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In order to solve the problem of high computational complexity in block-based methods for copy-move forgery detection, we divide
image into texture part and smooth part to deal with them separately. Keypoints are extracted and matched in texture regions.
Instead of using all the overlapping blocks, we use nonoverlapping blocks as candidates in smooth regions. Clustering blocks with
similar color into a group can be regarded as a preprocessing operation. To avoid mismatching due to misalignment, we update
candidate blocks by registration before projecting them into hash space. In this way, we can reduce computational complexity
and improve the accuracy of matching at the same time. Experimental results show that the proposed method achieves better
performance via comparing with the state-of-the-art copy-move forgery detection algorithms and exhibits robustness against JPEG

compression, rotation, and scaling.

1. Introduction

With the development of computer technique, there are
more and more image editing tools, such as Photoshop and
Fireworks. As a result, it becomes much easier for people
even nonprofessionals to do some operations on digital
images. However, it also brings convenience for people to
tamper maliciously. Once these tampered images are applied
to court forensics, newspaper, or academic research, the
social credibility crisis will be aroused. Therefore, the image
forgery detection becomes necessary. There are many types
of tampering operations, and copy-move is one of the most
common operations among them. The copy-move forgery is
to copy a region and paste it into another place in the same
image.

In the last few years, a large number of methods have
been proposed to detect copy-move forgery that are mainly
concentrated on two categories. One is based on block
feature, and the other is based on keypoint feature. The block-
based methods usually first divide the image into overlapping
blocks, then extract each blocks feature, and finally find
the duplicate regions after matching them. Fridrich et al.
[1] first proposed the copy-move forgery detection (CMFD)
method by using the coeflicients of Discrete Cosine Trans-
form (DCT), and they applied dictionary sorting to the

matching process. However, the computing complexity of
this algorithm is very high. As a result, many dimensionality
reduction-based algorithms have been proposed. Popescu
and Farid [2] reduced the feature dimensions via principal
component analysis (PCA). Bashar et al. [3] improved the
performance further by Kernel-PCA (KPCA). Li et al. [4]
combined discrete wavelet transform (DWT) and Singular
Values Decomposition (SVD) to extract block feature. Kang
and Wei [5] extracted the singular values of a reduced-rank
approximation (SVD) as the block feature. Bayram et al.
[6] computed the Fourier-Mellin Transform (FMT) for each
block, and this method had high robustness in rotation and
scaling. Mahdian and Saic [7] proposed a method based on
blur moment invariants (Blur). Wang et al. [8] applied Hu
moments (Hu) to each block to extract features. Ryu et al.
[9, 10] used Zernike moments (Zernike) as block feature,
which was only robust in rotation. Luo et al. [11] used the
average of red, green, and blue components, respectively, and
computed directional information for each block. Wang et al.
[12] used the mean intensities of circles with different radii
around the block center to obtain the robust feature. Lin et al.
[13] got a 9-dimensional feature vector via calculating the gray
average intensities of each block and its subblocks. Bravo-
Solorio and Nandi [14] extracted the entropy as block feature.
Though the block-based method can locate the tampered
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region in pixel level accurately, the performance may decrease
a lot when the suspicious image was attacked by some
operations, such as noise, JPEG compression, and scaling.
In addition, it is hard for these algorithms to estimate an
accurate geometrical transform. Moreover, the computing
complexity is very high in the matching process due to a
large number of overlapping blocks, and the computation
time would increase rapidly as the image size becomes
larger.

The keypoint-based methods rely on the extraction of
keypoints in the images. Huang et al. [15] proposed an
algorithm based on Scale Invariant Feature Transform (SIFT),
which is robust and sensitive to postimage processing.
Amerini et al. [16] matched the SIFT descriptors via g2NN,
resulting in managing multiple regions matching successtully.
Speeded-Up Robust Feature (SURF) [17, 18] is used to
improve matching efficiency, and the length of this feature is
half of SIFT. SIFT and SUREF are the most widely used key-
points for CMFD. Some other local features are also proposed
to detect duplicate regions, like Local Binary Pattern (LBP)
[19], Binary Robust Invariant Scalable Keypoints (BRISK)
[20], and DAISY [21]. Though the computing complexity of
these algorithms in matching process is much lower, they also
have a main drawback: the performance will be very poor
when the copy-move regions are smooth.

