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Cell-free treatment is emerging as an alternative to cell delivery to promote endogenous regeneration using cell-derived factors. The
purpose of this article was to systematically review studies of the effects of the dental stem cell secretome on nerve regeneration.
PubMed and Scopus databases were used where searched and related studies were selected. The primary search identified 36
articles with the utilized keywords; however, only 13 articles met the defined inclusion criteria. Eight out of thirteen articles
included in vivo and in vitro studies. We classified the dental stem cell-derived secretome with its nerve regeneration potential.
All studies demonstrated that dental stem cell-derived factors promote neurotrophic effects that can mechanistically stimulate
nerve regeneration in neurodegenerative diseases and nerve injury. This data collection will enable researchers to gather

information to create a precise formulation for future prescribed treatments.

1. Introduction

L.1. Neurodegenerative Diseases, Risk Factors, and Current
Pharmacotherapy. Neurons are the cells composing the
nervous system, including the spinal cord and brain. Neuro-
degenerative diseases can result when damaged neurons
cannot be replaced or reproduced by the body [1, 2]. This
condition is normally related to neuronal structure damage
and function failures, factors that cause neuronal death [3].
The significant process of neurodegeneration results in
myriad neurodegenerative diseases, including Parkinson’s
disease (PD), Alzheimer’s disease (AD), Huntington’s disease

(HD), dementia, and spinal muscular atrophy [4, 5]. Unfortu-
nately, continuous nerve deterioration, which predominantly
affects human brain and spinal cord, is incurable and contrib-
utes to movement and mental function problems [6].

The significantly high incidence of neurodegenerative
diseases has attracted increased attention in the past decades.
PD commonly affects the central nervous system (CNS) and
causes abnormal movement that is characterized by progres-
sive loss of muscle control [7]. The projected prevalence of
PD in the US will increase substantially. It is more frequent
in men compared to women, with an estimated prevalence
of 572 individuals per 100,000 among those aged >45 years.
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F1GURE 1: Tooth developmental stages with the anatomical localization of the difference dental-derived stem cells in a tooth germ, primary
teeth, and permanent teeth. Different subpopulations of DSCs can be categorized according to their tissue of origin. Modified from [74].

These numbers are estimated to increase from 930,000 to
1,238,000 in 10 years, as projected by the US Census Bureau
[8], and this elevation represents a considerable medical
problem and social burden. AD is one of the most common
diseases that leads to dementia and depreciation of cognitive
function. Approximately 1 million new AD cases are
expected to develop every year, with estimated prevalence
ranging from 11-16 million [9]. HD is characterized by
abnormal cognitive, emotional, and behavioral functions
[10]. Intriguingly, the estimated HD prevalence varies up to
tenfold depending on the world region. The prevalence in
Australia, North America, and Western Europe had escalated
over the past 50 years, whereas lower HD rates are reported
for Asian populations [11].

Although the etiology for neurodegenerative diseases
remains elusive, many recent studies suggest prominent risk
factors. Most of the known risk factors include environmental
pollutants [12], ageing [13], oxidative stress [14], chemical
exposure [15], and infection [16]. There are myriad pharma-
cotherapies that were investigated to treat the diseases. Acetyl-
cholinesterase inhibitors and N-methyl-d-aspartate NMDA)
receptor agonist both offer a good therapy choice, especially
for AD [17]. In the clinical setting, this particular therapy
has attracted significant research interest in order to evaluate
the efficacy of pharmacotherapy for AD. A recent study by
Manenti et al. [18] revealed significant improvements in
motor abilities and a reduction of depressive symptoms in
PD patients through anodal transcranial direct current stimu-
lation applied over the dorsolateral prefrontal cortex
combined with physical therapy.

In recent decades, researchers have made numerous
efforts to elucidate the mechanism(s) of neurodegenerative
diseases and possible pharmacotherapies that can help to
decelerate and prevent these diseases from worsening. The
current medical treatment tends to be palliative rather than
curative. Unfortunately, none of them significantly halts the
underlying pathology. This review article will expound upon

the core value of dental stem cells (DSCs), with special
emphasis on dental pulp stem cells (DPSCs) and stem cells
from human exfoliated deciduous teeth (SHEDs), and the
role of their paracrine factors for potential future applications
in neurodegenerative disease therapies.

