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We analyze the symbol measures for iterative erasure insertion and decoding of a Reed-Solomon coded SFH/MFSK system over
jamming channels. In contrast to conventional erasure insertion schemes, iterative schemes do not require any preoptimized
threshold or channel state information at the receiver. We confirm the performance improvement using a generalized minimum
distance (GMD) decoding method with three different symbol measures. To analyze performance, we propose a new analysis
framework considering the “trapped-error” probability. From analysis and the simulation results, we show that ratio-based GMD
decoding has the best performance among the one-dimensional iterative erasure insertion and decoding schemes.

1. Introduction

To mitigate the threat of jamming attacks, Reed-Solomon
(RS) coded frequency-hopping spread-spectrum systems
with frequency shift keying (FSK) have beenwidely applied to
military communication systems [1]. Although these systems
can reduce the effect of jamming attacks, some signals are
corruptedwhen the jamming signal collides with the hopping
frequency. To recover information from the contaminated
signals, various channel codes have been applied with an
interleaver [1]. In many previous studies [2–11], erasure
insertion schemes with an error and erasure decoder have
been used to increase system reliability under this kind of
jamming. The main aim of erasure insertion is to erase the
corrupted received symbols (or dwells) using the threshold
test. In most cases, the receiver should select an optimal
threshold based on the system settings and the channel
state at the time. If the receiver knows perfect channel state
information, the performance can be improved using soft-
decision-based soft-decoding algorithms [12–18]. However, it
is very difficult to estimate the channel state information at
the receiver (CSIR) when the channel is jammed [7].

In this paper, we consider an erasure insertion scheme
that does not require any CSIR. Using appropriate symbol
measures, we can improve the performance using several
well-known iterative decoding algorithms [19–22]. These
algorithms require the order of reliability of the received
symbols, not exact soft measure of the symbols. Specially, we
consider “output,” “ratio,” and “sum” measures using gen-
eralized minimum distance (GMD) decoding. Some other
decoding algorithms, such as [23], can be applied after the
iterative erasure insertion, but it is out of our scope. This
iterative erasure insertion and decoding scheme does not
guarantee independent processing of the received symbols;
therefore, we propose a new analysis framework in terms
of trapped-error probability. Finally, we confirm that the
ratio measure works best and its concatenated scheme with
another measure improves the performance when the jam-
ming signal is strong. In [8], the authors proposed another
iterative erasure insertion and decoding scheme, but they
considered a partial-band jamming channel and a standard
bounded-distance decoding. In this paper, we cover the
partial-band and partial-time jamming, and we exploit GMD
decoding, not a bounded-distance decoding.
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Figure 1: System block diagram with erasure insertion component.

This paper is organized as follows. In Section 2, we
describe the system model. In Section 3, we review several
conventional erasure insertion schemes and describe the iter-
ative erasure insertion and decoding schemes. In Section 4,
the trapped-error probability of the measures is derived.
In Section 5, we compare the trapped-error probabilities
and confirm the performances using computer simulations.
Finally, concluding remarks are given in Section 6.

2. System Model

In this paper, we consider the RS coded slow frequency-
hopping 𝑀-ary FSK system over a partial-band (or partial-
time) jamming channel. At the transmitter, 𝐾 information
symbols are encoded by rate𝐾/𝑁 RS encoder, where𝑁 is the
number of codeword symbols. It is well known that (𝑁,𝐾)
RS codes can recover the received word if 𝑢 + 2V < 𝑁−𝐾+ 1
and bounded-distance decoding is applied, where 𝑢 and V
are the number of erasures and errors in the received word,
respectively. The encoded codeword is represented by

w = (𝑤0, 𝑤1, . . . , 𝑤𝑁−1) , (1)

where 𝑤𝑖, 𝑖 ∈ {0, . . . , 𝑁 − 1}, is the 𝑖th codeword symbol.
We assume that an𝑀-ary FSK modulated symbol represents
the single corresponding RS codeword symbol over 𝐺𝐹(𝑀),
where 𝑀 = 2𝑏 and 𝑏 is a positive integer. Furthermore, we
assume𝑁 = 𝑀 − 1, because the conventional RS codes over𝐺𝐹(𝑀) have length𝑁 = 𝑀 − 1.

The system model is shown in Figure 1. The jamming
signal is inserted into the frequency domain with fraction
(jamming duty ratio) 𝜌, which is the ratio of the jamming
signal bandwidth to the spread-spectrum bandwidth. We
assume that the partial-band jamming signal has a Gaussian
distribution with zero-mean and𝑁𝐽/2𝜌 = 𝜎2𝐽 power spectral
density in the jamming bandwidth. In the figure, 𝛼 represents
the channel coefficients of the transmitter-receiver channel.
If the transmitter-receiver channel is modeled as an additive
white Gaussian noise (AWGN) channel, then the channel
coefficient is set to 𝛼 = 1. The noise signal is modeled by a
Gaussian distribution with zero-mean and𝑁0/2 = 𝜎2𝑁 power
spectral density over the entire frequency domain.

Throughout this paper, we assume an ideal interleaver.
From this assumption, every RS codeword symbol is trans-
mitted over a different frequency hop, and these symbols
are independently interfered with the jamming signal with
probability 𝜌. This assumption (and our result) covers every
case such that the received symbol is independently interfered
with probability 𝜌, such as partial-band and partial-time
jamming. Based on this assumption, we will discuss the
symbols that are independently jammed with probability 𝜌.

Let

𝑥𝑖 (𝑡) = √2𝐸𝑠𝑇 cos (2𝜋 (𝑓ℎ + 𝑓𝑗) 𝑡) (2)

be a general form of the transmitted signal, where 𝐸𝑠, 𝑇,
and 𝑓ℎ are symbol energy, symbol duration, and a selected
hopping frequency, respectively. The orthogonal frequency𝑓𝑗 = 𝑗Δ𝑓, for 𝑗 ∈ {0, . . . ,𝑀 − 1}, is the selected frequency
associated with 𝑤𝑖, where Δ𝑓 = 1/𝑇. If the transmitted
symbol is contaminated by a jamming signal, the 𝑖th received
signal 𝑟𝑖(𝑡) is expressed as

𝑟𝑖 (𝑡) = 𝛼√2𝐸𝑠𝑇 cos (2𝜋 (𝑓ℎ + 𝑓𝑗) 𝑡 + 𝜃) + 𝑛𝐽 (𝑡)
+ 𝑛 (𝑡) ,

(3)

where 𝑛𝐽(𝑡) and 𝑛(𝑡) are the jamming signal and Gaussian
noise, respectively. A uniform random phase is denoted by 𝜃.
For the unjammed case, 𝑛𝐽(𝑡) = 0. Without loss of generality,
we assume that 𝐸𝑠 = 1.

