devices to provide a trusted root for the
remote attestation’s measurement, report, and store
the module. It offers numerous advantages over the
mobile device in terms of lower cost, wide appli-
cation range, and ease of deployment.

(ii) We propose ProbeIMA, an approach that uses the
probe-based mechanism to implement dynamic
SML update, which provides an effective solution
for achieving the binary-based remote attestation
scheme against TOC-TOU attacks.

(iii) We propose an unbalanced hash tree update and
verification optimization scheme and give the al-
gorithm of construction and update. -e experi-
mental results show it has the advantages of
shortening the length of the attestation path and
improving efficiency.

(iv) We build the prototype of the proposed remote
attestation scheme, realize, and verify the effec-
tiveness and superiority of the proposed algorithm
and model.

-e remainder of the paper is organized as follows: we
offer related work in Section 2. Section 3 introduces relevant
background knowledge. Section 4 presents the proposed
remote attestation model and describes the design of Pro-
beIMA and LPSML. Section 5 details the design and
implementation of our approach. Section 6 describes the
implementation and evaluation of our prototype system and
presents the results and analysis. Finally, in Section 7, we
conclude our work.

2. Related Work

-e remote attestation of the terminal device is essential for
mobile security and IoTsecurity [3, 11, 12, 15]. In the mobile
computing scenario, the terminal needs to prove to the
remote server software is running on the device and whether
their integrity is destroyed. -e core issue of the mobile
remote attestation is to study how to implement the trusted
root construction and to design a lightweight remote at-
testationmechanism for the embedded platform. On the one

hand, due to the different hardware characteristics of the
mobile platform, the existing research mainly focuses on the
design of the trusted root implementation of the ARM
platform and studies ARM’s integrity protection mechanism
(including trusted measurement and trusted storage
mechanism). On the other hand, the performance cost of the
SML usually exceeds the carrying capacity of the embedded
platform. -e performance optimization of the SML is also
the focus of the current research.

2.1. $e Implementation of the Trusted Root and IMA for
ARM. TPM-based integrity attestation uses the TPM as the
root of trust and leverages the microprocessor within the
TPM to provide key calculation and integrity measurement
services. -e TPM can sign and store the measurements
produced by the integrity measurement component.
However, due to limitations in hardware size and energy
consumption of the embedded system, TPM hardware for
the mobile platform has not been put into practical pro-
duction and deployment. -erefore, the TPM mobile ref-
erence architecture [16] abstracts the TPM chip functionality
into a higher-level concept called a protected environment
or a trusted execution environment that has been deployed
into all of the popular hardware platforms. [16, 17] discussed
the scheme of simulating the TPM based on the embedded
processor’s TEE and gave a positive result.

-e integrity measurement architecture (IMA) [18] was
first proposed by IBM. It refers to that, during the appli-
cation execution and the dynamic link library or kernel
loading, the components in the kernel perform a measure on
the critical data, such as the program code and the con-
figuration files, construct, and store the list of the mea-
surement output.-e IMA is able to extend the Trusted Boot
of TCG to the system’s application layer and build a
complete chain of trust from the TPM to application soft-
ware. Samsung first proposed to deploy IMA to a trusted
execution environment and realized the design of the in-
dustrial-grade architecture, namely, TIMA [19], which used
the ARM TrustZone hardware architecture to achieve secure
and reliable measurement and report module. TIMA per-
forms continuous integrity monitoring to the Linux kernel,
that is, the components of TIMA regular scans of the kernel
code segments and other critical data to ensure that the REE
is not tampered with.

In addition, the strategies for implementing the terminal
device integrity attestation include hypervisor-based tech-
nologies [20] and coprocessor-based technologies [21].
-ese mechanisms cannot offer the highest-level remote
integrity attestation solutions due to the lack of support for
hardware trusted roots.

2.2. Enhanced Mobile Platform Integrity Protection.
HIMA is a hypervisor-based integrity measurement archi-
tecture that uses a separate administrator GVM (guest
virtual machine) to store the measurement data for other
GVMs [22]. -e VMM provides isolation between mea-
surement targets and measurement agents and proactively
monitors critical events in the goal GVM to avoid TOC-

Security and Communication Networks 3

TOU attacks. Similarly, SIMA [23] uses a different approach
which places the sensor agent into the GVMs as a kernel
module. -e sensor agent communicates using a shared
memory-mapped segment called the Blackboard. However,
as described above, these approaches to using virtual
hypervisors for kernel integrity protection represent a se-
curity risk. -erefore, many studies have attempted to
implement a more secure and reliable integrity protection
approach in an isolated execution environment based on
TrustZone.

Initially, researchers used TrustZone’s highest privilege
to host the kernel integrity monitor and designed the basic
architecture to protect the OS kernel with a security monitor
which is completely within the ARM TrustZone security
realm. However, it does not provide real-time monitoring to
the target kernel [24]. Furthermore, some critical functions
are deprived from the kernel of the REE in TZ-RKP, such as
the system control instructions and the update capability of
memory translation tables, routing these functions to the
secure world to effectively block the attacks of unauthorized
modifications or binary injections and ensure the integrity of
the kernel.

Similarly, Sprobes [25] placed probes to the filtered
system instructions and dynamically interrupted the target
transactions in the normal world by using the higher-
privilege secure world, which implements a better integrity
protection scheme.

2.3. SML Performance Optimization. -e Merkle hash tree
was first introduced by Merkle to solve the problem of
Public-Key Infrastructure (PKI) certification [9].-eMerkle
hash tree is a powerful solution to store large amounts of
data in minimal storage spaces. In the trusted computing
field, the traditional integrity verification framework needs
to measure and verify all running program modules, which
may present issues such as privacy leaks and low efficiencies.
Xu et al. [26] proposed a remote attestation mechanism
based on the Merkle hash tree in which some module
measurements are hidden and do not need to be reported. To
some extent, this method can avoid the privacy leak of the
prover and improve the efficiency of verification but has a
low construction efficiency.

To improve the construction efficiency of the hash tree,
Zhu et al. [27] presented an integrity measurement model
based on the left-full tree (LFT). Although the hash tree’s
construction is optimized and its time consumption is re-
duced, the model failed to achieve an appropriate verifica-
tion efficiency of the remote attestation. Fu et al. [13]
proposed a construction method UBTS-SML based on the
unbalanced tree, which improved the verification efficiency
of the remote attestation. However, this method needs to
update the structure of the tree for each application request.
-e update and maintenance of the hash tree are inefficient,
and the revocation of leaf nodes is not taken into consid-
eration, which may result in the depth of the hash tree being
too large.

In summary, aiming at the shortcoming of the mobile
terminal integrity dynamical measurement and the

lightweight SMLmechanisms, we present a TrustZone-based
innovation framework called TZ-MRAS, which has higher
security and performance.