1.2. DSC Secretome. DSCs can be isolated from various dental
soft tissue. They can be divided into several categories
according to the origin [19]. Figure 1 shows the anatomical
localization of the different DSCs starting from tooth germ,
primary teeth, and permanent teeth. Dental follicle progeni-
tor cells (DFPCs) can be isolated from dental follicle tissue
of the tooth germ as early as 6 months old. SHEDs can be
isolated from primary teeth at 6 years old. Various DSC
populations can be isolated from permanent teeth, including
DPSCs, periodontal ligament stem cells (PDLSCs), apical
papilla stem cells (SCAPs), and gingival mesenchymal stem
cells (GMSCs), which can be isolated from dental pulp,
periodontal ligament, apical papilla, and gingiva, respectively
(Figure 1) [19, 20].

PDLSCs have vital stem cell properties, including high
multipotency, great ability for self-renewal, and the ability
to express most stem cell markers, ie., CD166, STRO-1,
and CD105 [21]. Hence, the role of PDLSCs could be impor-
tant in preserving periodontium as well as periodontal regen-
erative procedures. SCAPs are distinctive stem cells that are
promising for endogenous tissue regeneration [22], pulp/-
dentin regeneration, and bioroot engineering [23]. They are
a very unique cell population of postnatal stem cells that
are different from DPSCs, in terms of cell motility and migra-
tion [24]. This activity will allow the cells to develop into a
complex tissue and organ during regeneration; thus, it can
be considered as one of the alternative cell resources for
neurodegenerative disease therapies. SCAPs have less cellular
and vascular components than those in the pulp, and they
have osteogenic and dentinogenic potential (because they
are mesenchymal stem cells [MSCs]) [25]. A recent study
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from Simonovic and coworkers [26] demonstrated that
SCAPs cultured in neurogenic induction medium supple-
mented with graphene dispersion and water-soluble single-
walled carbon nanotubes exhibit an elevated capacity to dif-
ferentiate into neural lineage cells. DFSCs come from highly
fibrous tissues that are usually extracted and discarded in
dental surgery. DFSCs can be cultivated under various
culture conditions and thus could be used in tissue engineer-
ing and regenerative therapy applications, including neural
differentiation [27] and periodontal [20] and tooth root
regeneration [28].

SHEDs, PDLSCs, and DFSCs can be obtained from 6- to
12-year-old individuals [29]. SHEDs possess a great prolifer-
ative capacity and the ability to differentiate into adipocytes,
neurons, and odontoblast-like cells. They are easily obtained
(with minimal or no trauma) due to simple, convenient, and
relatively noninvasive techniques [30]. The DPSCs play an
important role in tooth homeostasis and remain active
throughout life to generate odontoblasts for dentine repair.
In vivo, stem cells differentiate according to their specific
functions under the action of signaling molecules in a micro-
environment called the “stem cell niche.” This phenomenon
reflects the stem cell native microenvironment, whereby it is
thought to preserve the properties and functions of stem cells
and monitor differentiation.

DPSCs that are derived from the embryonic cranial neu-
ral crest are one of the distinctive types of ecto-MSCs. In the
tooth, the DPSCs is located at certain anatomical locations
that forming stem cell niches. This niche microenvironment
modulates the DPSC populations to promote tissue repair
and regeneration [31]. Many signaling molecules in the niche
are essential to maintain the stem cell activities, which also
have a capacity to regulate cell proliferation and differentia-
tion. DSPCs can differentiate into neural cells to ameliorate
nervous system damages [32-34]. They can also differentiate
into nonneural cells, including the cartilage [35], bone [36],
liver [37], corneal stroma [38], retina [39], and tendon-like
tissue [40]. DPSCs can be isolated from dental pulp of third
molar teeth without invasive surgery; they are easily culti-
vated in vitro and expanded for research use. Stem cells
harvested from the other tooth regions that involve the
infant’s exfoliated deciduous immature teeth are known as
SHEDs [41]. Many recent updates revealed that DPSCs
possess a good proliferative capacity and are multipotential.
They can differentiate into neurogenic [42], osteogenic [43],
odontogenic [44], and chondrogenic [45] lineages. DPSCs
express MSC-like markers (e.g., STRO-1, CD29, CD105,
and CD90) [46] and neural stem cell-like markers (e.g., nestin
and glial fibrillary acidic protein) [47]; this expression pattern
signifies their self-renewal and multipotency capacity. Inter-
estingly, pluripotent stem cell markers such as Oct4, Nanog,
Sox, and Klf4 are also regulated by DPSCs. Furthermore,
DPSCs have more potent neurogenicity properties and
immunosuppressive activities compared to bone marrow
mesenchymal stem cells (BMSCs). The abovementioned
DPSCs properties make them a strong potential candidate to
cure ischemic neurodegenerative disorders [48]. Thus, they
could play a significant role in treating neurodegenerative
conditions in the human body.