The non-coherent MFSK demodulator calculates 𝑦𝑖,𝑗 for
the 𝑖th symbol of the codeword and 𝑗thMFSK tone as follows
[24]:

𝑦𝑖,𝑗 = (∫𝑇
0
𝑟𝑖 (𝑡) cos (2𝜋 (𝑓ℎ + 𝑓𝑗) 𝑡) 𝑑𝑡)2

+ (∫𝑇
0
𝑟𝑖 (𝑡) sin (2𝜋 (𝑓ℎ + 𝑓𝑗) 𝑡) 𝑑𝑡)2 .

(4)

The symbol index 𝑖 can be omitted if it is obvious based on
the context. Thus, 𝑦𝑗 denotes the value 𝑦𝑖,𝑗 in this case. After
deinterleaving, all of the values of 𝑦𝑖,𝑗, for 0 ≤ 𝑖 ≤ 𝑁 − 1
and 0 ≤ 𝑗 ≤ 𝑀 − 1, are input to “erasure insertion.” This
block erases several symbols with a selected rule, which will
be described in Section 3.
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3. Erasure Insertion Schemes

3.1. Overview of Erasure Insertion Schemes

3.1.1. Conventional Schemes. Next, we briefly introduce the
three conventional erasure insertion schemes: the ratio
threshold test (RTT), the output threshold test (OTT), and
the maximum output-ratio threshold test (MO-RTT) [4–
7, 25]. Let max{⋅} and max󸀠{⋅} represent the first and second
maximum values of a given set, respectively. For each 𝑖 from
0 to 𝑁 − 1, the 𝑖th received symbol is erased by RTT if
max󸀠𝑗{𝑦𝑗}/max𝑗{𝑦𝑗} > 𝜆, where 𝜆 is a given threshold. OTT
erases the symbol if max𝑗{𝑦𝑗} > 𝜏, for a given threshold𝜏. Sometimes, the OTT rule is applied as max𝑗{𝑦𝑗} < 𝜏
[6]; however, this reversed inequality is not considered in
this paper. We note that the conventional RTT and OTT
are one-dimensional erasure insertion schemes, because the
decision is made using a single measure. On the other hand,
MO-RTT is a two-dimensional erasure insertion scheme,
combining OTT and RTT. MO-RTT generally exhibits better
performance thanRTTorOTTwith their optimal thresholds.
Before we discuss the problems of conventional schemes, we
introduce a new threshold test scheme, that is, sum-based
threshold test (STT).This test erases the symbol if∑𝑀−1𝑗=0 𝑦𝑗 >𝜇, where 𝜇 is a given threshold.

Threshold test-based conventional schemes have used the
one-time erasure insertion and the bounded-distance decod-
ing with preoptimized thresholds. The optimum thresholds
depend on the channel state; therefore, the receiver should
know the channel state information at the time. Because of the
difficulty of obtaining perfect CSIR over jamming channels,
we consider the iterative erasure insertion scheme, which
does not require any CSIR.

3.1.2. Iterative Erasure Insertion and Decoding Schemes. To
increase the error correction capability of RS codes, many
iterative decoding algorithms have been proposed [19–23].
For an unjammed channel, we can estimate the channel
state information using various techniques. Thereafter, we
can apply various decoding algorithms. However, if the
jamming signal exists and CSIR is not available, we must
address the jamming attack without CSIR. To use the iter-
ative decoding algorithms without CSIR, we will consider
a simplified version of the GMD decoding algorithm [26],
as an example. The main idea of GMD decoding is iterative
decoding trials with erasures. During each iteration, GMD
decoding erases the least reliable symbol and attempts an
error and erasure decoding. In this paper, we use the symbol
measures ratio (max󸀠𝑗{𝑦𝑗}/max𝑗{𝑦𝑗}), output (max𝑗{𝑦𝑗}), and
sum (∑𝑀−1𝑗=0 𝑦𝑗), for the GMD decoding algorithm. These
schemes will be called ratio-based GMD (R-GMD), output-
based GMD (O-GMD), and sum-based GMD (S-GMD)
decoding, respectively. Note that the three measures are
calculated without CSIR.

In Algorithm 1, the one-dimensional GMD algorithm is
described using the three measures. Here, 𝑖 is the index of the
codeword symbol and 𝑗 is the index of 𝑀 detectors of the
MFSK demodulator. Initially, the receiver decides that 𝑐𝑖 =

argmax𝑗{𝑦𝑖,𝑗} for each 𝑖 from 0 to𝑁 − 1. In the beginning of
while loop, the decoder attempts to recover the transmit word
w in (1) from c with error-only decoding. This step prevents
performance degradation when there is no jamming signal.
Additionally, we will not consider the undetected errors of
the decoded codeword, because they seldom occur [27]. If
the decoder declares a decoding failure, it erases the most
suspicious (likely to have been jammed) symbol 𝑐𝑖max

and
replaces it with an erasure 𝜖, where 𝑖max is determined by the
selected decision rule. For each measure, 𝑖max is determined
as follows:

Ratio measure:

𝑖max = argmax
𝑖∉𝐸

{max󸀠𝑗 {𝑦𝑖,𝑗}
max𝑗 {𝑦𝑖,𝑗} } . (5)

Output measure:

𝑖max = argmax
𝑖∉𝐸

{𝑦𝑖,𝑗} . (6)

Sum measure:

𝑖max = argmax
𝑖∉𝐸

{{{
𝑀−1∑
𝑗=0

𝑦𝑖,𝑗}}} . (7)

After 𝑖max is determined, it is added to 𝐸, which is the
current set of erased symbol indices. Then, error and erasure
decoding is applied. As we noted in Section 2, (𝑁,𝐾) RS
codes can correct 𝑢 erasures and V errors if 𝑢 + 2V <𝑁 − 𝐾 + 1 is satisfied. If the decoding is successful, then
the erasure insertion loop is terminated and the decoded
codeword becomes the output c̃. Otherwise, the algorithm
continues to the second iteration of the while loop. In the
second iteration and thereafter, all of the previously erased
symbol indices (𝐸) are maintained and 𝑖max is determined
over all the unerased indices. This iteration runs successively
until the decoding succeeds or the number of erased symbols
is the same as the number of parity symbols, that is, |𝐸| =𝑁 − 𝐾. The while loop in Algorithm 1 is described by the
feedback loop in Figure 1. We note that this iterative erasure
insertion and GMD decoding algorithm runs independently
for each codeword and does not make comparisons with
any preoptimized threshold. Furthermore, if the conventional
erasure insertion scheme can recover the codeword, then the
corresponding iterative scheme can recover the codeword.

