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Background and Objective. This study investigated the effects and underlying mechanisms of azithromycin (AZM) treatment on
the osteogenic differentiation of human periodontal ligament stem cells (PDLSCs) after their stimulation with TNF-α in vitro.
Methods. PDLSCs were isolated from periodontal ligaments from extracted teeth, and MTS assay was used to evaluate whether
AZM and TNF-α had toxic effects on PDLSCs viability and proliferation. After stimulating PDLSCs with TNF-α and AZM, we
analyzed alkaline phosphatase staining, alkaline phosphatase activity, and alizarin red staining to detect osteogenic differentiation.
Real-time quantitative polymerase chain reaction (RT-qPCR) analysis was performed to detect the mRNA expression of
osteogenic-related genes, including RUNX2, OCN, and BSP. Western blotting was used to measure the NF-κB signaling pathway
proteins p65, phosphorylated p65, IκB-α, phosphorylated IκB-α, and β-catenin as well as the apoptosis-related proteins caspase-8
and caspase-3. Annexin V assay was used to detect PDLSCs apoptosis. Results. TNF-α stimulation of PDLSCs decreased alkaline
phosphatase and alizarin red staining, alkaline phosphatase activity, and mRNA expression of RUNX2, OCN, and BSP in
osteogenic-conditioned medium. AZM enhanced the osteogenic differentiation of PDLSCs that were stimulated with TNF-α.
Western blot analysis showed that β-catenin, phosphorated p65, and phosphorylated IκB-α protein expression decreased in
PDLSCs treated with AZM. In addition, pretreatment of PDLSCs with AZM (10 μg/ml, 20 μg/ml) prevented TNF-α-induced
apoptosis by decreasing caspase-8 and caspase-3 expression. Conclusions. Our results showed that AZM promotes PDLSCs
osteogenic differentiation in an inflammatory microenvironment by inhibiting the WNT and NF-κB signaling pathways and by
suppressing TNF-α-induced apoptosis. This suggests that AZM has potential as a clinical therapeutic for periodontitis.

1. Introduction

Periodontitis is a chronic infectious disease of the periodon-
tal supportive tissues, and it is the main cause of tooth loss in
adults. Its pathological manifestations include gingival and
periodontal ligament inflammatory infiltration, periodontal
pocket formation, progressive attachment loss, and alveolar
bone destruction [1]. Growing evidence demonstrates the
correlation between periodontitis and systemic disorders
such as diabetes, cardiovascular diseases, preterm birth, and
low birth weight [2, 3]. A recent report identified periodontal
disease as a risk factor for non-Hodgkin lymphoma and

colorectal cancer [4]. Etiological evidence shows that peri-
odontal pathogens in the dental biofilm under the gingival
epithelium are necessary but insufficient for periodontitis
development. Accumulating evidence shows that host sus-
ceptibility rather than bacterial plaque leads to periodontal
destruction. Indeed, the host inflammatory response plays
an essential role in the pathogenesis of periodontitis [5, 6].

Mesenchymal stem cells (MSCs) were first isolated from
bone marrow and possess self-renewal, colony-forming unit,
and immunomodulation properties. Notably, MSCs can
differentiate into osteoblasts, adipocytes, chondrocytes, and
neural cells [7]. MSCs play important roles in tissue
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hemostasis and in maintaining the balance between effec-
tive and regulative immune cells [8], and impaired MSCs
in bone marrow or in local tissue may cause disease. We
demonstrated previously that MSCs derived from the peri-
odontal ligament tissues of patients with periodontitis
showed impaired differentiation and immunomodulation
that contributed to the development of periodontal tissue
destruction [9–11]. Recent reports indicate the close relation-
ship between impaired MSCs and autoimmune or inflamma-
tory diseases [12]. Indeed,MSC transplantation is a successful
therapeutic strategy for treating autoimmune diseases such as
SLE [13]; Sjögren syndrome, autoimmune diabetes, and
airway inflammation [14]; systemic sclerosis [15]; and peri-
odontitis [16–18]. However, the mechanisms underlying
MSC deficiency in periodontitis remain poorly defined and it
is unclear how to restoreMSC function and achieve periodon-
tal tissue regeneration in an inflammatorymicroenvironment.