Recent studies reported that secretomes, or conditioned
media (CM) acquired from a wide variety of stem cells, can
efficiently impede organ damage and ischemic disease. The
secretome represents the entire array of proteins and factors
that are secreted by a cell into the extracellular space; it
constitutes approximately 30% of the entire proteome in an
organism. The secretome contains growth factors, cytokines,
chemokines, antibodies, receptors, adhesion molecules,
hormones, enzymes, toxins, peptides, proteinases, and anti-
microbial peptides. Most of these proteins are actively
involved in various biological processes that typically
comprise cell attachment [49], proliferation, migration, and
differentiation [50], intracellular communication [51],
immune response [52], cell survival, and cell defense [53].
All these metabolic and homeostatic processes are essential
for the continuity and transformation of life. Previous inves-
tigations postulated that DPSC-CM greatly contributes to
regenerative therapy, mainly in the CNS [54] and retinal
disorders [55]. DPSC-CM offers a therapeutic effect that
may implicate a diverse pathway, particularly through the
intervening paracrine mechanisms that activate repairing
activities. Thus, the repertoire of DPSC-secreted trophic
factors might be a significant contributor because it is neces-
sary for neural regeneration.

DSC-CM is useful in enhancing long-term neuronal
regeneration in spinal cord injury. DPSC-CM significantly
improves cognitive function in a mouse model of AD, specif-
ically by converting the proinflammatory conditions to an
anti-inflammatory state. The multifaceted activities offered
by SHED-CM may provide neuroprotective effects and could
be considered as a potential treatment for the neurodegener-
ative disorders [56]. A recent study by Yamamoto et al. [57]
revealed reduced apoptosis and active proliferation of
Schwann cells in the DPSC transplant as opposed to the con-
trol conduits. Further in vitro analysis demonstrated that
DPSCs promote axon regeneration and stimulate angiogene-
sis through trophic functions. A study reported by Tsuruta
and coworkers [58] showed that systemic SHED-CM admin-
istration in a rat subjected to superior laryngeal nerve (SLN)
injury successfully improves SLN functional recovery,
namely by significantly enhancing axonal regeneration by
transforming macrophages to the anti-inflammatory M2
phenotype. It also contributes to angiogenesis at the injured
site. Thus, SHED-CM administration may represent an alter-
native therapeutic option for SLN injury. Considering this
evidence, an excellent and noninvasive acellular tool like
DPSC-CM and SHED-CM should be further explored for
future use in regenerative therapy. In this concise review,
we focused on the recent findings using DPSC-CM and
SHED-CM for nerve repair, neuroprotection, and neurore-
generation in neurodegenerative diseases and nerve injury.

2. Methods

2.1. Search Strategy. This review was systematically conducted
by screening all published articles on the effects of the DPSC
secretome on nerve regeneration. Two databases were com-
prehensively used to search for related study (Scopus and
PubMed). The keywords used were the combination of dental
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A 4

Full articles obtained
PubMed =2
Scopus =11

Total =13

Ficure 2: Flow chart of the article selection process from PubMed and Scopus and databases.

pulp stem cell secretome OR DPSC secretome OR dental stem
cell secretome OR dental pulp stem cell conditioned medium
OR DPSC conditioned medium OR dental stem cell condi-
tioned medium AND nerve regeneration OR nerve develop-
ment OR nerve repair.