3.2. Two-Dimensional Schemes. We introduced theMO-RTT
at the beginning of Section 3 which has two-dimensional
measures, the joint threshold tests of OTT and RTT. To
exploit the diversity of multiple measures, various combina-
tions of iterative schemes with some different measures are
considered. In this paper, however, wewill focus only on serial
concatenation of R-GMD decoding and S-GMD decoding,
called ratio-to-sum-based GMD (RS-GMD) decoding. First,
RS-GMD decoder runs R-GMD decoding. If R-GMD decod-
ing fails to decode with |𝐸| = 𝑁 − 𝐾 + 1, then the receiver
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Initialize:
Decide a vector c by 𝑐𝑖 = argmax𝑗{𝑦𝑖,𝑗}, 0 ≤ 𝑖 ≤ 𝑁 − 1
Set 𝐸 = 0

while |𝐸| ≤ 𝑁 − 𝐾 do
Try to error-and-erasure decode c
if decoding success then

c̃ is the decoded codeword
Break while loop

else if decoding fail then
Case: Measure
ratio: 𝑖max = argmax𝑖∉𝐸{max󸀠𝑗{𝑦𝑖,𝑗}/max𝑗{𝑦𝑖,𝑗}}
output: 𝑖max = argmax𝑖∉𝐸{𝑦𝑖,𝑗}
sum: 𝑖max = argmax𝑖∉𝐸{∑𝑀−1𝑗=0 𝑦𝑖,𝑗}

Erase 𝑖maxth codeword symbols, i.e. set 𝑐𝑖max
= 𝜖𝐸 ← 𝐸 ∪ {𝑖max}

end if
end while
if |𝐸| ≤ 𝑁 − 𝐾 then

Decoding success
Output = c̃

else (|𝐸| = 𝑁 − 𝐾 + 1)
Decoding renounce

end if

Algorithm 1: Iterative erasure insertion and GMD decoding.

Table 1: Thresholds 𝑧𝑝 of the three measures where𝑀 = 4, 𝑝 = 0.1, 𝜌 = 0.1, and 𝐸𝑏/𝑁0 = 5 dB over AWGN and partial-band jamming
channels.

𝐸𝑏/𝑁𝑗 (dB) −10 −5 0 5 10 15 20𝑧𝑝 of R 0.722 0.722 0.721 0.719 0.712 0.695 0.671𝑧𝑝 of O 4.123 3.625 3.158 2.462 2.103 1.993 1.961𝑧𝑝 of S 4.824 4.377 4.438 3.400 2.869 2.623 2.536

runs S-GMD decoding again from the beginning. We will
show the performance improvement of RS-GMD decoding
as compared to the performance of MO-RTT over various
channel situations in Section 5. In Table 2, the conventional,
iterative, and two-dimensional schemes are classified into the
four types of measures.

4. Trapped-Error Probability

For the conventional erasure insertion schemes, that is, RTT,
OTT, and MO-RTT, the error and erasure probabilities are
derived in [4–6]. And we have included the error and erasure
probabilities of STT in the Appendix. Calculation of the
error and erasure probabilities of a given symbol cannot
be applied to the analysis of iterative schemes because the
erasure insertion for one symbol is not independent of that
for all other symbols. For performance analysis of the iterative
schemes, we propose trapped-error probability analysis based
on threemeasures: “ratio,” “output,” and “sum.”The trapped-
error probability is a new and useful analysis framework to
compare the quality of each measure.

Consider a received word c of length 𝑁. Let 𝑍𝑖 be the
measure of one symbol of c for one of the threemeasures:𝑍𝑖 =

max󸀠𝑗{𝑦𝑖,𝑗}/max𝑗{𝑦𝑖,𝑗}, 𝑍𝑖 = max𝑗{𝑦𝑖,𝑗}, and 𝑍𝑖 = ∑𝑀−1𝑗=0 𝑦𝑖,𝑗
for ratio, output, and sum measures, respectively. First, we
sort the received 𝑁 symbols in descending order according
to 𝑍𝑖 values that are calculated by one selected way (among
the three kinds of measures). Let 𝑝 denote the ratio of the
window of interest to the length 𝑁. This ratio 𝑝 should be
chosen in the range of 0 < 𝑝 ≤ (𝑁 − 𝐾)/𝑁, because the(𝑁,𝐾) RS code can correct up to 𝑁 − 𝐾 erasures. Now, we
count the number𝑁𝑝 of erroneous symbols in the uppermost
portion of 𝑝𝑁 symbols. Let 𝑁𝑡 denote the total number of
erroneous symbols in the received word c of length𝑁. Then,
the trapped-error probability Γ is defined as the ratio between𝑁𝑝 and𝑁𝑡:

Γ = 𝑁𝑝𝑁𝑡 . (8)

For example, let us assume that there are 𝑁 = 100 received
symbols with a total of 𝑁𝑡 = 15 erroneous symbols. Let us
assume that 𝑝 = 0.1. And we consider the first 10 (=pN)
positions when all of the symbols are arranged in decreasing
order of their corresponding measures. Let us assume that𝑁𝑝 = 8, 1, and 5 erroneous symbols are placed among these
10 positions for ratio, output, and summeasures, respectively.
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Then, the trapped-error probabilities are ΓR = 8/15, ΓO =1/15, and ΓS = 5/15 for these respective measures. In
this case, because the iterative schemes successively erase
the symbols in decreasing order of each measure, the ratio
measure works best for trapping (or identifying) the erro-
neous symbols, and the output measure works worst. For a
given 𝑝, a larger trapped-error probability indicates better
performance.

Without loss of generality, we assume that all-zero code-
word w = (0, . . . , 0) is transmitted; that is, 𝑓0 is selected for
every symbol transmission. If a transmitted symbol does not
interfere with the jamming signal and the AWGN channel is
assumed, then the probability density functions (PDFs) of 𝑦0
and 𝑦𝑗, 𝑗 ∈ {1, . . . ,𝑀 − 1}, are derived as follows [24]:

𝑔𝑈,0 (𝑦) = 12𝜎2𝑁 exp(−𝑦 + 12𝜎2𝑁 ) 𝐼0 (
√𝑦𝜎2𝑁 ) ,

𝑔𝑈,𝑗 (𝑦) = 12𝜎2𝑁 exp(− 𝑦2𝜎2𝑁) .
(9)

For the jammed case,

𝑔𝐽,0 (𝑦) = 12𝜎2 exp(−𝑦 + 12𝜎2 ) 𝐼0 (√𝑦𝜎2 ) ,
𝑔𝐽,𝑗 (𝑦) = 12𝜎2 exp(− 𝑦2𝜎2 ) ,

(10)

where 𝜎2 = 𝜎2𝐽 + 𝜎2𝑁 and 𝐼0(⋅) is the modified Bessel function
of order zero.