3. Preliminaries

3.1. ARM TrustZone. ARM TrustZone is the hardware so-
lution for trusted computing on ARM devices. TrustZone
framework uses the trusted bootloader stored in indepen-
dent read-only memory (ROM) as the trusted root, im-
plements authentication and initialization of trusted
components to create a complete chain of trust, and
guarantees the security of the entire system. ARMTrustZone
shares the processor into two separate operating environ-
ments in a time-sliced manner, the normal world and the
secure world. -ey are also known as the rich execution
environment (REE) and the trusted execution environment
(TEE). A new bit called nonsecure bit (NS) of the Security
Configuration Register (SCR) is used to determine in which
world the current processor is running, which can also
extend the isolation to other hardware resources such as
memory, cache, and controllers.

-e architecture of ARMTrustZone is shown in Figure 1.
-e TrustZone technology defines two different executed
contexts independently, and the ARM CPU has separate
register banks for each of the two worlds. In general, the
secure world has higher privileges than the normal world,
and the TrustZone architecture guarantees that the trust
chain can be delivered to the kernel and the trusted ap-
plication (TA) of the secure world. TrustZone also includes
the secure monitor, which is a specialized processor mode
for the ARM CPU, that saves the context of the current
world and restores the context at the location it switches.-e
ARMv8 architecture introduces the exception level (ELx) to
indicate the processor’s permissions. -e greater the level
indicator x, the higher the executive privilege. -e highest
privileged mode EL3 is given to the secure monitor. -e
ARM instruction called SMC (secure monitor call) and the
secure interrupts are used as the sources to trigger the EL3
exception, that is, the normal world triggering to the
monitor mode by EL3 exceptions. -e program in the
monitor mode saves the CPU context of the nonsecure mode
and then sets the NS bit to 0, indicating that the secure world
is triggered and can offer the security services provided by
the trusted component of the secure world. In return, the NS
bit is set to 1, and the CPU context of the nonsecure mode is
restored.

-is paper implements a scheme to build a trusted root
for the mobile remote attestation. -e chain-of-trust can be
trusted delivery to the security modules of the TEE through
the ARM’s hardware protection mechanism, which guar-
antees the software TPM obtain the same trustworthiness to
dedicated trusted hardware.

3.2. Locality Principle. Tree-formed verification data can
effectively solve the privacy protection problem of integrity
attestation. However, constructing and updating tree-
formed data require more computing resources. -is paper

4 Security and Communication Networks

introduces the locality principle to optimize the perfor-
mance of the tree-formed verification data.

Locality principle refers to the fact that when researchers
analyze the running program, they found that data access is
phased and shows a phenomenon of aggregation [29]. -is
aggregation is usually reflected in two dimensions: the lo-
cality of time and the locality of space. -e locality of time
means that data is likely to be revisited soon after it is
accessed. -e locality of space means that the adjacent data
may also be accessed soon.

In the measurement phase of remote attestation, the
program’s integrity measurements need to be stored in the
SML. Due to the dynamic nature of the program, it is usually
necessary to update the SML. -e locality of time is reflected
here that when a program’s integrity measurements are
updated to the SML for requesting service, it is likely to
request the service again soon. Making use of this feature to
construct the SML can enhance the verification efficiency of
the remote attestation.

-erefore, we define the strength of the locality principle
in the RA as follows: suppose at the time interval
t1, t2, . . . , tn, the set of programs for requesting services is
s1, s2, . . . , sn. IOSn represents the intersection of the request
set between ti−1 and ti, while UOSn represents the union set,
which is

IOSn � sn−1 ∩ sn,UOSn � sn−1 ∪ sn. (1)

Let card(·) denote the number of elements in the set; the
intensity of locality (IOL) can be defined as equation (2) and
satisfy -eorem 1 and -eorem 2:

IOLi �
card IOSi(􏼁

card UOSi(􏼁
. (2)

Theorem 1. $e range of IOLi is [0, 1].

Proof of $eorem 1

IOLi �
card IOSi(􏼁

card UOSi(􏼁
�
card si−1 ∩ si(􏼁

card si−1 ∪ si(􏼁
,

0≤
card si−1 ∩ si(􏼁

card si−1 ∪ si(􏼁
≤
card si(􏼁

card si(􏼁
� 1.

(3)

□

Theorem 2. $e value IOLi is positively related to the
number of programs requesting the service again at ti.

Proof of $eorem 2

IOLi �
card IOSi(􏼁

card UOSi(􏼁
�
card si−1 ∩ si(􏼁

card si−1 ∪ si(􏼁

�
card si−1 ∩ si(􏼁

card si−1(􏼁 + card si(􏼁 − card si−1 ∩ si(􏼁

�
1

card si−1(􏼁 + card si(􏼁(􏼁/card si−1 ∩ si(􏼁(􏼁 − 1(􏼁
.

(4)

And when card (si−1 ∩ si) > card(si− 1 ∩ si)′, IOL i> IOLi
′.

-e above theorems show that when the number of
programs requesting the service again is larger, the value of
IOLi is closer to 1, and accordingly, the verification per-
formance of the remote attestation mechanism based on the
locality principle is better. □

4. Design

4.1. $reat Model and Assumptions. We follow the as-
sumptions in the TrustZone model that the processor is
trusted, and the ARM hardware security mechanism can
extend the chain of trust to trusted applications, that is, TAs
running in the secure world are trusted, and the client
applications (CAs) running in the normal world are
untrusted but can be measured.

-e secure world is the trusted computing base (TCB) of
our approach, and we can use the programs in the secure
world to measure the integrity of the normal world. We
assume that a subset of TPM functional modules that meet
the trustworthiness requirements has been simulated in the
TEE, such as the secure storage, real-time clock, anticollision
hash functions, and cryptographic modules. We assume that
there is secure communication between the prover and the
verifier (the initiator and responder of the attestation re-
quest). We take the kernel-level attackers who can destroy
system kernels and components running in the REE into
consideration. According to the TPM 2.0 specification, the
denial-of-service attack (DoS attack) is out of scope. As long
as the untrusted kernel can access the mobile device re-
sources, there will be a DoS attack. However, the TEE can
check the DoS by actively querying the access record of the
remote server and then initialize or sanitize the compro-
mised REE. So, we do not consider the DoS attack. Finally,
we do not consider the side-channel attack.

4.2.$eDesign of the TZ-MRAS. As described in Section 1.1,
there are three main challenges to the mobile remote at-
testation system. Aiming at these challenges, we have studied
and proposed a TrustZone-based mobile remote attestation
scheme (TZ-MRAS). First, we introduce the model overview
of the remote attestation architecture based on ARM
TrustZone. To evaluate the mobile device’s state of trust-
worthiness, we measure the integrity of the kernel and CAs

User apps

Normal kernel

Secure monitor

Trusted apps

Secure kernel

Boot
firmware

Hardware

EL0

EL1

EL3

Figure 1: -e architecture of ARM TrustZone [28].