2.2. Selection Criteria. Studies published in English from 2000
to 2019 were considered for inclusion. Only articles that
provided the full paper were selected. The titles and abstracts
were carefully screened to meet the related topic of interest.
Primary studies related to the DPSC secretome production,
neurotrophic effects, and nerve regeneration potential were
included. Only research articles were selected. Review
articles, news articles, letters, editorials, and case studies were
excluded from the search.

2.3. Data Extraction and Management. All data were
extracted from selected articles by two reviewers. The selected
papers underwent three screening phases prior to inclusion.
The title was first screened for relevance to the topic of inter-
est. Then, the abstracts were carefully screened and unrelated
studies were excluded. Lastly, all duplicates were removed.
The data were summarized in a table as follows: (1) authors,
(2) type of secretome, (3) donor age/condition, (4) type of
nerves/disease or cells studied, (5) methodology, (6) passage
number/type of medium/period of culture for secretome col-
lection, (7) results, and (8) conclusions.

3. Results

3.1. Search Results. Two reviewers independently assessed the
articles according to the defined inclusion and exclusion cri-

teria. This procedure was performed to minimize bias while
selecting articles. At the end of the selection session, a joint
discussion was conducted to achieve consensus when differ-
ences emerged during the assessment. The primary searches
that used the combination of keywords (Section 2.1) only
identified 36 articles: 17 from PubMed and 19 from Scopus.
Twelve duplicate articles were excluded by title sorting prior
to full paper search. After title screening, seven articles were
rejected based on the inclusion criteria; these articles were
not related to nerve regeneration. Finally, a total of 13 studies
were selected for data extraction in this review. The flow
chart of the selection process is shown in Figure 2.

3.2. Study Characteristics. The database search provided 13
articles related to DSCs, secretome, CM, nerve regeneration,
and neurogenesis. From these articles, various types of dental
tissue sources, i.e., SHEDs and adult dental tissue, were used
for potential secretome collection/production. SHEDs were
extracted from donors aged 6 to 12 years, while adult DSCs
came from donors aged 13 to 29 years. The secretome was
derived from cells at passage 3 to 9 after 24- to 48-hour cul-
ture in serum-free Dulbecco’s modified Eagle’s medium
(DMEM) or minimum essential medium, Eagle alpha modi-
fication (¢eMEM). One study reported the secretome content
in detail, with a focus on a set of M2 macrophage inducers
(monocyte chemoattractant protein-1 [MCP-1] and secreted
ectodomain of sialic acid-binding Ig-like lectin-9 [sSiglec-9])
in the SHED-CM [59]. The remaining articles directly tested
the secretome in vitro and in vivo (without prior characteri-
zation) to observe their potentiality for neurodifferentiation.
One study profiled the secretome from SCAPs [20]. Eight
out of thirteen studies conducted in vivo research: 7 in rats
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and 1 in mice. One study reported the therapeutic effects of
intravenous administration of the secretome in a rat model
[27]. Most studies compared the secretome derived from
BMSCs and dental DSCs [20, 27]. All of the studies con-
cluded that the secretome has neurotropic effects on specific
nerve repair and regeneration. A summary of the studies is
provided in Table 1.

4. Discussion

In the past decade, numerous studies reported that MSCs,
especially DSCs, can regenerate injured nerves by promoting
axonal regeneration and myelin sheath formation. DSCs
share a common origin with peripheral nerves and express
neuronal markers [27, 32, 33]. Engrafted DSCs alone are
susceptible to ischemic attack. However, with appropriate
paracrine factors, cells adjacent and distal to the injury site
can be influenced to create a unique microenvironment for
the stem cells to be functional.

Generally, the secretome includes molecules secreted
from cells into the extracellular space; it includes free nucleic
acids and soluble proteins and lipids, along with extracellular
vesicles (EVs), i.e., microvesicles (MVs) and exosomes that act
as intercellular mediators to carry those entities. This broad
range of bioactive soluble factors is antiapoptotic, antifibrotic,
and anti-inflammatory, and they contain angiogenic regula-
tors, chemoattractive factors, neurotrophic factors (NTFs),
and immunomodulators. Stem cells release these molecules
through classical and nonclassical secretion mechanisms,
including protein translocation, exocytosis, and exosome
encapsulation as means of cell-to-cell communication [35].