To overcome the shortcomings in block-based and
keypoint-based approaches, a novel matching strategy is
proposed to detect the copy-move forgery in digital images.
We divide image into nonoverlapping blocks; then the image
is segmented into smooth part and texture part according
to the distribution of keypoints. In texture part, we use the
extracted keypoints to find duplicate regions, while in smooth
part, in order to reduce the computational complexity, blocks
with similar color are clustered into a group, and searching
duplicated blocks will also be carried out in the same group.
Because we use nonoverlapping blocks, we cannot find the
two same blocks in the content, which results in mismatching.
So we need to update the candidate block by registration if
the query block and the candidate block are partly consistent
in content before projecting them to hash space. Finally, LSH
algorithm is used to group the updated candidate blocks into
several hash buckets. The strategy based on nonoverlapping
can significantly reduce computational complexity, while
maintaining the high accuracy levels for CMFD. The rest
of the paper is organized as follows. In Section 2, we show
the framework in our proposed method. The experimental
results are presented in Section 3, and Section 4 draws
conclusions.

2. Nonoverlapping Blocks Based
CMED Approach

The framework of our method is shown in Figure 1, which
consists of three key steps: image division, feature matching,
and postprocessing. In the first step, an image is divided into
two parts: the yellow part is the texture region, while the blue
part is the smooth region. In the second step, two types of
features for the two parts are extracted to obtain the matched
parts. In the last step, falsely matched pairs are removed;
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FIGURE 1: The framework of the proposed method.

then we exploit morphology operations to generate a forgery
detection map.

2.1. Image Division. In this section, we will introduce the
image division. When we get a suspicious image, we first
divide the image into nonoverlapping blocks; then we extract
the keypoints in each of them. There are many kinds of
keypoints, and we use SIFT in this paper. The reason why we
choose SIFT keypoint will be explained in Section 2.2. Finally,
we count the number of keypoints N; in each block. As we all
know, the identification and selection of the keypoints rely on
the high-entropy regions. As a result, most keypoints can only
exist in texture regions. Consequently, we select a threshold
7, to decide whether the current block is a smooth block or a
texture block.

N;>1, block’ € texture block

1

@

N; <1, block’ € smooth block.

2.2. Feature Matching. According to the paper [23], we know
that SIFT feature and Zernike moments are recommended for
their excellent performance among the keypoint-based and
block-based features, respectively. In our implementation, we
employ vlFeat software to help us to detect and describe the
keypoints. Once the parameters are set, the distribution and
quantity of the keypoints are fixed. SIFT feature can detect
forged regions even after some attacks but fail to detect flat
area. Zernike moments are invariant to rotation and show
effective for flat area. Therefore, in our implementation we
choose SIFT and Zernike moments as features for detection
in texture blocks and smooth blocks, respectively.

2.2.1. Feature Matching in Texture Region. After image divi-
sion, we obtain a set of keypoints X = {x,x,,...,x,}
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FIGURE 2: The framework of feature matching in smooth region.

with their corresponding descriptors S = {s;,s,,...,s,}. We
use g2NN matching in this step, because this method can
well solve multiple regions matching problem. The candidate
matches for each keypoint x; are found by calculating the
Euclidean distance between all the other (n — 1) keypoints;
then we obtain the vector D = {d,,d,,...,d,_,} which
represents these distances sorted from nearest to farthest.
Ratios d;/d,,, are calculated in turn T; = d;/d,, (i =
1,2,3,...,n — 2). The iteration stops in the value k when
T, < 1, and Ty,; > T7,. Each keypoint in correspondence
to a distance in {d,,d,,...,d;} is considered as a matched
keypoint.

2.2.2. Feature Matching in Smooth Region. Due to the fact
that only a small number of keypoints can be extracted in the
smooth region, we propose a new matching strategy. Firstly,
blocks with similar color are clustered into a group. Secondly,
blocks are updated by registration within a group. Feature-
based LSH is used to accelerate finding correct matches in
the last. Noting that after the first round of matching we need
to do registration according to the next block and execute
the same operation until all the blocks in this group are
traversed. The framework of feature matching in smooth
region is shown in Figure 2.