Azithromycin (AZM) is a clinically available macrolide
antibiotic like erythromycin A and clarithromycin [19]. In
addition to their antimicrobial activity, macrolides can mod-
ulate the immune response and inflammation with no effects
on homeostatic immunity [20]. In epithelial and immune
cells, low-dose macrolides inhibit the secretion of proinflam-
matory cytokines and chemokines, including IL-6, IL-8, and
TNF-α [21, 22]. They also suppress interferon gamma pro-
duction by memory T cells [23]. CSY0073, an AZM deriva-
tive that lacks antibiotic activity, improves the clinical
scores of dextran sulfate sodium- (DSS-) induced experimen-
tal colitis and collagen-induced arthritis [24]. AZM is
reported to be transported into inflamed tissues in the peri-
odontium. After 3 days of daily administration of a single
dose of AZM (500mg), AZM can be detected for up to
6.5 days in the plasma, saliva, and inflamed periodontal
tissues of human subjects [25]. Although there are no defin-
itive, controlled clinical studies on the effects of AZM on
periodontitis, AZM elicits clinical and microbiological
improvement when used in conjunction with nonsurgical
periodontal therapy [26–30]. Moreover, one study reported
that AZM suppresses human osteoclast differentiation and
bone resorption [31]. However, it remains unclear whether
AZM affects osteoblasts or the osteogenesis of MSCs in an
inflammatory microenvironment.

This study isolated human periodontal ligament stem
cells (PDLSCs) and stimulated them with the proinflamma-
tory cytokine TNF-α in vitro. Osteogenic differentiation
and cell viability were determined in order to investigate
the effects and underlying mechanisms of AZM on the
osteogenic differentiation of PDLSCs in an inflammatory
microenvironment. Our results showed that AZM promoted
PDLSCs osteogenic differentiation after TNF-α stimulation
by inhibiting the WNT and NF-κB signaling pathways and
by attenuating TNF-α-induced apoptosis.

2. Materials and Methods

2.1. Cell Culture. All researches involving human stem cells
complied with the ISSCR “Guidelines for the Conduct of
Human Embryonic Stem Cell Research.” PDLSCs were
isolated from healthy volunteers who had no history of

periodontal diseases and who had relatively healthy peri-
odontiums. All of the experiments followed the guidelines
of the Tianjin Medical University School of Stomatology.
We obtained written informed consent from all volunteers
prior to collecting their cells. PDLSCs were isolated, cultured,
and identified as described previously [32]. Generally, the
middle one-third of the periodontal ligament was extracted
from the surface of the tooth root and then subjected to a
gradient wash. Next, the chopped tissues were digested in a
solution of 3mg/ml collagenase type I plus 4mg/ml dispase
(Sigma-Aldrich, St. Louis, MO, USA) for 1 h at 37°C.

The PDLSCs from all of the volunteers were pooled. A
single-cell suspension was prepared by passing the cells
through a 70μm strainer (Falcon, BD Labware, Franklin
Lakes, NJ, USA), and PDLCSs were plated in complete
α-MEM (HyClone, Logan, UT, USA) plus 20% FBS (Gibco,
Carlsbad, CA, USA), 100U/ml penicillin, and 100μg/ml
streptomycin (Invitrogen, Carlsbad, CA, USA). The cells
were cultured at 37°C in 5% carbon dioxide, and the culture
medium was changed every 3 days. Passages 3–6 were used
for the experiments. A total of 15 volunteers, aged 18 to 23
years old, provided informed written consent. PDLSCs were
identified by flow cytometry using antibodies against
STRO-1, CD90, CD45, and CD146. The details are described
in the SupplementaryMaterials andMethods (available here).

2.2. MTS Assay. Cell viability was measured using an MTS
assay (Promega, Madison, WI, USA). PDLSCs were seeded
in 96-well plates at a density of 3× 103 cells/well and cul-
tured to approximately 80% confluence. TNF-α (20 ng/ml,
100 ng/ml) and AZM (1μg/ml, 10μg/ml, and 20μg/ml) were
added. The cells were cultured in osteogenic medium for
48 h at 37°C and then incubated for 3 h with MTS. The
OD490 was measured using a microplate reader. The
experiments, which had 7 replicates, were repeated at least
3 times.

2.3. Alizarin Red Staining and Quantitative Calcium
Analysis. PDLSCs were fixed in 70% ethanol for 1 h and
washed with deionized water. We added 40mM alizarin red
staining solution (pH4.2) into the 6-well plates, incubated
the cells at room temperature for 10min, washed the cells
with deionized water 5 times, viewed them under a micro-
scope, and captured the images. For quantitative calcium
analysis, the cells were treated with 10% cetylpyridinium
chloride solution (Sigma-Aldrich) for 30min at room tem-
perature. The OD562 was used to quantify the degree of
mineralization and calcium quantitative analysis for alizarin
red stainingwas normalized to the total protein content before
calculation. The experiments were repeated at least 3 times.