Security and Communication Networks 5

in the REE by the RTM and the RTR deployed in the secure
world. Second, we design a binary-based integrity mea-
surement mechanism ProbeIMA which can withstand the
TOC-TOU attack. -ird, we use LPSML to optimize the
construction and update the algorithm for SML. In sum-
mary, this paper presents three valid mechanisms to im-
plement the static integrity attestation scheme to address the
challenge that are a remote attestation model based on the
TEE, a probe-based integrity measurement mechanism
(ProbeIMA), and an LPSML-based measurement data op-
timization mechanism.

4.2.1. $e Remote Attestation Model Based on the TEE.
A standard TCG remote attestation process can report the
device’s environmental fingerprint to the verifier and
attest the identity and trustworthiness status of the prover,
which includes an identity attestation process and a
platform integrity attestation process. Because of space
constraints and the current direct anonymous attestation-
based identity authentication is mature and more uni-
versal with the PC devices, we omit the process of identity
authentication.

Remote attestation scheme based on the TEE is not new,
most of which is based on the Intel’s SGX and the TrustZone.
However, in the mobile field, both can only offer static
remote attestation services but cannot address the TOC-
TOU attack. Generally, when the measurement module in
the RA receives an attestation request, it will switch to the
TEE, and the normal execution environment will be paused.
-en, the measurement module computes the normal world
fingerprint from the storage unit at the trigger time and
sends the results to the attestation challenger.

Figure 2 provides an overview of our architecture, using
ARM TrustZone security extension to implement remote
attestation services that can cope with TOC-TOU attacks. As
shown in Figure 2, the required remote attestation modules
based on the TEE are foundational of TZ-MRAS that make a
credibility verification process valid and trusted. Besides,
two additional approaches are proposed for building a re-
mote attestation framework for mobile terminals: the Pro-
beIMA and the LPSML.

First, our scheme solves the first challenge that lacks the
TPM chip in embedded devices by implementing the
standard TCG TPM functionality using the ARM Trust-
Zone-based TEE. We build a software TPM as the root of
trust for remote attestation components, providing all TPM
functions, including secure storage and key operations.
Specifically, we use trusted applications running in the TEE
to simulate the trusted measurement module and report
module that are isolated from the normal world. -e
measurement module acts as a watch program running in
the secure world, which can not only dynamically detect the
integrity changes of the kernel and the program but also can
update the SML.-e report module acquires the current and
historical fingerprints of the device and sends them to the
attestation challenger. Finally, the challengermakes a remote
attestation decision through the discovery of the unknown
fingerprint.

Second, we present a probe-based integrity measurement
mechanism called ProbeIMA, which dynamically monitors
the integrity change of the measurement object through the
placement of the probe.

-erefore, TZ-MRAS, which does not rely on the ded-
icated TPM chip, can be deployed on any ARM-based
mobile platform. It should be pointed out that, due to the
introduction of the ProbeIMA, the SML includes the
measurement records at the measured moment, as well as
some historical measurement records caused by the integrity
changes of the program and kernel generated by two
measurement gaps. -at is, a higher performance scheme of
SML construction and update is necessary. To solve this
problem, we design an SML structure model based on the
locality principle, which can significantly increase the effi-
ciency of SML construction and update.

4.2.2. $e Design of the Probe-Based Integrity Measurement
Architecture. In the binary-based remote attestation process,
the challenger obtains the platform’s integrity measurement
record through the integrity challenge agreement and deter-
mines whether the platform is trusted by detecting the un-
known fingerprint in the SML. Generally, the static attestation
only obtains the information of the unknown fingerprint at the
current moment; that is, themeasurementmodule only verifies
the integrity state at a particular moment. However, an attacker
who gained the root access can dynamically tamper with the
data according to themeasurement granularity andmanipulate
the binary fingerprint acquired by the MTM, which means
there is a race condition defect.

-is paper proposes a probe-based SML dynamic
update mechanism, ProbeIMA. By rewriting the binaries
of the kernel and program code, probes are added at all of
the instructions which can change the value of the key
registers and the content of memory. -erefore, Pro-
beIMA can dynamically detect the generation of unknown
fingerprints during system operation, extending the scope
of the measurement module to the entire life cycle of the
system’s operation.

Cache Cache

Secure world

MMC MMCIC ICSM

MTR

MTM

Secure
kernel

STPM

Monitor mode

ProbeIMA

Normal kernel

CA

Boot
loader ARM SoC hardware

Normal world

Figure 2: TEE-based mobile remote attestation architecture.

6 Security and Communication Networks

Because ARM has fixed-length instructions, it is easy to
find the target instructions in the binaries. -e flowchart of
the probe-based integrity measurement architecture is
shown in Figure 3. When a probe instruction placed in the
binaries of the kernel or program is triggered, the secure
world extracts the unforgeable state of the normal world
from its hardware register directly, running the measure-
ment module to analyze the instruction, for example, de-
termining which program the instruction belongs to. -en,
the ProbeIMA updates the integrity measurement record
corresponding to the program ID. We count all the sets of
page tables that affect the integrity of the kernel and the CAs,
writing them to a specified secure memory address, called
integrity-related memory address set (IMASet).

In addition, adding probes to the target instructions
throughout the kernel and the entire CAs will cause the
secure world to be frequently woken up. To solve this
problem, we rewrite the code in the monitor mode to im-
plement two processing logics as follows: (1) for the switch
operation triggered by the probe before the kernel/program
startup is completed, return to the normal world directly and
execute the next instruction.-is is because the initialization
of the key registers during the kernel/program startup
process will generate a large number of false triggers.
-erefore, ProbeIMA will not cause user-aware latency
during startup. (2) For all probes in the memory write in-
structions, obtain the physical address of the trigger in-
struction and determine whether it is included in the
IMASet. If contained, obtain the corresponding program ID
in the IMASet, and update its integrity record. -e IMASet
will significantly reduce the number of trigger instructions
which is truly related to integrity and reduce performance
consumption. As shown by the solid path in Figure 3, we
refer to the trigger in the ProbeIMA that switches to the
secure world and performs an integrity update as a valid
trigger. Triggers that fall back to the normal world directly
from the monitor mode are called invalid triggers. -e
operation logic and implementation method of the probe
placement and program process are described in detail in
Section 5.1.

4.2.3. $e Locality Principle-Based SML Optimization
Mechanism. As mentioned above, the program’s configu-
ration modifications, the version alteration, and the exe-
cution of unknown programs will produce unknown
fingerprints. Unlike the standard binary-based integrity
attestation solutions, the latest kernel and program finger-
prints do not immediately overwrite the previous records.
-is means that, in the ProbeIMA, sometimes, a program
can havemore than one fingerprint stored in the SML, which
increases the performance consumption of the SML in the
Merkle tree. -is paper proposes an LPSML-based mea-
surement data storage mechanism. First, the LPSML uses a
hardware-protected register to store the root node of the
SML tree, and the complete measurement data is stored in
the secure memory of the secure world. So, any nonphysical
attack (including malware, trojans, and others) cannot
threaten the security and availability of the SML. Second, we

design the corresponding construction, insertion, and re-
voke algorithms to avoid too frequent construction and
update operations, increase the scalability of the SML, and
improve the system performance. -e specific construction
and update algorithms are described in detail in Section
5.2.1.