We assume that the source region and its corresponding
target region in the image share the same color distribution.
Hence, when we detect a pair of suspicious regions, we
just need to search in blocks which have similar color. For
example, if the content of the coping source region is ocean,
its matching region must exist in the blue region in the
image. In addition, in this way, we can reduce computational
complexity. In order to remove the influence of brightness,
we convert these selected smooth blocks from RGB color
space to HSV color space to get new ones By,. The H and
S components are uniformly quantized to the k levels, where
H =01,...,k—18 = 0,1,...,k — 1. Then we compute
the mean value of H and S in each block Bg;i) to obtain

hglé)m and sglé)m, where (i, j) represents the coordinates of

the upper left corner of the block. We use (b7 | s7) ) ag
blocK’s color feature; then some of them will be divided into a
group if their color features are very similar, since H and S are
quantized to the k levels, respectively, and the total number
of color groups is k*. Finally, we count all the nonempty

color groups; then the color group can be represented as

{group,, group,, ..., groupy,}, where N is the number of the
nonempty color groups.

The traditional block-based methods usually use overlap-
ping blocks to extract feature, which are very time consum-
ing, so we use nonoverlapping blocks in this paper. As shown
in Figure 3, the copying source region is marked by a green
line and the pasting target region is marked by a blue line. The
two red solid lines a and b are candidate blocks to be matched
in the next step. If we use the LSH algorithm directly to find
similar blocks, the mismatching is more likely to occur due
to disalignment. To solve this problem, before hashing them,
we need to calibrate the remaining blocks according to each
block in turn within a color group.

Phase correlation is a common method of image registra-
tion [24]. Given an block b, (x, y), shift it by (Ax, Ay), and we
will get b,(x, y), where

by (x,y) = b (x - Ax, y - Ay). 2)
Their Fourier transforms satisfy

B, (u,v) = B, (u,v) - JAXTVAY) (3)
The cross power spectrum of them is

B, (u,v) B, (u,v)
|B; (u,v) By (u,v)||

P(u,v) = (4)
As shown in Figure 4, the inverse Fourier transformation
of (4) is a two-dimensional pulse function, with a peak at
(=Ax,—Ay). We make block®™ and block™" stand for two
candidate matching blocks a and b in Figure 3. We first
compute the inverse Fourier transform of their cross power
spectrum. If the peak value is larger than 7; and the values
of other positions are lower than 7,, we consider that the
two blocks satisfy the registration condition. Then we use
the position of the peak (Ax, Ay) as a displacement vector to
change block™" to block®™**"% In Figure 2, the updated
block is marked by a red dashed line. On the contrary, if these
two blocks cannot satisfy the registration condition, we will
not update the current candidate block.

We use Zernike moments as block feature here. Zernike
moments of order n and repetition m of a digital image I(p, 0)
are defined as

Zom="2L Y Y10V (06, (5

T (p,0) € uint disk
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where V. (p,0) is a Zernike polynomial of order n and
repetition m.

Vi (p,0) = R, (p) ™, (6)

where n = 0,1,...,0 < |m| < n, n— |m| is even, and
R, .(p) are real-valued radial polynomials. We choose the
order of the Zernike moment, n = 5. Consequently, the
Zernike moments extracted from all blocks can be grouped
as follows:

= {,6) (pq) (w,v) -
Zl—{z , 2Pz }, l—1,2,...,Ng. (7)
We make the blocks corresponding to feature vectors in the
set Z; satisfying

(block(i’j ) blockP?, .., block(”’v)) € group,.  (8)

Feature vectors can be regarded as data points distributed
in high dimensional character space. The closer the data
points, the higher the similarity they have. LSH algorithm
can project data points from original data space to hash space

through hash functions, and the hash functions satisfy the
intuitive notion that the probability of a hash collision for two
points is related to the similarity between the points.