2.4. Alkaline Phosphatase Staining. PDLSCs were seeded in
6-well plates. In addition to the control conditions, there were
3 experimental conditions: 100 ng/ml TNF-α, 100 ng/ml
TNF-α plus 10μg/ml AZM, and 100 ng/ml TNF-α plus
20μg/ml AZM. We examined osteogenesis at 7 days and
acquired images. The alkaline phosphatase (ALP) activity
assay is described in the Supplementary Materials and
Methods.
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2.5. Quantitative Real-Time PCR. Total RNA was isolated
from PDLSCs using TRIzol reagent (Life Technologies,
Carlsbad, CA, USA). We used oligo (dT) primers and reverse
transcriptase to amplify cDNA according to the manufac-
turer’s protocol (Invitrogen). RT-qPCR was performed using
the SYBR Green PCR kit (Qiagen, Düsseldorf, Germany).
Each reaction was repeated at least three times. Supplementary
Table 1 shows the primers for specific genes.

2.6. Western Blot Analysis. Total proteins were extracted
from PDLSCs by lysing the cells in RIPA buffer (10mM
Tris-HCl, 1mM EDTA, 1% sodium dodecyl sulfate (SDS),
1% NP-40, 1 : 100 proteinase inhibitor cocktail, 50mM
β-glycerophosphate, and 50mM sodium fluoride) and
1% PMSF. The proteins were separated on 10% and 12%
SDS polyacrylamide gels and then electrotransferred to poly-
vinylidene fluoride (PVDF) membranes for 2 h at 300mA.
The membranes were incubated overnight with primary anti-
bodies at 4°C. Primary monoclonal antibodies directed
against the following were used in this study: phosphorylated
p65, p65, phosphorylated IκB-α, IκB-α, the housekeeping
protein glyceraldehyde phosphate dehydrogenase (GAPDH,
Abcam, Cambridge, MA, USA), caspase-3, and caspase-8
(Cell Signaling Technology Inc.) Blots were then incubated
with the secondary antibody (peroxidase-conjugated goat
anti-rabbit; 1 : 1000, Abcam) for 2 h at room temperature.
GAPDH was used as the internal control. Each experiment
had three replicates and was repeated at least three times.

2.7. Cell Apoptosis Assay. Cells were seeded at a density of
2× 103/cm2. After treatment with 100 ng/ml TNF-α or
10μg/ml AZM plus 20μg/ml AZM for 24 h, PDLSCs
were stained with annexin V-fluorescein isothiocyanate
(FITC) and counterstained with propidium iodide (PI). The
eBioscience™ annexin V-FITC Apoptosis Detection Kit (Life
Technologies) was used. Briefly, cells were washed twice with
phosphate-buffered saline (PBS) and then stained with 200μl
binding buffer (1x) and 5μl annexin V-FITC for 10min at
room temperature in the dark. Finally, 10μl of PI in 1x
binding buffer was added to the cells for 5 minutes. The
cells were analyzed using a fluorescence microscope.

2.8. Annexin V Apoptosis Assay. We washed 1× 105 cells
twice with PBS followed by centrifugation at 4°C at
2000 rpm for 5 minutes to collect cell pellets. The cell pellets
were resuspended in 200μl binding buffer (1x) and stained
with 5μl of annexin V-FITC for 10min at room temperature
in the dark, and then 10μl PI in 1x binding buffer was
added to the cell suspension. The cells were analyzed by
fluorescence-activated cell sorting (FACs). Each experiment
was performed in triplicate.

2.9. Statistical Analysis. The data are reported as means± SD.
We used one-way ANOVA for statistical analysis, and a
P value< 0.05 was considered significant.

3. Results

3.1. TNF-α and AZM at Experimental Levels Had No Toxic
Effects on PDLSC Viability or Proliferation. PDLSCs have

an elongated spindle morphology (Figure S1). Flow
cytometry results for biomarkers are shown in Figure S2.
To investigate whether different concentrations of TNF-α
and AZM affected cell proliferation and viability, we used
MTS assay to compare the viability of PDLSCs cultured in
osteogenic conditions versus PDLSCs treated with TNF-α
and AZM (Figure S3). TNF-α was used at two
concentrations (20 ng/ml, 100 ng/ml) and AZM at three
concentrations (1μg/ml, 10μg/ml, and 20μg/ml). TNF-α
treatment alone tended to reduce the number of viable cells,
although this reduction was not significant. Based on these
results, we chose to use 20ng/ml and 100ng/ml TNF-α and
10μg/ml and 20μg/ml AZM as working concentrations
for the subsequent experiments.