4.3. $e TZ-MRAS Remote Attestation Protocol. In the TZ-
MRAS, the sensitive module of the remote attestation in-
cludes the measurement module, the secure storage module,
and the report module, which are isolated in the TEE to
ensure that the ARM terminal trust chain can be passed from
the root of trust to the sensitive module. -erefore, the TZ-
MRAS protocol’s core is to ensure that the verifier can detect
it when the crucial memory or configuration of the prover is
modified.

Figure 4 shows the TZ-MRAS protocol and the process
of interaction between its components. In the protocol
process, the integrity measurement and storage operation
strictly limit executing in the trusted areas.-e sensitive data
is passed through the ciphertext; thus, the trust relationship
between the prover and the verifier is built on the crypto-
graphic algorithms. -e TZ-MRAS remote attestation
protocol involves the following steps:

(i) Step 1: the attestation agent of the verifier generates
a random number nonce and prepares to send it to
the prover’s attestation agent which is named
RA_Router.

(ii) Step 2: RA_Router receives and sends the challenge
message to the trusted kernel.

(iii) Step 3: the report module MTR loads the identity
verification key AIK, serializes the request service
program ID with the random number nonce, and
signs and reports the measurement information by
using the software trusted platform module, which
includes the following: (1) the measurement module
reads the root hash value of the platform configu-
ration which is contained in the (platform config-
uration register) PCR register, serializes it with the
random number nonce, and signs it within the
software trusted platform module. (2) -e mea-
surement module generates the attestation path of
the request-target and sends it and the results in (1)
to the report module. (3) -e report module signs
and sends the required data including each nodes’
hash of the attestation path, the PCR value, and the
signed challenge message to the verifier.

(iv) Step 4: -e Verifier verifies and replies to the at-
testation data according to the reference data. -e
details are as follows: (1) the attestation agent sends
the attestation data to the verification agent. (2) -e
verification agent checks the random number nonce

and the AIK signature to verify the legality of the
prover’s identity. Besides, nonce can also be used to
verify the freshness of the attestation conversation.
(3) -e verification agent queries the standard value
of the local reference data, compares each node’s

Security and Communication Networks 7

hash with the references, and compares the root
hash which was recalculated by using the attestation
path with the PCR value. If it is consistent, the
integrity attestation is passed.

5. Implementation

5.1. $e Probe-Based Dynamic Measurement Mechanism.
-e ProbeIMA is a runtime integrity measurement mech-
anism that extends the detection of unknown fingerprints to
the entire life cycle of the system. -e system environment
fingerprint is updated by triggering the probe placed in the
binary execution program. As the dynamic measurement
component’s entrance, the SMC instruction can distinguish
different types via the command ID set in the regular reg-
ister. On the contrary, the SMC instructions inserted as
probes are fixed and will not cause the program integrity
changes randomly, which is important for integrity
management.

-e ProbeIMA provides real-time monitoring for ker-
nels and programs running in the normal world through the
placement of probes. It mainly monitors the following two
aspects: (1) detecting the execution of new programs; (2) the
integrity change of the executing programs and kernels.
First, detect the changes in the critical CPU registers that
affect kernel integrity, such as SCTLR, TTBR, and TTBCR.
Second, monitoring binary modification stored in the
memory, that is, insert the SMC instructions at all in-
structions that can affect the integrity of the process’s bi-
naries, for example, the memory write instructions STR,
STM, and SWP. When one of those inserted instructions is

triggered, the handler running in the secure world performs
an integrity measurement on the program which the
physical memory address belongs to. It means that all in-
structions that affect the page tables’ content will be routed
to the secure world for handling. -e integrity of the kernel
or programwill be updated based on the handle results of the
trigger instruction.

5.1.1. Probe Placement for Key Registers. In the widely used
ARMv7 architecture (32 bit), the control instructions are
achieved by writing to the coprocessor registers. Because
ARM enforces instruction alignment and fixed-length in-
struction [24], it is easy to generate the template for all MCR
and LDC instructions which write to the coprocessor register.
As shown in Figure 5, we place a probe after the MCR in-
struction which writes a value to the CP15 coprocessor
register, causing the normal world to switch to the secure
world to perform the integrity measurement. Querying
whether the target register affects the integrity of the user
environment, a filtered register bit set is also stored in the
IMASet. -e MTM recalculates the fingerprint of the in-
structions, whose memory address is stored in the IMASet,
and generates a new integrity record. It should be pointed out
that writing of some registers may affect the contents of the
IMASet; that is, the content of the IMASet is not fixed.

5.1.2. Probe Placement for Binaries. A program is intrinsi-
cally composed of three parts: the .bss segment, the .data
segment, and the .text segment [30]. As shown in Figure 6,

Probe triggered

Switch to the monitor
mode

Is the kernel
loaded

Yes

Yes

No

No

Does
the modified

PA contained in
IMASet

Save NW context and
load SW kernel

PA

IMASet

physical address;

set of memory page that affects integrity;

normal world;
secure world;

NW
SW

Secure world

Switch to the NW and
continue process

Update the
integrity of the

program

invalid trigger;
valid trigger;
instruction processing;

Figure 3: Flowchart of the ProbeIMA.

8 Security and Communication Networks

the .text and .data sections are generally solidified in the
executable file loaded by the kernel from the binary. -e .bss
segment is not in the binary and generated by the process of
initialization. -e integrity of .text, .data, and .bss is
equivalent to the integrity of the program itself. In Linux, the
kernel creates a separate address space for each process,
creating a new set of page tables. Page tables, a.k.a. memory

translation tables, are stored in the kernel’s memory frag-
ment, and the update of the translation tables is also a
normal memory write.It means that the secure world can
obtain an unforgeable view of the normal world’s translation
tables, and dynamically maintain the IMASet is possible,
which manages different process’s page tables. On the other
hand, due to the ARM processor can support two page tables

Baseline ProbeIMA
asm(_asm_(Handler (){

″mrc p15, 0, r1, c1, c0, 0\n″ ″mrc p15, 0, r1, c1, c0, 0\n″

″mcr p15, 0, r1, c1, c0, 0\n″ ″mcr p15, 0, r1, c1, c0, 0\n″

″orr r1, r1, #0×c0000000\n″ ″orr r1, r1, #0×c0000000\n″

″r1″......

″r1″...... ...);

); };

″smc #0″

check_IMASet();

check_Kernel();

update_measurelist()

update_IMASet();

Normal world
Normal world
Secure world

Figure 5: -e placement and triggering mechanism of the probe.