Each feature vector 2"/ can be projected to hash space
and get hash value. We choose a hash function based on p-
stable distribution:

. p(N))
hash@? (z(”)) = {—a £ T bJ , 9)
w

where |-] represents an operation of rounding down, w
is quantization step, b is a random real number located
in [0,w], p is set to 2, and a is a random vector, a =
(@, ay,...,ay _1). In order to increase the accuracy
of collision between similar vectors, we use Q groups of
hash functions gy, g;, . . ., go1 to project the feature vectors,
respectively, in which each group has P hash functions g(z) =
(hash“®®(2), hash®*)(2), ..., hash®*-)(z)). Projecting
each feature vector with a group of hash functions can
obtain a set of hash values that will be used as their bucket
numbers. Therefore, we can get Q different hash index tables
for similarity vectors searching. The establishment of a hash
tables is shown in Figure 5. After projecting feature vector
29 by Q groups of hash functions, we get Q different bucket
numbers. All the feature vectors of these buckets are taken
out as a set to be screened. Then the similarity between z*”
and all of these vectors is calculated. It is worth noting that
we do not use the first order Z , as it represents the average
intensity and its value is much higher than that of others. In
our implementation, L2-norm is used to represent similarity
between feature vectors. The similarity is therefore

similar (z(i’j),z(k’l)) = "z(i’j) —z®D ” . (10)

If similar (z%7, zD) < D, the two blocks are detected to be
similar. Then, we calibrate the rest of the blocks according
to another block in this color group until all the blocks are
traversed.

A lot of measures are taken to try to reduce the compu-
tational complexity of our algorithm. We divide image into
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FIGURE 5: Establishment of hash tables. We use Q groups of hash functions to project the feature vectors, respectively. Projecting each feature
vector with a group of hash functions can get a set of hash values as their bucket numbers. Finally, we take out all the feature vectors of these

Q hash buckets and calculate the similarity.

texture part and smooth part; therefore we need to calculate
their computational complexity separately. In texture part, we
extract SIFT feature and use g2NN matching strategy, so the
computational complexity of this part is O(#*), where # is
the number of keypoints, while in smooth part blocks with
similar color are clustered into a group. Since H and S are
quantified to 10 levels, the number of color groups is 100.
And in registration step, we update all the other blocks with
reference to a query block each time. So the computational
complexity of this part is O(100 * (n/ 100)*) on average, where
m is the number of smooth blocks. Special to note is that
traditional block-based approaches use overlapping blocks to
find duplicated regions, and the total number of blocks is
(M -B+1) % (N-B+ 1), where M and N are the width
and height of the image, respectively, and B is the length of
square block. It is obvious that its computational complexity
is O((M * N)?). Because we use nonoverlapping blocks, m =
(M = N)/B? at most, and B = 16 in most cases. Therefore, in
the worst case the computational complexity of our method
is O(* + 6 % 1072 % (M * N)*). The number of keypoints is
usually not much, and for the most frequently used datasets,
our method can be much faster than the traditional block-
based methods.

2.3. Postprocessing. 'The goal of this last step is to present to us
more accurate matches. In this paper, we consider three steps
to remove falsely matched pairs, including distance, relative
position, and affine transformation.

The adjacent keypoints or blocks might be misregarded
as the matching pairs, due to their similar characteristics. So
the matching pairs will be eliminated, if the distance between
them is smaller than the threshold D,.

The true matching pairs are often distributed densely,
so a merging method named Broad First Search Neighbors
(BESN) clustering [25] is performed on spatial locations of
the matching pairs to help delete the isolated keypoints or
blocks. In this algorithm, if the distance between point a and
point b is smaller than a threshold, the two points are defined
as neighbors. For a cluster C with m elements, point p can
be merged into C, while p is the neighbor of at least Am
elements in C. The radio factor A, which ranges from 0 to 1,
controls size and shape of the cluster. First of all, we create
an empty class A, and put the first row (x}, y;) of coordinate
matrix C' into A,. Secondly, we search for all neighbors of
(x},y}) in a breadth first order and determine whether the
current vector can be incorporated into the class A, in terms
of clustering conditions. Finally, we delete the vectors in C’
which have been incorporated into A; and put the first row
of the current matrix C' into A,. Repeat the above three steps
until C' = @. The cluster whose inner elements are less than
3 will be regarded as the isolated cluster and the elements in
them will be deleted.

Truly matched pairs satisfy the same affine transforma-
tion, which means they should exhibit similar amounts of
translation, scaling, and rotation. The relationship between

these two matched blocks block™ and block®™” can be
represented as follows, where H is a 3 x 3 matrix:

i k
jl=H-|1]. (11)
1 1

We assume that if the two matching pairs are from the same
duplicated regions, the slopes of their matching lines are
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TABLE 1: Detection result on Benchmark database.