3.2. Effects of AZM on the Osteogenic Differentiation of
PDLSCs. To investigate the effects of AZM on the osteogenic
differentiation of PDLSCs, cells were cultured in osteogenic
medium for 7 days. Experimental PDLSCs were treated with
TNF-α (100 ng/ml) and AZM (10μg/ml, 20μg/ml). The ALP
staining results (Figure 1) and alizarin red staining results
(Figure 2) showed that AZM can restore the ability of
PDLSCs to undergo osteogenic differentiation after the cells
are impaired by TNF-α (100 ng/ml). Compared to control
cells that underwent osteogenic induction, TNF-α treatment
decreased staining and calcium nodule formation (Figure 2).
Notably, TNF-α is a proinflammatory cytokine that contrib-
utes to bone loss in many different diseases. Until now, the
mechanisms by which TNF-α inhibits osteogenic differenti-
ation have been unclear and have been thought to be com-
plex. In accordance with previous results, TNF-α reduced
osteogenic differentiation and our data suggested that it
decreased the number of calcium nodules that were formed
as well (Figure 2(e)). Cotreatment of PDLSCs with TNF-α
(100 ng/ml) and AZM (20μg/ml) rescued the cells’ ability to
undergo osteogenesis compared with the TNF-α group, even
though osteogenesis was lower than that for control cells. The
higher the AZM concentration, the deeper the blue or red
staining is. This suggests that AZM has a positive role in
human PDLSC osteogenic differentiation, since cells under-
went osteogenesis when they were cultured in the absence
or presence of TNF-α and AZM for 0, 3, or 7 days.

Similar to the ALP staining and alizarin red staining results,
analysis of ALP activity demonstrated that AZM caused
PDLSCs to regain their osteogenic ability (Figure 1(g)).
Remarkably, the cells that were treated with TNF-α alone
clearly had fewer cells (Figures 1(b) and 2(b)). As the AZM
concentration increased, the number of cells increased as well.

We speculated that AZM could promote osteogenesis and
could partially restore PDLSC osteogenic capacity in an
inflammatory microenvironment. To verify this, we assessed
the mRNA expression of the osteogenic differentiation
markers OCN, BSP, and RUNX2 by real-time PCR
(Figure 3).We found that AZM treatment promoted PDLSCs
osteogenic differentiation and the mRNA expression of these
genes in a dose-dependent manner (Figure 3(a)–3(f)).
When cells were exposed to an inflammatory microenvi-
ronment (i.e., treated with TNF-α), the mRNA levels of
OCN, BSP, and RUNX2 were lower than those in control
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(P < 0 05). However, cotreatment with AZM restored the
mRNA expression levels (Figure 3(a)–3(f)). The mRNA
expression levels of KDM2A, KDM2B, and EZH2 were
higher in TNF-α-treated cells compared to control cells,
and AZM mitigated this effect (Figure 3(g)–3(i)).

3.3. AZM Rescued the Osteogenic Potential of PDLSCs
through the WNT and NF-κB Signaling Pathways. In an
inflammatory environment, NF-κB plays a vital role in
the osteogenic differentiation of PDLSCs [33]. We next
asked whether TNF-α-induced osteogenic inhibition could
be partially reversed in the presence of AZM through the