If we assume Rayleigh fading channel without/with
partial-band jamming, 𝑔𝑈,0 and 𝑔𝐽,0 are changed as follows
[28, 29]:

𝑔𝑈,0 (𝑦) = 12𝜎2𝑁 + 1 exp(−
𝑦2𝜎2𝑁 + 1) ,

𝑔𝐽,0 (𝑦) = 12𝜎2 + 1 exp (− 𝑦2𝜎2 + 1) .
(11)

Because 𝑔𝑈,0(𝑦), . . . , 𝑔𝑈,𝑀−1(𝑦) and 𝑔𝐽,0(𝑦), . . . , 𝑔𝐽,𝑀−1(𝑦) are
independent variables, their joint PDFs can be represented as∏𝑀−1𝑗=0 𝑔𝑈,𝑗(𝑦𝑗) and∏𝑀−1𝑗=0 𝑔𝐽,𝑗(𝑦𝑗), respectively. Their cumula-
tive distribution functions (CDFs) are 𝐺𝑈,𝑗(𝑦𝑗) and 𝐺𝐽,𝑗(𝑦𝑗),
for 𝑗 ∈ {0, . . . ,𝑀 − 1}, respectively.

Recall that 𝑍𝑖 is the measure of the symbol 𝑐𝑖 for one of
the three measures. For simplicity, we will omit the subscript𝑖: 𝑍 = max󸀠𝑗{𝑦𝑗}/max𝑗{𝑦𝑗}, 𝑍 = max𝑗{𝑦𝑗}, or 𝑍 = ∑𝑀−1𝑗=0 𝑦𝑗
for ratio, output, or sum measures, respectively. The CDF is
simply denoted by 𝐹𝑍(𝑧). Define 𝐻0 as a representation of
the event of a raw symbol error, that is, the event where there
exists at least one 𝑗 ∈ {1, . . . ,𝑀−1} that satisfies 𝑦0 < 𝑦𝑗.𝐻0’s
complementary event is denoted by𝐻0. Now, we consider the

conditional CDFs 𝐹𝑍|𝐻(𝑧 | 𝐻0) and 𝐹𝑍|𝐻(𝑧 | 𝐻0), where𝐻 is
the discrete event variable𝐻 ∈ {𝐻0, 𝐻0}. Then,

𝐹𝑍 (𝑧) = Pr [𝐻0] 𝐹𝑍|𝐻 (𝑧 | 𝐻0)
+ Pr [𝐻0] 𝐹𝑍|𝐻 (𝑧 | 𝐻0) ,

𝑓𝑍 (𝑧) = Pr [𝐻0] 𝑓𝑍|𝐻 (𝑧 | 𝐻0)
+ Pr [𝐻0] 𝑓𝑍|𝐻 (𝑧 | 𝐻0) ,

(12)

where 𝑓s denote the corresponding PDFs.
Define 𝑧𝑝 as the point that satisfies 𝐹𝑍(𝑧𝑝) = 1 − 𝑝.𝑧𝑝 is uniquely determined because 𝐹𝑍(𝑧) is monotonically

increasing from 0 to 1. Then, the trapped-error probabilityΓ(𝑧𝑝) can be defined as follows:

Γ (𝑧𝑝) = ∫∞
𝑧𝑝

𝑓𝑍|𝐻 (𝑧 | 𝐻0) 𝑑𝑧 = 1 − 𝐹𝑍|𝐻 (𝑧𝑝 | 𝐻0) . (13)

Now, we will change (13) into a form involving𝐻0 instead
of 𝐻0, such that its computation can be easily performed.
From (12), we observe that

𝐹𝑍 (𝑧𝑝) = Pr [𝐻0] 𝐹𝑍|𝐻 (𝑧𝑝 | 𝐻0)
+ Pr [𝐻0] 𝐹𝑍|𝐻 (𝑧𝑝 | 𝐻0) = 1 − 𝑝. (14)

Using (14), the trapped-error probability in (13) can bewritten
as

Γ (𝑧𝑝) = 1 − 1 − 𝑝 − Pr [𝐻0] 𝐹𝑍|𝐻 (𝑧𝑝 | 𝐻0)
Pr [𝐻0] . (15)

Using the relation Pr[𝐻0] + Pr[𝐻0] = 1 and after some
manipulation, we have the following:

Γ (𝑧𝑝) = 𝑝 − Pr [𝐻0] + Pr [𝐻0] 𝐹𝑍|𝐻 (𝑧𝑝 | 𝐻0)1 − Pr [𝐻0] . (16)

Here, Pr[𝐻0] can be calculated as follows:

Pr [𝐻0] = Pr [𝑦0 > 𝑦𝑗, ∀𝑗 = 1, . . . ,𝑀 − 1]
= 𝜌∫∞
0
∫𝑦0
0
⋅ ⋅ ⋅ ∫𝑦0
0

𝑀−1∏
𝑗=0

𝑔𝑈,𝑗 (𝑦𝑗) 𝑑𝑦𝑀−1 ⋅ ⋅ ⋅ 𝑑𝑦0
+ 𝜌∫∞
0
∫𝑦0
0
⋅ ⋅ ⋅ ∫𝑦0
0

𝑀−1∏
𝑗=0

𝑔𝐽,𝑗 (𝑦𝑗) 𝑑𝑦𝑀−1 ⋅ ⋅ ⋅ 𝑑𝑦0
= 𝜌∫∞
0
𝑔𝑈,0 (𝑦0) (𝐺𝑈,1 (𝑦0))𝑀−1 𝑑𝑦0

+ 𝜌∫∞
0
𝑔𝐽,0 (𝑦0) (𝐺𝐽,1 (𝑦0))𝑀−1 𝑑𝑦0,

(17)

where 𝜌 = 1 − 𝜌.
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Let us assume AWGN and a partial-band jamming
channel. Using a binomial expansion and some calculations
[30], (17) becomes

𝜌𝑒(−1/2𝜎2𝑁) ∞∑
𝑙=0

𝑀−1∑
𝑚=0

(−1)𝑚
(2𝜎2𝑁)𝑙 (𝑚 + 1)𝑙+1 𝑙! (

𝑀 − 1
𝑚 )

+ 𝜌𝑒(−1/2𝜎2) ∞∑
𝑙=0

𝑀−1∑
𝑚=0

(−1)𝑚
(2𝜎2)𝑙 (𝑚 + 1)𝑙+1 𝑙! (

𝑀 − 1
𝑚 ) .

(18)

Similarly, for a Rayleigh fading and partial-band jamming
channel, (17) becomes

𝜌𝑀−1∑
𝑚=0

2𝜎2𝑁(2 + 2𝑚) 𝜎2𝑁 + 𝑚 (−1)𝑚 (𝑀 − 1
𝑚 )

+ 𝜌𝑀−1∑
𝑚=0

2𝜎2(2 + 2𝑚) 𝜎2 + 𝑚 (−1)𝑚 (𝑀 − 1
𝑚 ) .