Verifier agent

Attestation
agent

1. Create challenge
message

Verifier

Verification rules
Reference dataset

2. Request attestation data

4. Authentication and attestation

Ke
rn

el
m

od
e

ProbeIMA

RA_routerMTRMTM

SML STPM

3. Generate attestation data
and response

U
se

r m
od

e

Prover

Kernel

So�ware interactions
Attestation process
Data fetching

Figure 4: -e TZ-MRAS remote attestation protocol.

Security and Communication Networks 9

simultaneously, TTBR0 and TTBR1. -e same virtual ad-
dress bits may be mapped to different physical addresses.
-erefore, we use the physical memory address to build the
IMASet.

To capture the integrity changes of the application
running in the normal world, the ProbeIMA inserts the SMC
instruction at all programmemory write instructions. When
a write instruction of the memory page table included in the
IMASet is detected, the IMA component of the secure world
can determine the program ID corresponding to the target
physical memory address and dynamically update the in-
tegrity record of the program. On the one hand, since ARM
has fixed-length instructions, it is easy to find such in-
structions in the kernel binaries. On the other hand, since
the normal world is accessible to the secure world, the secure
world can read the key information, for example, the page
table base address, directly. So, the components in the secure
world can easily maintain the association information of the
page table and the CA.-e secure world obtains the program
ID and identifies whether editing of the corresponding page
table can cause the integrity change.

Because the measurement object of the integrity verifi-
cation is not continuously distributed and stored inmemory,
the traditional hardware-based and software-based memory
extraction methods extract the entire memory and extract
the message from it, which has a higher performance and
time cost. We gather all the page tables’ set, which affects the
integrity of the programs and kernels and only needs to
extract data from memory according to the IMAset. It
conforms to the law that the measurement objects are
discrete distribution, which dramatically accelerates the
extraction of measurement objects. Because the integrity

measurement process of static measurement objects such as
code, data, interrupt vector table, and system call table is
relatively simple, we will not detail here.

In summary, we directly modify the kernel and CA’s
binaries to place probes at the instructions which canmodify
the key coprocessor registers andmemory page tables.When
the probe is triggered, the SMC instruction is executed and
switches the execution environment to the secure world.-e
secure world analyses the trigger instruction and performs
integrity check for the instruction of the valid trigger.

5.2.$eLocality Principle-Based SMLConstructionAlgorithm

5.2.1. Locality Principle. Locality principle-based SML is a
tree data structure used to store the entity’s integrity
measurements. In LPSML, the root node is stored in the
hardware-protected register PCR; the leaf nodes and in-
termediate nodes are protected by the trusted execution
environment. -erefore, any nonphysical attack, including
malware and Trojan virus, cannot be considered to threaten
the security of SML in LPSML. At the same time, the
memory space of the secure world is used as a buffer pool to
buffer the application requests and avoid the construction
and update operation being too frequent, which will increase
the scalability of the construction mechanism and improve
the performance of the approach.-e operations involved in
LPSML mainly include the statistics on the recent access
frequency, traversal and updating of hash trees, and revo-
cation of nodes. -e composition of nodes in LPSML can be
represented by a six-tuple [31]:

〈id, hvalue, raf , lchild, rchild, parent〉, (5)

File header

.text

.text

.data

.data

.bss

.bss

Program i

IMASet Intergrity-related memory address set

Pages i

Pages j

Pages k
High

Low

High

Low
Physical addressVirtual address

Heap

Kernel

Stack

Pid Set (i, j, k)

Kernel space

User space

Figure 6: -e design of the IMASet.

10 Security and Communication Networks

where id is the node ID, and each application has an unique
node ID, hvalue refers to the measurements of the program,
raf is the frequency of the recent accesses, and
lchild, rchild, parent represent separately the left child node,
the right child node, and the parent node. Each time the
LPSML is updated, the root node of the tree needs to be re-
expanded into PCR.

Definition 1. Recent access frequency (RAF) [31]:
Assume that, in the recent period of time t, there are a

total of m different program requests for access, and the
number of requests for access per program is ri; then, the
recent access frequency (RAF) can be defined as the fol-
lowing equation:

RAF �
ri

􏽘
m

i�1ri

. (6)

According to the locality principle of program access,
when a program recently requests access, the program
has a high probability of requesting access again in a
short period. Accordingly, an application that has higher
RAF means it has a higher probability of requesting
access again, which is formally described as follows:
suppose each program s1, s2 has a recent access frequency
of RAF1,RAF2 in a time interval ti and a recent access
frequency of RAF1′,RAF2′ in the next time interval ti+1,
and P(·) represents the probability of occurrence of an
event; then,

∃ε> 0, s.t.

P RAF1 >RAF2 ∧RAF1′ >RAF2′(􏼁∨ RAF1 ≤RAF2 ∧RAF1′ ≤RAF2′(􏼁(􏼁> ε.
(7)

Based on the above assumptions, the core mechanism of
LPSML is to make the attestation path shorter for the ap-
plications which have higher recent access frequency,
thereby saving time consumption and improving verifica-
tion efficiency.

5.2.2. $e Construction Algorithm of LPSML. Left-full tree
(LFT) is a binary tree in which all left subtrees are a full tree,
satisfying the following properties: (1) the depth of the LFT
left subtree must be k− 1; (2) the depth of the left subtree is
greater than or equal to the depth of its right subtree. A full
tree means that, in a binary tree, each node has two child
nodes except for the leaf node.

A hash tree that uses an LFTas a storage structure is called
a left-full hash tree.-e left-full hash tree is used as the storage
structure of integrity measurement data in our design. First,
we use the principle of locality to calculate the weight of each
measured entity, that is, we use RAF to assign values to all leaf
nodes. Second, we generate a left-full hash tree and ensure
that the sum of the weighted path lengths is the shortest.

Specifically, we demonstrate this construction algorithm
through a practical scenario: we observed all GUI software
collections in a Linux production environment (Ubuntu 16) and
used scripts to count the frequency of manual opening of each
programover a longer period of time.We found that application
access in this scenario follows strong temporal locality. -ere-
fore, we counted and normalized the number of access of
different applications and built a software access frequency
model that satisfies the principle of the temporal locality as
follows: {0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.075, 0.081, 0.784}.

We refer to the Huffman tree to construct a left-full tree
that meets the sum of the weighted path lengths is the
shortest, as shown in Figure 7. HuffMHT is a full binary tree
in which the root node contains all the subnode information,
and the sum of the weighted path lengths is the shortest. -e
advantage is, first, RAF the larger the value of the RAF, the
shorter the attestation path. An attestation path of entity s7 is

shown as the yellow nodes. Second and more important, the
left-full tree can dynamically adjust the number of nodes,
thus storing the measurement values in the form of a left-full
tree which can greatly simplify node insertion and revo-
cation operations.