Methods Precision (%) Recall (%) F1 (%)

SIFT [16] 79.59 81.25 80.41

Segmentation [22] 70.18 83.33 76.19

Proposed method 90.91 83.33 86.96

consistent. BFSN clustering is performed on the slopes of |CD N <D'|

matching lines to divide the matching pairs into different recall = o]

clusters. RANSAC algorithm [26] is then performed on each 13)

group, respectively, to eliminate false matches. This method
can avoid misdeleting in the situation of managing the
multiduplicated matching. In addition, the test image will be
identified as the tampered one, if the number of remaining
matches is more than a threshold.

3. Experimental Results

In this section, error measures are first introduced, and
experiments are conducted on three databases that are avail-
able online, Benchmark presented by Christlein et al. [23],
CoMo¥FoD [27], and GRIP [28]. The first one is composed of
48 images, which range from 800 x 533 to 3888 x 2592 in size,
having about 10% of the whole image as tampered regions.
The second one comprises 200 original images and their
corresponding tampered images with size of 512 x 512. There
are 7 groups of tampered images, one is without any attacks,
and the rest are manufactured by adding various attacks,
including JPEG compression, blurring, noise adding, and
color reduction. The last one consists of 80 images, and these
images have fixed size 1024 x 768 pixels; each of them has only
one pair of duplicated regions. The hardware environment of
the experiments is a 3.60 GHz Intel Core i7-4790 processor;
the software used is Windows 7 MATLAB R2014b.

3.1 Error Measures. We often evaluate the performance of a
CMFD method at two levels, namely, image level and pixel
level. At image level, we are concerned about whether or
not this image has been tampered, while in pixel level we
pay more attention to the accuracy of location. Precision and
recall are used here. The detection error at the image level is
defined as

. Tp
precision = ,
p+Fp
. (12)
recall = P
p+Fx

where T} is the number of images that have been correctly
identified as forged, Fp represents the number of images that
have been erroneously detected as forged, and Fy indicates
the falsely missed forged images. The detection error at the
pixel level is defined as

|c1>nq>’|

precision =
D]

>

where @ is the number of pixels detected by the CMFD
method; @ is the number of all forgery pixels marked by
ground truth.

We also use F, score as a comprehensive measure.

precision * recall
ST (14)
precision + recall

3.2. Detection Results on the Benchmark Database. We first
test the proposed method on Benchmark database. Several
example test cases are shown in Figure 6. The first row of
Figure 6 shows the original images, the second row shows the
tampered images, the third row shows the ground truth maps,
and the last row shows the detection results of the proposed
method. In Table 1 we compare the proposed algorithm
with two other methods, and the result indicates that our
method can achieve 90.91% precision, 83.33% recall, and
86.96% F, score, which preforms better than SIFT [16] and
Segmentation [22]. In the third column of Figure 6, though
the tampered area is smooth, we can still detect it.

A practical CMFD algorithm should have a relatively low
computational complexity in addition to maintaining a cer-
tain degree of accuracy. In order to measure the performance
of our proposed method, we compare the time complexity of
different algorithms on this dataset. The average execution
times are illustrated in Figure 7. It should be noted that the
implementation platforms of evaluated methods are different.
For instance, Zernike is implemented in C++ for speed, and
segmentation and the proposed method are implemented
in MATLAB. Because of the high resolution, all methods
demand more time. The proposed method is the fastest,
except for SIFT [16].

3.3. Detection Results on the CoMoFoD Database. Next the
experiments are carried out on CoMoFoD database. Illus-
tration of four cases is shown in Figure 8. Each row from
top to bottom represents original images, tampered images,
ground truth, and detection results of the proposed method,
respectively. Table 2 shows the detection results comparing
with other methods. From this table, it can be clearly seen
that the results of the proposed method outperform [16, 22]
under ideal conditions.

In addition, we conduct experiments to evaluate the
robustness of our method against various attacks. That will
make the CMFD more difficult. The forgery images are
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FIGURE 7: The average execution times [2, 10, 16, 18, 22].
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TABLE 2: Detection result on CoMoFoD database.