(19)

Next, we compute 𝐹𝑍|𝐻(𝑧𝑝 | 𝐻0) as follows:

𝐹𝑍|𝐻 (𝑧𝑝 | 𝐻0)
= Pr [𝑍 < 𝑧𝑝, 𝑦0 > 𝑦𝑗󸀠 , ∀𝑗󸀠 = 1, . . . ,𝑀 − 1]

Pr [𝐻0] . (20)

Now, assume that we use the ratio measure. Then, the
numerator of (20) becomes

Pr[max󸀠𝑗 {𝑦𝑗}
max𝑗 {𝑦𝑗} < 𝑧𝑝, 𝑦0 > 𝑦𝑗󸀠 , ∀𝑗󸀠 = 1, . . . ,𝑀 − 1]

= Pr [max󸀠𝑗 {𝑦𝑗} < 𝑧𝑝𝑦0]
= Pr [𝑦𝑗 < 𝑧𝑝𝑦0, ∀𝑗 = 1, . . . ,𝑀 − 1]
= 𝜌∫∞
0
∫𝑧𝑝𝑦0
0

⋅ ⋅ ⋅ ∫𝑧𝑝𝑦0
0

𝑀−1∏
𝑗=0

𝑔𝑈,𝑗 (𝑦𝑗) 𝑑𝑦𝑀−1 ⋅ ⋅ ⋅ 𝑑𝑦0
+ 𝜌∫∞
0
∫𝑧𝑝𝑦0
0

⋅ ⋅ ⋅ ∫𝑧𝑝𝑦0
0

𝑀−1∏
𝑗=0

𝑔𝐽,𝑗 (𝑦𝑗) 𝑑𝑦𝑀−1 ⋅ ⋅ ⋅ 𝑑𝑦0
= 𝜌∫∞
0
𝑔𝑈,0 (𝑦0) (𝐺𝑈,1 (𝑧𝑝𝑦0))(𝑀−1) 𝑑𝑦0

+ 𝜌∫∞
0
𝑔𝐽,0 (𝑦0) (𝐺𝐽,1 (𝑧𝑝𝑦0))(𝑀−1) 𝑑𝑦0.

(21)

For AWGN and Rayleigh fading channels with partial-band
jamming, (21) becomes (22) and (23), respectively.

𝜌𝑒(−1/2𝜎2𝑁) ∞∑
𝑙=0

𝑀−1∑
𝑚=0

(−1)𝑚
(2𝜎2𝑁)𝑙 (𝑚𝑧𝑝 + 1)𝑙+1 𝑙! (

𝑀 − 1
𝑚 )

+ 𝜌𝑒(−1/2𝜎2) ∞∑
𝑙=0

𝑀−1∑
𝑚=0

(−1)𝑚
(2𝜎2)𝑙 (𝑚𝑧𝑝 + 1)𝑙+1 𝑙! (

𝑀 − 1
𝑚 ) ,

(22)

𝜌𝑀−1∑
𝑚=0

2𝜎2𝑁(2 + 2𝑚𝑧𝑝) 𝜎2𝑁 + 𝑚𝑧𝑝 (−1)
𝑚 (𝑀 − 1

𝑚 )

+ 𝜌𝑀−1∑
𝑚=0

2𝜎2(2 + 2𝑚𝑧𝑝) 𝜎2 + 𝑚𝑧𝑝 (−1)
𝑚 (𝑀 − 1

𝑚 ) .
(23)

For the output measure, the numerator of (20) becomes

Pr [max𝑗 {𝑦𝑗} < 𝑧𝑝, 𝑦0 > 𝑦𝑗󸀠 , ∀𝑗󸀠 = 1, . . . ,𝑀 − 1]
= Pr [𝑦0 < 𝑧𝑝, 𝑦0 > 𝑦𝑗, ∀𝑗 = 1, . . . ,𝑀 − 1]
= 𝜌∫𝑧𝑝
0
∫𝑦0
0
⋅ ⋅ ⋅ ∫𝑦0
0

𝑀−1∏
𝑗=0

𝑔𝑈,𝑗 (𝑦𝑗) 𝑑𝑦𝑀−1 ⋅ ⋅ ⋅ 𝑑𝑦0
+ 𝜌∫𝑧𝑝
0
∫𝑦0
0
⋅ ⋅ ⋅ ∫𝑦0
0

𝑀−1∏
𝑗=0

𝑔𝐽,𝑗 (𝑦𝑗) 𝑑𝑦𝑀−1 ⋅ ⋅ ⋅ 𝑑𝑦0
= 𝜌∫𝑧𝑝
0
𝑔𝑈,0 (𝑦0) (𝐺𝑈,1 (𝑦0))(𝑀−1) 𝑑𝑦0

+ 𝜌∫𝑧𝑝
0
𝑔𝐽,0 (𝑦0) (𝐺𝐽,1 (𝑦0))(𝑀−1) 𝑑𝑦0.

(24)

With partial-band jamming, (24) becomes (25) and (26)
for AWGN and Rayleigh fading channels, respectively.

𝜌𝑒(−1/2𝜎2𝑁) ∞∑
𝑙=0

𝑀−1∑
𝑚=0

(−1)𝑚
(2𝜎2𝑁)2𝑙+1 𝑙! (

𝑀 − 1
𝑚 )

⋅ (( 2𝜎2𝑁𝑚 + 1)
𝑙+1

− 𝑒(−(𝑚+1)𝑧𝑝/2𝜎2𝑁) 𝑙∑
𝑛=0

𝑧𝑛𝑝𝑛! ( 2𝜎2𝑁𝑚 + 1)
𝑙+1−𝑛)

+ 𝜌𝑒(−1/2𝜎2) ∞∑
𝑙=0

𝑀−1∑
𝑚=0

(−1)𝑚
(2𝜎2)2𝑙+1 𝑙! (

𝑀 − 1
𝑚 )

⋅ (( 2𝜎2𝑚 + 1)
𝑙+1

− 𝑒(−(𝑚+1)𝑧𝑝/2𝜎2) 𝑙∑
𝑛=0

𝑧𝑛𝑝𝑛! ( 2𝜎2𝑚 + 1)
𝑙+1−𝑛) ,

(25)
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𝜌𝑀−1∑
𝑚=0

2𝜎2𝑁(2 + 2𝑚) 𝜎2𝑁 + 𝑚 (−1)𝑚 (𝑀 − 1
𝑚 ) ⋅ (1

− 𝑒(−(((2+2𝑚)𝜎2𝑁+𝑚)/(4𝜎4𝑁+2𝜎2𝑁))𝑧𝑝))
+ 𝜌𝑀−1∑
𝑚=0

2𝜎2(2 + 2𝑚) 𝜎2 + 𝑚 ⋅ (−1)𝑚 (𝑀 − 1
𝑚 )(1

− 𝑒(−(((2+2𝑚)𝜎2+𝑚)/(4𝜎4+2𝜎2))𝑧𝑝)) .