DPSCs, in particular, secrete various growth factors (GFs)
and cytokines. Previous studies revealed high expression levels
of transforming growth factor (TGF) and NTFs [60-62]. The
NTFs, including nerve growth factor (NGF), glial cell-derived
neurotrophic factor (GDNF), neurotrophin-3 (NT-3), brain-
derived neurotrophic factor (BDNF), ciliary neurotrophic
factor (CNTF), vascular endothelial growth factor (VEGF),
and hepatocyte growth factor (HGF), are initially necessary
for the innervation of dental tissues. Intriguingly, these fac-
tors are also vital for the restoration of neural tissues [63].

Neurodegenerative diseases involve brain cell deteriora-
tion. In AD, the body starts to produce a protein called
amyloid that is deposited as “plaques” in the brain. This
phenomenon leads to structural brain changes and conse-
quently prevents the production of neurotransmitters. Previ-
ously, alpha-2 macroglobulin (A2M) demonstrated an ability
to inhibit amyloid formation [64]. Tachida and colleagues
(2015) [60] identified that A2M is the most prominent
secreted protein in the DPSC proteome. A2M is a protease
inhibitor and cytokine reporter that might play a key role
in the neuroinflammatory response to AD pathogenesis
[65]. A2M can bind to misfolded and aggregation-prone
client proteins; this process can mediate the clearance and
degradation of S-amyloid deposits in AD patients [66, 67].
Therefore, exogenous A2M derived from the secretome
would be expected to at least slow down the progression of
brain cell death in AD patients (Figure 3).

Peripheral nerve injury (PNI) is caused by trauma or
surgical complications that leads to distal stump demyelin-
ation and degradation. Typical symptoms are motor sensory
deficits, including weakness, paralysis, and pain. Current
treatments, such as direct repair and autologous nerve grafts,
are still insufficient. Recently, Tsuruta and colleagues (2018)
[58] reported that the DPSC-derived secretome can induce
neuronal regeneration. Based on their findings, the authors
suggested that the systemic administration of SHED-CM
may provide therapeutic benefits in PNI treatment. As previ-
ously reported by Sugimura-Wakayama and coworkers
(2015) [68], the SHED-CM secretome contains NGF, BDNF,
NT-3, CNTF, and GDNF, all of which create a more desirable
extracellular microenvironment for peripheral nerve regen-
eration [34]. They reported that SHED-CM enhances migra-
tion and proliferation in vitro. It also promotes axonal
regeneration and functional recovery in a sciatic nerve defect
rat, including enhanced axon growth, angiogenesis, migra-
tion, proliferation, and neuron survival. This data indicate
that SHED-CM contains factors that can regulate the mobili-
zation of Schwann cells to the target tissue. Thus, it serves as a
potential PNI treatment [34].

Macrophages involved in distal degeneration can
promote the switch from the proinflammatory (M1) to the
anti-inflammatory (M2) phenotype. A set of tissue-
repairing M2 macrophage inducers, ie., sSiglec-9 and
MCP-1, enhance nerve regeneration [29, 69]. SHED-CM that
contains MCP-1 and sSiglec-9 enhances neurite extension of
the peripheral nerve, data that suggest these factors can
promote the formation of a Schwann cell bridge and axonal
extension. The depletion of both MCP-1 and sSiglec-9 in
SHED-CM reduces its ability to restore neurological function
and to regenerate peripheral nerves [29]. On the other hand,
a study by Matsubara and colleagues identified the M2
inducers activate multifaceted endogenous neurorepair
mechanisms, effects that restore locomotor function in a rat
model of spinal cord injury (SCI). M2 inducers directly
convert the proinflammatory conditions prevalent in the
damaged CNS to tissue-repairing function by modulating
the microglia/macrophage phenotype (Figure 4) [69].