6. Experiment

In this section, we evaluate our prototype performances from
two aspects of function and performance. -e function test is
used to verify the effectiveness of ProbeIMA’s dynamic integrity
measurement, that is, whether the system can measure and
check anomalies and attack behaviours.-e performance test is
used to verify the efficiency and cost of ProbeIMA and LPSML.
First, we implemented the OP-TEE trusted execution envi-
ronment [32] on the hardware platform. We used trustlets
running in the secureworld to simulate the core functions of the
STPM, including the secure storage and IMA components.
Second, we examined the world switch process generated by
ProbeIMA, focusing on the overhead of using the probe
mechanism.-ird, we built a control experiment in the desktop
environment and performed performance analysis on LPSML.

6.1. Experimental Environment. We cross-compile an open-
source OP-TEE trusted execution environment in Ubuntu
16.04 desktop system and deploy it to the Raspberry Pi 3Model
B Rev1.2 development board, which has a processor speed of
1.2GHz and a 1GB memory. OP-TEE is a popular TEE so-
lution that can implement an integrated trusted OS application
scenario. -e secure world runs a customized mini operating
system optee os, and the normal world runs a 64 bit Linux
system. -e TPM functionality is implemented using the OP-
TEE trusted application (TA), which provides an interface that
conforms to the global platform’s internal API [33] specifi-
cations for encryption and secures storage and other opera-
tions. -e TA of the measurement module implements
operations for initializing the signature key pair and PCR,

Security and Communication Networks 11

including computing and expanding the PCR value for sim-
ulating the TPM_quote operation. All of the security contexts
are stored in the TrustZone secure RAM storage area.

A desktop experiment environment is built to perform
the performance of the LPSML. -e specific environment
configuration is CPU @ 3.2GHz, 4GB memory, and the
system is Ubuntu 15.04 LTS 64 bit.

6.2. Security Analysis and Verification. As mentioned in
Section 4, when booting up, if a system kernel has been
authenticated to be trusted and had not been modified and
all applications executing afterwards are trusted and had not
been modified, then we consider that the current state of the
system is trusted. Similarly, Arun et al. [34] used the dy-
namic hash integrity checker to perform integrity check for
all history instructions at runtime to cope with the TOC-
TOU threats. -at is, the current integrity of a system that
had not run a dangerous program or found an anomaly state
of the kernel is considered to be trustworthy.

In fact, all possible attack behaviour must put the
operation such as modify the system parameters or exe-
cute an illegal process as the iconic achievement. It means
that, in the trusted computing field, all attack behaviours
will result in changes in the system’s integrity. -erefore,

we put activities such as the malware activation and the
configuration parameter modification as the security
check trigger is reasonable and reliable.

An attack example is used to analyze the dynamic in-
tegrity detection capability of the ProbeIMA. Specifically, we
created a simple rootkit to hijack the kernel function of the
system call table. First, we determine the address of the target
function through kallsyms lookup name. Secondly, the
rootkit dynamically creates a kernel hook, inserts a payload,
and hides the module with the hot patching function
aarch64_insn_patch_text provided by the system. Finally,
by loading and removing of this rootkit, we simulated a
typical TOC-TOU attack, and an attack and a recovery
behaviour are performed between the twice integrity checks.

As shown in Figure 8, we measured the integrity of the
kernel symbol table /proc/kallsyms before the execution and
removal of the rootkit program, and both of them can correctly
output their hash values. However, when the rootkit is running,
by hooking the symbol memory address of kallsyms_op, the
kernel symbol information cannot be print correctly.

Finally, we implemented a query component for integrity
measurements in the secure world and provided a query in-
terface to the normal world. -e results are shown in Figure 9;
although the hash value of the relevant kernel symbol has not
changed between the two queries, we can still find that the

Root
H (1–8)

0.774
H (s9)

0.091
H (s8)

0.075
H (s7)

Data
block

s9

Data
block

s8

Data
block

s7

Data
block

s6

Data
block

s5

Data
block

s4

Data
block

s3

Data
block

s2

Data
block

s1

0.01
H (s1)

0.01
H (s2)

0.01
H (s3)

0.01
H (s4)

0.01
H (s5)

0.02
H (3//4)

0.02
H (5//6)

0.01
H (s6)

0.02
H (1/2)

0.04
H (1,2//3,4)

0.06
H (1,2,3,4//5,6)

0.135
H (1,2,3,4,5,6//7)

0.226
H (1,2,3,4,5,6,7//8)

Intermediate nodes

Leaf nodes

So�ware entity

Figure 7: An example of our implementation of LPSML.

12 Security and Communication Networks

number of queried hash value records has increased. -us, the
root node value stored in the PCR should be changed and also
the result of the integrity proof. -erefore, ProbeIMA can
effectively achieve runtime kernel integrity update.

6.3. Performance Cost of ProbeIMA. In this section, we
evaluate the performance impact of ProbeIMA on the
REE. We implemented a limited model for performance
evaluation in the experimental environment. -e main job
is the design of the handling agent in the MonitorMode
and the measurement TA in the TEE. Since the binary of
the MonitorMode is packaged with the binary of the se-
cure operating system in the OP-TEE project, the
MonitorMode binary and trusted OS cannot be loaded
separately; thus, we cannot measure the time consumption
of the InvalidTrigger specially. -erefore, in the experi-
ment design, we first counted the number of probes
placed, and then we estimated the time overhead caused
by different trigger modes according to the proportion of
the probe in different stages.

CostProbeIMA � TimesPT ∗CostPT + TimesNT ∗CostNT.

(8)

-e total time consumption of the ProbeIMA is shown as
equation (8), where TimesPT and TimesNT indicate the
number of the valid triggers and the invalid triggers that
triggered cumulatively while the system is running, CostPT
and CostNT indicate the time delay generated by each.

-e statistics for the prototype system are shown in
Table 1; we built two user programs, RA_Router and

Test_App_CA, in the untrusted operating system of the
normal world, where RA_Router is used to forward the
interaction data between the report module in the secure
world and the remote verifier, including receiving and
forwarding the attestation challenges and measurement
data. Test_App_CA is part of the sample test program that
runs in the normal world. Our experimental model did not
model the exact cycle count but instead tracked the in-
struction count. To quantify the performance overhead
caused by the proposed solution, we measured the time
consumption generated by the operation of the system
kernel and core program in the experimental environment.
Furthermore, a controlled experiment baseline was setup to
compare with our prototype. In baseline, we did not place
the probe and only installed the secure world’s IMA
component.

We recorded the time consumption of the system kernel,
RA_Router, and Test_App_CA running in two sets of en-
vironments (Table 2). A delay of 0.35 seconds was added
during the system startup phase. Moreover, the time con-
sumption of the startup and the execution of the user
program are minimal, and the actual needs of the mobile
system platform are met. Finally, according to the statistical
results, the estimated average delay of a single invalid trigger
is about 47 μs, while the average delay of a single valid trigger
is 3.2ms.