(26)

For the sum measure, the numerator of (20) is given as (27).
Actually, (27) is the same as (A.4) in the Appendix, where 𝜇 =𝑧𝑝. Using the derived equations, we can calculate the trapped-
error probabilities of three measures.

Pr[[
𝑀−1∑
𝑗=0

𝑦𝑖,𝑗 < 𝑧𝑝, 𝑦0 > 𝑦𝑗, ∀𝑗 = 1, . . . ,𝑀 − 1]] = Pr[[𝑦0 < 𝑧𝑝,

𝑦1 < min (𝑦0, 𝑧𝑝 − 𝑦0) , . . . , 𝑦𝑀−1 < min(𝑦0, 𝑧𝑝 − 𝑀−2∑
𝑗=0

𝑦𝑗)]]
= 𝜌∫𝑧𝑝
0
∫min(𝑦0 ,𝑧𝑝−𝑦0)

0
⋅ ⋅ ⋅ ∫min(𝑦0 ,𝑧𝑝−∑

𝑀−2
𝑗=0 𝑦𝑗)

0

𝑀−1∏
𝑗=0

𝑔𝑈,𝑗 (𝑦𝑗) 𝑑𝑦𝑀−1
⋅ ⋅ ⋅ 𝑑𝑦0

(27)

+ 𝜌∫𝑧𝑝
0
∫min(𝑦0 ,𝑧𝑝−𝑦0)

0
⋅ ⋅ ⋅ ∫min(𝑦0 ,𝑧𝑝−∑

𝑀−2
𝑗=0 𝑦𝑗)

0

𝑀−1∏
𝑗=0

𝑔𝐽,𝑗 (𝑦𝑗) 𝑑𝑦𝑀−1
⋅ ⋅ ⋅ 𝑑𝑦0.

(28)

5. Simulation Results

5.1. Trapped-Error Probabilities. In this subsection, we con-
firm the trapped-error probability analysis over AWGN and
Rayleigh fading channels with partial-band jamming. Let
us assume 4-FSK, 𝜌 = 0.1, and 𝐸𝑏/𝑁0 = 5 dB for the
AWGN channel and 𝐸𝑏/𝑁0 = 12 dB for the Rayleigh fading
channel. For the higher order of modulation, such as 32-
FSK, which we will consider, (27) requires 32-dimensional
integration; therefore, we select 4-FSK as an example. To
calculate the probabilities Γ(𝑧𝑝) for each measure, the input𝑧𝑝 should be obtained for the given set of system parameters.
For this, we further assume that 𝑝 = 0.1 and 0.2 for AWGN
and Rayleigh fading channels, respectively. As we described
in Section 4, we found 𝑧𝑝 values that satisfy 𝐹𝑧(𝑧𝑝) =1 − 𝑝 using simulations. They are listed in Tables 1 and 3
for various 𝐸𝑏/𝑁𝑗. R, O, and S refer to ratio, output, and
sum, respectively. In the investigation, we transmitted 105
symbols for various channel states and calculated their ratio,
output, and sum measures. We note that these trapped-error
probabilities do not depend on a specific coding scheme,
because these statistics are observed at the demodulator
output without coding.

Figures 2 and 3 show the trapped-error probabilities of
the three measures obtained using simulations and from (16)
with the threshold values given in Tables 1 and 3. Solid and
dashed lines indicate the probabilities obtained by simulation

Table 2: Class of erasure insertion schemes.

Measure Threshold test Iterative
Ratio RTT R-GMD
Output OTT O-GMD
Sum STT S-GMD
Two-dimensional Ex: MO-RTT Ex: RS-GMD

Table 3:Thresholds 𝑧𝑝 of the three measures where𝑀 = 4, 𝑝 = 0.2,𝜌 = 0.1, and 𝐸𝑏/𝑁0 = 12 dB over Rayleigh fading and partial-band
jamming channels.

𝐸𝑏/𝑁𝑗 (dB) −5 0 5 10 15 20𝑧𝑝 of R 0.353 0.345 0.350 0.329 0.294 0.263𝑧𝑝 of O 2.271 2.233 2.053 1.765 1.681 1.660𝑧𝑝 of S 2.368 2.342 2.297 2.069 1.845 1.776

and (16), respectively. The cross, circle, and square marks
represent Γ(𝑧𝑝) values of ratio, output, and sum measures,
respectively.

These two figures confirm that the simulation is exact
enough to closely follow the theoretical result in (16). Spe-
cially, ΓO in the analysis is almost the same as ΓO in the
simulation results. This result implies the correctness of our
performance simulation.

In these figures, the trapped-error probability of the
ratio measure is increased as SJR is increased; therefore, we
predict that the R-GMD decoding will perform better than
the other one-dimensional schemes at high SJR. Additionally,
we predict that S-GMD decoding is better than O-GMD
decoding in the middle SJR region. Recall that the higher
the trapped-error probability, the better the performance.
This observation shows the influence on the two-dimensional
schemes, because the trapped-error probability affects the
number of decoding trials. We will discuss it in the following
simulation results.

5.2. Performance over AWGN Channel. Throughout perfor-
mance simulations, we consider 32-ary FSKmodulation with(31, 20) RS code over a field of size 32, an ideal interleaver,
and a random hopping pattern. We first consider partial-
band jamming (or partial-time jamming with the same 𝜌)
and AWGN channels. In this case, 𝛼 = 1 in Figure 1. For
Figures 4–7, the channel noise is fixed, as we used 𝐸𝑏/𝑁0 =5 dB.Various signals to jamming signal ratio𝐸𝑏/𝑁𝑗 have been
considered for the simulations.