Methods Precision (%) Recall (%) F1 (%)
SIFT [16] 77.83 82.50 80.10
Segmentation [22] 7719 66.00 71.16
Proposed method 89.30 83.50 8755
TaBLE 3: Detection result on GRIP database.
Methods Precision (%) Recall (%) F1 (%)
SIFT [16] 78.87 70.00 74.17
Segmentation [22] 69.47 82.50 75.43
Proposed method 90.54 83.75 87.01
TaBLE 4: Detection results on pixel level.
Serial number Precision (%) Recall (%) F1 (%)
8 99.18 60.05 74.80
10 86.04 48.54 62.06
12 99.56 70.13 82.29
30 91.26 89.57 90.40
31 98.51 72.30 83.39
54 86.88 66.62 75.42
61 98.80 85.76 91.82

generated by making the copied snippets undergo 3 kinds of
attacks, namely, JPEG compression, rotation, and scaling.

(1) JPEG compression: the image quality-factor varies
from 20 to 100 with the step of 10. The results are
shown in first row of Figure 9. For most of the
quality factors, the precision, recall, and F, score of
our method are higher than those of [16, 22]. The
curve of red line has smaller slope than others; that
means our method has better robustness against JPEG
compression.

(2) Rotation: we rotate the copied snippets with the
rotation angles varying from 2° to 10° with the step
of 2°. The results are shown in second row of Figure 9.
It can be clearly seen that our method is much better
than [16, 22].

(3) Scaling: the copied snippets are scaled with the scale
factors varying from 91% to 109% with the step of
2%. As shown in third row of Figure 9, our method
outperforms [16, 22] in terms of precision and F,
score, and recall is almost as same as that of [16].

3.4. Detection Results on the GRIP Database. We also test the
performance of the proposed method on the GRIP database.
The detection results are given in Table 3. It can be observed
that all evaluation indicators of our method are well over
those of [16, 22]. In particular, each evaluation indicator is
more than 11% higher than that of [16]. This is because the
database contains a lot of smooth images, and our method
divides the smooth area of the image into nonoverlapping
blocks to find correct duplicated regions.

We first classify the blocks into several groups according
to their color distribution. In order to prove that this step can
improve the efficiency of the algorithm, a baseline reference
technique with registration and LSH is considered. From
Figure 10, we are able to see that the advantage of grouping
is obvious, and the computational complexity is decreased by
94.67%.

Moreover, we present some experiments to assess the
impact of registration. Some smooth images from this dataset
are picked out for this purpose. Results reported in Table 4
confirm the effectiveness of the registration step in matching.

4. Conclusion

In this paper, we propose a new CMFD method, which is
able to solve the problem of high computational complexity
in traditional block-based methods. First, image is divided
into two different types of regions. Next, features are extracted
and matched in texture region and smooth region using
SIFT and Zernike moments, respectively. In particular, we
use nonoverlapping blocks as candidates in smooth area
and do the registration via the phase correlation algorithm
before matching. Finally, the exact forgery regions will be
generated after removing falsely matched pairs and exploiting
morphology operations. There are three main contributions
in our proposed method as follows. (1) Dividing image into
texture region and smooth region according to the number
of keypoints can not only avoid the poor performance
using SIFT in smooth area but also reduce computational
complexity. (2) We use nonoverlapping blocks as candidates
in smooth area instead of using all overlapping blocks
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FIGURE 8: Illustration of four cases. ((a), (b), (¢), and (d)) Original. ((e), (f), (g), and (h)) Tampered. ((i), (j), (k), and (1)) Ground truth. ((m),

(n), (0), and (p)) Proposed.

and apply color based feature to decrease the number of
blocks needed to be matched. (3) In order to prevent
mismatching due to disalignment, we do registration before
using LSH algorithm to obtain more accurate candidate
blocks.

Experimental results show that the performance of the
proposed algorithm is better than the state-of-the-art CMFD

methods. In addition, our method can manage multiple
copied regions. Meanwhile, it exhibits robustness to JPEG
compression, rotation, and scaling. However, when dealing
with very smooth blocks, such as sky and wall, the effect of
registration is not particularly good. In our future work, we
will try to improve the accuracy of location and the detection
speed.
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FIGURE 9: Detection results under 3 kinds of attacks. The three rows from (a-c), (d-f), and (g-i) are JPEG compression, rotation, and scaling,
respectively. The three columns from (a-g), (b-h), and (c-i) give the precision, recall, and F, score, respectively.
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