6.4. Performance Analysis of the LPSML. To evaluate the
verification efficiency of our scheme, we created a simple
attestation model with two entities in the desktop envi-
ronment that are a user application as the attestation
requester and a user application as the attestation re-
sponder. -e responder maintains a collection of mea-
surement objects in different sizes. A Monte Carlo method
is used to generate attestation request sequences of the
requester application. As described in Section 5.2.1, a
shorter length of the attestation path indicates a more
efficient verification efficiency. As a control experiment,
we implemented a remote authentication scheme based on
the balanced binary tree in the same hardware and soft-
ware environment. We recorded the results of the average
length of certification path lengthpath under different iol,
m, and n. iol means the strength of the local principle, m
refers to the number of total nodes, and n denotes the
count of update nodes each time. -e results are shown in
Figure 10.

-e relationship between the attestation path length
lengthpath and the total number of nodes m is shown in

Figure 9: Comparison of integrity records at different moments.

Table 1: Statistics of ProbeIMA.

(i) -e number of probes placed in the core process
Items Kernel RA_Router Test_App_CA
Count of probes 207.1 k 2.19 k 0.03 k
(ii) -e distribution of instructions in a valid trigger

Phase Binary
load

World
switch

Handler
process

Count of instructions 0.15 k 1.2 k 10.2 k
Figure 8: An example of rootkit loading and removal.

Security and Communication Networks 13

Figures 10(a) and 10(b). -e former presents that, as the
total number of request nodes increases from 1,000 to
10,000, the average attestation path length varies from
3.5 to 3.9 in our scheme. In the later one, as a comparison
experiment, another remote authentication scheme
based on a balanced binary tree (BBT) in the same
hardware and software environment is shown. -e av-
erage attestation path length in the balanced binary tree
scheme is equal to the depth of the tree, which increases
from 10 to 14. -erefore, the LPSML made the average
attestation path length shorten by about 69.63%.

Another advantage of LPSML is reducing the average
path length of the modified value nodes, which can shorten
the time consumption of recalculating the upper node hash
values.We set iol equals 0.9 of (0, 1). Figure 10(c) shows that,
as the number of updated nodes increases from 40 to 600 at
the same time, the average updated path depth rises from 5
to 8 wich is far more shorten than the depth value 14 in the
BBT. At last, we assume n at a typical value which is 8. With
the strength of local principle iol increasing, the efficiency of
the remote attestation is becoming better and better, which is
shown in Figure 10(d).

From the above analysis, we can see that when the
program requests access, the attestation path length of
LPSML is obviously less than that of the balanced hash tree.

When the intensity of locality is higher, the performance is
better, which reduces the operational load of the server. As a
result, the verification efficiency is improved.

7. Conclusion

A large number of mobile devices use the ARM-based ap-
plication-specific integrated circuit, and it is necessary to
study the remote attestation scheme under the ARM ar-
chitecture. To build an efficient and economical remote
attestation framework, we implemented the trusted remote
attestation components by the TrustZone’s highest privilege.
First, we used TA to simulate the trusted attestation core
modules, and all of the security-critical operations were
executing in the TEE to achieve outstanding performance.
Second, a probe-based dynamic measurement mechanism,
ProbeIMA, is proposed to dynamically detect unknown
fingerprints that appear in the kernel and process during
operation. -e ProbeIMA can effectively defend against
TOC-TOU attacks and meet expected security needs. -ird,
according to the characteristics of the improved dynamic
measurement of ProbeIMA, an LPSML-based optimization
algorithm is proposed, which has the advantages of short-
ening the attestation path’s length and improving the effi-
ciency of platform configuration integrity verification.

iol = 0.9, n = 8

100004000 6000 800020000
m

3.5

3.6

3.7

3.8

3.9

Le
ng

th
_p

at
h

(a)

iol = 0.9, n = 8

0 4000 6000 8000 100002000
m

9

10

11

12

13

14

Le
ng

th
_p

at
h

(b)

iol = 0.9, m = 16384

5

6

7

8

Le
ng

th
_p

at
h

200 400 6000
n

(c)

iol = 8, m = 16384

0.5 10
iol

0

5

10

15
Le

ng
th

_p
at

h

(d)

Figure 10: -e diagram of verification efficiency.

Table 2: -e time consumption example (in seconds).

Schemes
Baseline ProbeIMA Extra cost

Start Resume Start Resume Start Resume
Kernel 3.97 2.71 4.32 2.72 0.35 0.01
RA_Router 0.32 — 0.32 — — —
Test_App_CA 0.02 — 0.02 — — —

14 Security and Communication Networks

Compared with existing solutions, the proposed solution has
better versatility and is more suitable for low-cost hetero-
geneous systems.

Data Availability

No data were used to support this study.

Conflicts of Interest

-e authors declare that they have no conflicts of interest.

Acknowledgments

-is work was supported by the National Natural Science
Foundation of China (general program) under Grant no.
61572253 and the Aviation Science Fund under Grant no.
2016ZC52030.

References

[1] ARMHoldings, “Annual reports,” 2019, https://www.armlife.
com.ng/armlife_uploads/2019/10/2018_Annual_Report_
ARMLife_Plc.pdf.

[2] P. Sparks, $e Route to a Trillion Devices, ARM, Cambridge,
UK, 2017.

[3] J. Winter, “Trusted computing building blocks for embedded
linux-based arm trustzone platforms,” in Proceedings of the
3rd ACM Workshop on Scalable Trusted Computing, pp. 21–
30, ACM, Fairfax, VA, USA, October 2008.

[4] “Adoption of trustonic security platforms passes 1 billion
device milestone,” Trustonic, 2019, https://www.trustonic.
com/news/company/adoption-trustonic-security-platforms-
passes-1-billion-device-milestone/.

[5] Z. Huanguo and W. Fan, “A behavior-based remote trust
attestation model,” Wuhan University Journal of Natural
Sciences, vol. 11, no. 6, pp. 1819–1822, 2006.

[6] W. Arthur and D. Challener, A Practical Guide to TPM 2.0:
Using the Trusted Platform Module in the New Age of Security,
Apress, New York, NY, USA, 2015.

[7] C. Shepherd, N. A. Raja, and K. Markantonakis, “Secure
remote credential management with mutual attestation for
constrained sensing platforms with tees,” 2018, https://arxiv.
org/pdf/1804.10707v1.pdf.

[8] G. Coker, J. Guttman, P. Loscocco et al., “Principles of remote
attestation,” International Journal of Information Security,
vol. 10, no. 2, pp. 63–81, 2011.

[9] R. C. Merkle, “Protocols for public key cryptosystems,” in
Proceedings of the 1980 IEEE Symposium on Security and
Privacy, p. 122, IEEE, Oakland, CA, USA, April 1980.