In Figure 4, the performance of various erasure insertion
schemes is plotted over the partial-band jamming channel
with 𝜌 = 0.1.The dashed line shows the baseline performance
“Without EI,” which does not use any erasure insertion
scheme.The unmarked solid line represents the performance
of the MO-RTT, which is the conventional erasure insertion
scheme.Wenote that theMO-RTTuses preoptimized thresh-
olds and CSIR. To obtain the optimum thresholds for MO-
RTT, we optimized the thresholds for 𝐸𝑏/𝑁𝑗 = 0∼30 dB with
10 dB steps. Solid lines with circle, square, cross, plus, and
diamond marks represent the performance of output-based,
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Figure 2: Trapped-error probabilities of ratio-based (ΓR), output-
based (ΓO), and sum-based (ΓS) measures over partial-band jam-
ming and AWGN channel.
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Figure 3: Trapped-error probabilities of ratio-based (ΓR), output-
based (ΓO), and sum-based (ΓS) measures over partial-band jam-
ming and Rayleigh channels.

sum-based, ratio-based, ratio-to-output-based, and ratio-to-
sum-based GMD decoding, respectively. In this figure, we
also present the performance using log-likelihood ratio (LLR)
based GMD decoding as the triangle-marked line. This is
the performance of a system with perfect CSIR, such as
SNR, SJR, and the existence of a jamming signal. This LLR-
GMD decoding iteratively erases the least reliable symbols
based on LLR, as described in [19, 22, 26]. Because it is well
known that MO-RTT exhibits better performance than OTT

Eb/Nj (dB)
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100

W
ER
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Without EI
MO-RTT
O-GMD
S-GMD

R-GMD
RO-GMD
RS-GMD
LLR-GMD

Figure 4: Performance of various erasure insertion schemes over
partial-band jamming and AWGN channels with 𝜌 = 0.1 and𝐸𝑏/𝑁0 = 5 dB.

or RTT [5–7], the performances ofOTTandRTTare omitted.
Before discussing the simulation result, we note that RSO-
GMD decoding, which serially exploits the three measures,
has almost the same performance as RS-GMD decoding;
therefore, we have also omitted it. From Figure 4, we make
the following observations:

(1) As we expect, LLR-GMD decoding with CSIR shows
the best performance. We will focus on the perfor-
mance gap between LLR-GMD decoding with CSIR
and the other erasure insertion schemes without
CSIR. To achieve WER = 10−4, LLR-GMD decoding
requires 𝐸𝑏/𝑁𝑗 = 19 dB. The ratio-based GMD
decoding and its two-dimensional schemes achieve
the target WER at 𝐸𝑏/𝑁𝑗 = 21 dB which is much
closer than that of MO-RTT. Even if the jamming
power is decreased as 𝐸𝑏/𝑁𝑗 = 25 dB, the perfor-
mance of MO-RTT is still far from WER = 10−4. In
the low SJR region, only the two two-dimensional
iterative schemes can achieve WER = 10−2 without
CSIR. We note that the one-dimensional iterative
schemes and MO-RTT require 𝐸𝑏/𝑁𝑗 > 9 dB to
achieve WER = 10−2.

(2) The performance of RS-GMD decoding approaches
that of LLR-GMD decoding, as SJR is increased. At𝐸𝑏/𝑁𝑗 = 20 dB, LLR-GMD decoding with perfect
CSIR has 35% less WER than RS-GMD decoding.
We note that this gap cannot be closed even if the
jamming power is decreased.

(3) When the jamming power is decreased, that is,
the channel approaches the unjammed channel, the
performance of R-GMD and RS-GMD decoding is
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Figure 5: Trapped-error probability of various measures over
partial-band jamming and AWGN channels with 𝑝 = 0.3, 𝜌 = 0.1,
and 𝐸𝑏/𝑁0 = 5 dB.

still better than the performance of “Without EI”
or MO-RTT. This implies that the iterative erasure
insertion and decoding schemes do not decrease the
performance if there are no jamming signals. Because
of this, we do not need to detect the jamming signal.

In Figure 5, trapped-error probabilities of ratio, output,
and sum measures are represented, which corresponds to
Figure 4. To obtain the trapped-error probabilities, SJR and
SNR were scaled based on the code rate 20/31 = 𝑁/𝐾, which
is different from Section 5.1. We used 𝑝 = 0.3, and the other
parameters are the same as those used in Figure 4. In Figure 5,ΓR is much larger than ΓO and ΓS. The values of ΓR explain the
good performance of R-GMDdecoding.We find that ΓO goes
to <1 −𝐾/𝑁 ≈ 0.3 at 𝐸𝑏/𝑁𝑗 ≈ 10 dB. Any iterative scheme
that has zero trapped-error probability at a given SJR has the
same performance as the performance of “Without EI”. This
result explains why O-GMD decoding has a performance
degradation region near 10 dB, in Figure 4. Because the
performance of O-GMD decoding rapidly approaches the
performance of “Without EI”, its performance is degraded as
SJR is increased. We note that the performance of S-GMD
decoding slowly approaches the performance of “Without
EI”; therefore, there is no performance degradation region.

The performance gain of the iterative schemes in Fig-
ure 4 cannot be obtained without drawbacks: the iterative
schemes require more decoding trials. To investigate how
many decoding trials are required, we determine the average
number of decoding iterations of various iterative schemes
via simulations. The results are shown in Figure 6. In fact,
we simulated iterative schemes that erase one symbol during
the first loop and then erase two symbols for each remaining
loop, because this process does not decrease the performance,
as described in [19]. In general, the average number of
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Figure 6: Average number of decoding iterations for various erasure
insertion schemes over partial-band jamming and AWGN channels
with 𝜌 = 0.1 and 𝐸𝑏/𝑁0 = 5 dB.
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Figure 7: Performance comparison of MO-RTT and RS-GMD
decoding scheme over partial-band jamming and AWGN channels
with various values of 𝜌, 𝐸𝑏/𝑁0 = 5 dB and 𝐸𝑏/𝑁𝑗 = 10 dB.

decoding trials decreases rapidly as SJR increases. At high
SJR, most of the received words are completely decoded by a
single trial of error-only decoding, which holds true because
higher SJR implies that the environment becomes less and
less hostile. For low SJR, the average decoding trial of RS-
GMD decoding is approximately 1.75 (at 𝐸𝑏/𝑁𝑗 = 0 dB),
which decreases as SJR increases.This result indicates that the
iterative erasure insertion and decoding scheme is practically
implementable. We note that the trial number of O-GMD
decoding is increased at approximately 𝐸𝑏/𝑁𝑗 ≈ 10 dB,
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and that is consistent with the performance degradation of
O-GMD decoding in Figures 4 and 5. Because O-GMD
decoding could not accurately erase the erroneous symbols,
the decoder has to try more decoding. Because of this result,
wemust use S-GMDdecoding, instead of O-GMDdecoding,
for the two-dimensional scheme with R-GMD decoding.
Now, recall the analysis results of Section 5.1. In Figure 2,
we observed that the trapped-error probability of the ratio
measure is increased as SJR is increased and that of the sum
measure is decreased. For the case in which the trapped-error
probabilities cross at the point of SJR, if we want to have
fewer decodings at the higher SJR, then we must use R-GMD
decoding first in RS-GMDdecoding. If we want to have fewer
decodings at the lower SJR, then S-GMD decoding should be
applied first. In Figures 4 and 6, because we are considering
the SJR region in which ΓR > ΓS, we have first exploited R-
GMD decoding for RS-GMD decoding.