Other than NTFs, El-Moataz and colleagues (2016) [70]
revealed that the DPSC secretome contains a high concentra-
tion of cytokines, including fractalkine (FKN), which is
regulated on activation and normally T cell expressed, and
presumably secreted RANTES and FMS-like tyrosine kinase
3 (FLT-3). FKN, also known as chemokine (C-X3-C motif)
ligand 1 (CXCL1), promotes microglia survival under neuro-
toxic conditions and enhances the ability of macrophages
and microglia to execute their phagocytic functions. The
activation of the phagocytic response is important to clear
cellular debris and stress-response pathways to counteract
any remaining neurotoxic molecules that caused the initial
damage, especially in neurodegenerative diseases (Figure 3)
[71]. On the other hand, RANTES, also known as chemokine
(C-C motif) ligand 5 (CCL5), aids during acute infection by
promoting macrophage infiltration, mobilization, and func-
tion at injured sites. FLT-3 is involved in differentiation,
proliferation, and survival of dendritic cells. RANTES and
FLT3 are both implicated in the processing of pain
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F1GURE 3: Schematic illustrating the role of DSC secretomes modulating the nerve regeneration in CNS. Alzheimer’s disease (AD) responds to
the production of B-amyloid fibres/plaque which triggers the microglia and astrocytes activation and generation of proinflammatory
cytokines. The chronic activation of microglia and astrocytes causes neuron degeneration. Stimulation by GFs and cytokine derived from
DSCs secretome such as A2M cytokine is capable of binding to S-amyloid fibres/plaque that mediate the clearance and degradation [1]
while FKN can execute their phagocytic functions. In addition, Siglec-9 and MCP-1 can switch the M1 to M2 phenotype for nerve
regeneration. This would enhance neuronal plasticity and neurogenesis in AD patients.
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FIGURE 4: Schematic illustrating the role of DSC secretomes modulating the nerve regeneration in PNS. Axon of the neuron is myelinated by
the Schwann cells (SCs). Nerve injury has caused the myelin sheaths and axon degenerated. There are series of macrophage activation by
several GFs and cytokine involved to remove the debris of degenerating fibers like A2M cytokine that recognized by specific receptor on
macrophages. On the other hand, MCP-1 and sSiglec-9 induced the polarization of M2 macrophage. This has caused MCP-1/sSiglec-9-
induced M2 macrophages expressed six factors that are known to affect the functional properties of SCs. The six factors are IGF-1, NRG1,
BDNF, CNTF, VEGF and GDNF. These factors promote the proliferation, migration, and differentiation of SCs that can enhance axonal
regeneration. Neuron image adopted and modified from Mey et al. [75].
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information in peripheral nociception. However, direct evi-
dence and the possible mechanism of this action is lacking.

Collectively, the secretomes derived from SHEDs and
DPSCs demonstrate the most potential for nerve regenera-
tion. Besides having a high proliferation rate, DPSCs also
exhibit more growth factors and cytokines compared to other
MSCs (e.g., BMSCs) [38]. The DSC-CM contains complex
soluble signaling molecules and growth factors that can
create a potent odontogenic microenvironment, and the
paracrine mechanism of release makes them attractive for
use in neuroregeneration [39].

Another aspect to consider is the method used to collect
the CM. Cell confluency, passage number, incubation time,
growth medium, and induction are crucial aspects to ensure
that cells secrete distinct, beneficial proteins. DSCs stimulated
by specific GFs, including neuregulin, basic fibroblast growth
factor (bFGEF), platelet-derived growth factor (PDGF), and
forskolin, provide an alternative to Schwann cells to support
regeneration after PNI [40, 72]. It is also worthy to compare
the common two-dimensional cell culture technique with a
three-dimensional culture. Previously, three-dimensional
BMSC cultures were reported to produce significantly more
secretome [41]. However, it still remains unknown whether
the three-dimensional DPSC secretome contains “extra”
growth factors and signaling molecules to exert their benefi-
cial effects for better execution of neuroregeneration.

Cell-based therapy limitations led scientists to find a
new method that can deliver therapeutic value to the
patient. It is well-documented that the DSC secretome
contains various growth factors and cytokines along with
EVs that act as a stable cargo. EVs can be transported into
cells via endocytosis. EVs can also penetrate the blood-
brain barrier, a crucial feature given that many drugs may
not be able to penetrate it [73]. However, the composition
of cargo in EVs depends on cell type and culture and induc-
tion conditions. Thus, it is very important to identify the
cargo in EVs prior to their use for a specific treatment.
Therefore, secretome generation must be properly per-
formed with good manufacturing practice (GMP) to achieve
a clinical-grade product prior to its use as a treatment in
clinical applications.
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