[10] H. Raj, S. Saroiu, A. Wolman, R. Aigner, and J. Cox, “fTPM: a
software-only implementation of a TPM chip,” in Proceedings
of the 25th USENIX Security Symposium (USENIX Security
16), pp. 841–856, Austin, TX, USA, August 2016.

[11] S. -om, J. Cox, D. Linsley, M. Nystrom, and H. Raj,
“Trustzone-based integrity measurements and verification
using a software-based trusted platform module,”
US20160048678A1 US Patent, 2016.

[12] W. Feng, Y. Qin, S. Zhao, and D. Feng, “AAoT: lightweight
attestation and authentication of low-resource things in IoT
and CPS,” Computer Networks, vol. 134, pp. 167–182, 2018.

[13] D. Fu, X. Peng, and Y. Yang, “Unbalanced tree-formed
verification data for trusted platforms,” Security and Com-
munication Networks, vol. 9, no. 7, pp. 622–633, 2016.

[14] Y. Zhang, L. Wang, Y. You, and L. Yi, “A remote-attestation-
based extended hash algorithm for privacy protection,” in
Proceedings of the 2017 International Conference on Computer
Network, Electronic and Automation (ICCNEA), pp. 254–257,
IEEE, Xi’an, China, September 2017.

[15] J.-E. Ekberg, K. Kostiainen, and N. Asokan, “Trusted exe-
cution environments on mobile devices,” in Proceedings of the
2013 ACM SIGSAC Conference on Computer & Communi-
cations Security, pp. 1497-1498, ACM, Berlin, Germany,
November 2013.

[16] “TPM 2.0 mobile reference architecture specification,”
Trusted Computing Group, 2019.

[17] Trusted Computing Group, “TPM mobile with trusted exe-
cution environment for comprehensivemobile device security,”
June 2012, https://trustedcomputinggroup.org/wp-content/
uploads/TPM-MOBILE-withTrusted-Execution-Environment-
for-Comprehensive-Mobile-Device-Security.pdf.

[18] R. Sailer, X. Zhang, T. Jaeger, and L. Van Doorn, “Design and
implementation of a TCG-based integrity measurement ar-
chitecture,” in Proceedings of the 13th USENIX Security
Symposium, pp. 223–238, San Diego, CA, USA, August 2004.

[19] Samsung Knox, “Secured by Knox,” 2020.
[20] T. Garfinkel and M. Rosenblum, “A virtual machine intro-

spection based architecture for intrusion detection,” in Pro-
ceedings of the NDSS, pp. 191–206, San Diego, CA, USA, 2003.

[21] L. Nick, J. Petroni, T. Fraser, J. Molina, and W. A. Arbaugh,
“Copilot—a coprocessor-based kernel runtime integrity
monitor,” in Proceedings of the USENIX Security Symposium,
pp. 179–194, San Diego, CA, USA, August 2004.

[22] A. M. Azab, P. Ning, E. C. Sezer, and X. Zhang, “HIMA: a
hypervisor-based integrity measurement agent,” in Proceed-
ings of the 2009 Annual Computer Security Applications
Conference, pp. 461–470, IEEE, Honolulu, HI, USA, De-
cember 2009.

[23] B. Stelte, R. Koch, and M. Ullmann, “Towards integrity
measurement in virtualized environments—a hypervisor
based sensory integrity measurement architecture (SIMA),” in
Proceedings of the 2010 IEEE International Conference on
Technologies for Homeland Security (HST), pp. 106–112, IEEE,
Waltham, MA, USA, November 2010.

[24] A. M. Azab, P. Ning, J. Shah et al., “Hypervision across worlds:
real-time kernel protection from the ARM trustzone secure
world,” in Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, pp. 90–102,
ACM, Scottsdale, AZ, USA, November 2014.

[25] X. Ge, H. Vijayakumar, and T. Jaeger, “Sprobes: enforcing
kernel code integrity on the trustzone architecture,” in Pro-
ceedings of the $ird Workshop on Mobile Security Technol-
ogies (MoST) 2014, San Jose, CA, USA, May 2014.

[26] Z.-Y. Xu, Y.-P. He, and L.-L. Deng, “Efficient remote attes-
tation mechanism with privacy protection,” Journal of Soft-
ware, vol. 22, no. 2, pp. 339–352, 2011.

[27] Y. Zhu, L. I. Qingbao, C. Zhong et al., “Non-balanced binary
hash-tree model for fine-grained integrity measurement,”
Journal of Chinese Computer Systems, vol. 35, no. 7,
pp. 1604–1609, 2014.

[28] S. Pinto and N. Santos, “Demystifying arm TrustZone,” ACM
Computing Surveys, vol. 51, no. 6, pp. 1–36, 2019.

[29] J. D. Peter, “-e locality principle,” in Communication Net-
works And Computer Systems: A Tribute to Professor Erol
Gelenbe, pp. 43–67, World Scientific, Singapore, 2006.

Security and Communication Networks 15

https://www.armlife.com.ng/armlife_uploads/2019/10/2018_Annual_Report_ARMLife_Plc.pdf
https://www.armlife.com.ng/armlife_uploads/2019/10/2018_Annual_Report_ARMLife_Plc.pdf
https://www.armlife.com.ng/armlife_uploads/2019/10/2018_Annual_Report_ARMLife_Plc.pdf
https://www.trustonic.com/news/company/adoption-trustonic-security-platforms-passes-1-billion-device-milestone/
https://www.trustonic.com/news/company/adoption-trustonic-security-platforms-passes-1-billion-device-milestone/
https://www.trustonic.com/news/company/adoption-trustonic-security-platforms-passes-1-billion-device-milestone/
https://arxiv.org/pdf/1804.10707v1.pdf
https://arxiv.org/pdf/1804.10707v1.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-MOBILE-withTrusted-Execution-Environment-for-Comprehensive-Mobile-Device-Security.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-MOBILE-withTrusted-Execution-Environment-for-Comprehensive-Mobile-Device-Security.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-MOBILE-withTrusted-Execution-Environment-for-Comprehensive-Mobile-Device-Security.pdf

[30] J. Xu, Z. Kalbarczyk, and R. K. Iyer, “Transparent runtime
randomization for security,” in Proceedings of the 22nd In-
ternational Symposium on Reliable Distributed Systems,
pp. 260–269, IEEE, Florence, Italy, October 2003.

[31] Z. Wang, Y. Zhuang, and Q. Xia, “Mutual authentication-
based ra scheme for embedded systems,” IET Information
Security, vol. 14, no. 2, pp. 232–240, 2020.

[32] Open Portable Trusted Execution Environment (OP-TEE),
June 2020.

[33] “Trusted user interface API v1.0,” GPD_SPE_
020—GlobalPlatform, May 2019.

[34] K. Arun, Z. Mohamed, and K. Ramesh, “Architecture support
for dynamic integrity checking,” IEEE Transactions on In-
formation Forensics and Security, vol. 7, no. 1, pp. 321–332,
2011.

16 Security and Communication Networks