In Figure 7, the performances of MO-RTT and RS-GMD
decoding are shown over a partial-band jamming and an
AWGN channel with various jamming duty ratios 𝜌 with
fixed 𝐸𝑏/𝑁0 = 5 dB and 𝐸𝑏/𝑁𝑗 = 10 dB. For all values of𝜌, RS-GMD decoding works much better than MO-RTT. We
note that two erasure insertion schemes are more efficient for
smaller 𝜌 channels.
5.3. Performance over Rayleigh Fading Channel. Figure 8
shows the performance of various erasure insertion schemes
over partial-band jamming and Rayleigh fading channel with𝜌 = 0.1 and 𝐸𝑏/𝑁0 = 12 dB. For each symbol transmission,𝛼 in Figure 1 is realized by an i.i.d. Rayleigh distribution. We
assume that fading coefficients are not known to the receiver,
except for the system of MO-RTT.

In Figure 8, RS-GMD decoding exhibits better per-
formance than MO-RTT, which is the same result as we
found over the AWGN channel. For the same WER of 10−3,
the jammer should spend 14 dB more 𝑁𝑗. The WER of
ratio-based schemes (including two-dimensional schemes)
approach 10−4. Unlike the results for an AWGN channel,
R-GMD decoding is dominant and the contribution of S-
GMD decoding is marginal. Therefore, we conclude that R-
GMD decoding is sufficient for Rayleigh fading channels.
Additionally, we present the performance of LLR-GMD
decoding which knows perfect CSIR. As we discussed in
Section 5.2, the performance of R-SEI approaches that of LLR-
SEI and the gap is maintained for every SJR.

In Figure 9, the trapped-error probabilities of the mea-
sures are displayed over a Rayleigh fading channel with𝐸𝑏/𝑁0 = 12 dB. The other parameters are the same as those
in Figure 5. In this figure, the trapped-error probability of the
ratio measure is 1 in all SJR regions. In other words, R-GMD
decoding is the best one-dimensional iterative scheme for the
target system parameters. As we found for the other trapped-
error probability results, the trapped-error probabilities of
sum and output measures decrease as SJR increases. Where
the trapped-error probabilities are lower than <1 −𝐾/𝑁 ≈0.3, that is, 𝐸𝑏/𝑁𝑗 = 10 dB and 16 dB for output and
sum, respectively, the performances of O-GMD and S-GMD
decoding follow the performance of “Without EI”. As we
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Figure 8: Performance of various erasure insertion schemes over a
Rayleigh fading channel, where 𝜌 = 0.1 and 𝐸𝑏/𝑁0 = 12 dB.
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Figure 9: Trapped-error probability of various iterative schemes
over partial-band jamming and Rayleigh fading channels with 𝑝 =0.3, 𝜌 = 0.1, and 𝐸𝑏/𝑁0 = 12 dB.

discussed above, the fast decreasing trapped-error probability
of the output measure causes the performance degradation of
O-GMD decoding at approximately 10 dB in Figure 9.

6. Concluding Remarks

In this paper, we considered iterative erasure insertion and
decoding schemes that do not require any preoptimized
thresholds or any CSIR. Additionally, we proposed a new
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analysis framework for the ratio, output, and sum mea-
sures. From the simulation results, we confirmed that the
ratio-based GMD decoding scheme and its two-dimensional
schemes have the best performance. Using the trapped-
error probability, the performances of the iterative erasure
insertion and decoding schemes are explained.

Appendix

Error and Erasure Probability of Sum
Threshold Test

Let us denote the symbol error and erasure probabilities of
STT as 𝑃err and 𝑃ers, respectively. The symbol error event
occurs when a received symbol is erroneous but is not erased
by STT. The symbol erasure event occurs when a received
symbol is erased by STT.The two probabilities can be divided
into two cases, as follows:

𝑃err = (1 − 𝜌) 𝑃𝑈,err + 𝜌𝑃𝐽,err,
𝑃ers = (1 − 𝜌) 𝑃𝑈,ers + 𝜌𝑃𝐽,ers, (A.1)

where 𝐽 and 𝑈 refer to the jammed and the unjammed cases,
respectively. We denote the symbol erase event of STT by𝐻𝑠,
that is, 𝑧 = ∑𝑀−1𝑗=0 𝑦𝑗 > 𝜇. Then, 𝑃𝑈,err can be represented as
follows:

𝑃𝑈,err = Pr [𝐻0, 𝐻𝑠 | 𝑈]
= Pr [𝐻𝑠 | 𝑈] − Pr [𝐻0, 𝐻𝑠 | 𝑈] . (A.2)

The first term, Pr[𝐻𝑠 | 𝑈], and the second term, Pr[𝐻0, 𝐻𝑠 |𝑈], are given as (A.3) and (A.4), respectively. Similarly,𝑃𝑈,ers = Pr[𝐻𝑠 | 𝑈] = 1 − Pr[𝐻𝑠 | 𝑈] can be obtained using
(A.3). By replacing 𝑔𝑈,𝑗 with 𝑔𝐽,𝑗, 𝑗 = 0, . . . ,𝑀 − 1, we can
calculate the error and erase probabilities of the unjammed
case. For the case in which a jamming signal exists, 𝑃𝐽,err and𝑃𝐽,ers can be calculated by substituting 𝑔𝐽,𝑗(𝑦𝑗) for 𝑔𝑈,𝑗(𝑦𝑗),𝑗 = 0, . . . ,𝑀 − 1. The derivation of average error probability𝑃err and erasure probability 𝑃ers is complete.

Pr [𝐻𝑠 | 𝑈] = Pr [𝑧 < 𝜇 | 𝑈] = Pr[[
𝑀−1∑
𝑗=0

𝑦𝑗 < 𝜇]] = ∫𝜇
0
∫𝜇−𝑦0
0

⋅ ⋅ ⋅ ∫𝜇−∑𝑀−2𝑗=0 𝑦𝑗
0

𝑀−1∏
𝑗=0

𝑔𝑈,𝑗 (𝑦𝑗) 𝑑𝑦𝑀−1 ⋅ ⋅ ⋅ 𝑑𝑦1𝑑𝑦0, (A.3)

Pr [𝐻0, 𝐻𝑠 | 𝑈] = Pr[[𝑦0 > 𝑦𝑗, ∀𝑗 = 1, . . . ,𝑀 − 1, 𝑀−1∑
𝑗=0

𝑦𝑗 < 𝜇]]
= ∫𝜇
0
∫min(𝑦0 ,𝜇−𝑦0)

0
⋅ ⋅ ⋅ ∫min(𝑦0 ,𝜇−∑

𝑀−2
𝑗=0 𝑦𝑗)

0

𝑀−1∏
𝑗=0

𝑔𝑈,𝑗 (𝑦𝑗) 𝑑𝑦𝑀−1 ⋅ ⋅ ⋅ 𝑑𝑦1𝑑𝑦0.
(A.4)
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