suppression of NF-κB signaling. Accordingly, we used
Western blotting to analyze the expression of p65,
phosphorylated p65, IκB-α, and phosphorylated IκB-α
(Figure 4). After 7 days of osteogenic differentiation,
TNF-α promoted the expression of phosphorylated p65
and phosphorylated IκB-α in PDLSCs compared with con-
trol. However, when PDLSCs were treated with both
100 ng/ml TNF-α and 20μg/ml AZM, the levels of phos-
phorylated p65 and phosphorylated IκB-α were lower than
those in cells treated with TNF-α alone. We also detected
the levels of p65 and IκBα. The protein level is shown in
Figure 4.
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Figure 1: Analysis of alkaline phosphatase staining and alkaline phosphatase activity in human PDLSCs after treatment with AZM.
(a–f) PDLSCs were cultured in osteogenic medium for 7 days. (a) Control PDLSCs cultured without any additions. (b) PDLSCs treated with
TNF-α (100 ng/ml). (c) PDLSCs treated with TNF-α (100 ng/ml) and AZM (10 μg/ml). (d) PDLSCs treated with TNF-α (100 ng/ml) and
AZM (20 μg/ml). (e) PDLSCs treated with AZM (10 μg/ml). (f) PDLSCs treated with AZM (20 μg/ml). (g) Alkaline phosphatase activity
analysis. PDLSCs were induced to form osteoblasts for 0, 3, or 7 days. The results showed that AZM promoted the ability of PDLSCs to
undergo osteogenesis differentiation. ∗P < 0 05 indicates significant differences. Data are presented as means± SD.
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Consistent with the ALP and alizarin staining results,
TNF-α inhibited PDLSC osteogenic differentiation, while
AZM partially reversed this effect and promoted PDLSC
osteogenic differentiation. Phosphorylated p65 reflects the
activation of the NF-κB signaling pathway. Thus, the results
showed that AZM promoted osteogenic differentiation by
suppressing the NF-κB signaling pathway. We then investi-
gated whether WNT signaling plays a role in this process.
We found that β-catenin expression increased after cells were
treated with TNF-α. These results suggested that AZM
promoted the osteogenic differentiation of PDLSCs in an
inflammatory microenvironment by inhibiting the activation
of the WNT and NF-κB signaling pathways.

3.4. AZM Promotes PDLSC Osteogenic Differentiation by
Suppressing TNF-α-Induced Apoptosis. TNF-α is a strong
apoptosis-promoting factor. There were some indications
that AZM might repress the TNF-α-induced apoptosis of
PDLSCs, since ALP staining showed that TNF-α treatment
alone reduced the number of viable cells and that cotreatment
with TNF-α plus AZMmitigated this effect (Figures 1 and 2).
To investigate the mechanism underlying this phenomenon,
we tested whether AZM rescued PDLSC osteogenesis by

suppressing TNF-α-induced apoptosis. PDLSCs were
seeded at a density of 2× 103/cm2 in 6-well plates with
or without TNF-α (100 ng/ml) and AZM (10μg/ml,
20μg/ml) for 24 hours. Notably, 100 ng/ml TNF-α pro-
moted PDLSCs apoptosis and AZM mitigated this process.
In addition, AZM did not promote PDLSCs apoptosis. PI
staining and FITC staining were used to follow apoptosis
in PDLSCs undergoing osteogenic differentiation and
showed that 10μg/ml or 20μg/ml AZM had no effect on
apoptosis (Figure 5(a)).

In the caspase activation process, the caspase prodomain
is cleaved and caspase proteins form a heterotetrameric
enzyme in response to proteolytic activation. Next, protein
downstream of caspase is activated, resulting in apoptosis
[34, 35]. Caspase-8 is an initiator caspase, and caspase-3 is
an effector caspase. To further investigate the mechanisms
underlying the effects of AZM, we determined the protein
levels of caspase-3, caspase-8, cleaved caspase-3, and cleaved
caspase-8. The results demonstrated that after PDLSCs
underwent osteogenic differentiation for 7 days, the protein
levels of caspase-8 and cleaved caspase 3 were high in cells
treated with TNF-α alone and lower when AZM was added
(Figures 5(b) and 5(c)). PDLSCs treated with 10μg/ml or
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Figure 2: Alizarin red staining of human PDLSCs cultured in osteogenic media for 7 days. (a–d) PDLSCs cultured in osteogenic medium for 7
days. (a) Control PDLSCs cultured without any additions. (b) PDLSCs treated with TNF-α (100 ng/ml). (c) PDLSCs treated with TNF-α
(100 ng/ml) and AZM (10 μg/ml). (d) PDLSCs treated with TNF-α (100 ng/ml) and AZM (20 μg/ml). (e) Detection of the calcium ion
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calculation. Increasing the AZM concentration significantly changed the number of calcium nodules. The results showed that AZM
promoted the osteogenic differentiation of PDLSCs. ∗P < 0 05 indicates significant differences. Data are presented as means± SD.
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20μg/ml AZM (Figure 5(d)) showed no differences in the
protein levels of caspase-3 and caspase-8.

Compared with levels in cells treated with 10μg/ml AZM,
the levels of cleaved caspase-3 and cleaved caspase-8 were
higher in cells treated with 20μg/ml AZM. It is possible that
AZM promotes PDLSC differentiation. A more favorable cel-
lular state can increase cell proliferation, although the MTS
results showed no statistically significant differences in the
proliferation of cells treated with AZM (Figure S3).
Compared with cells treated with 10μg/ml AZM, cells
treated with 20μg/ml AZM showed a slightly increased cell
number. The level of apoptosis in cells treated with AZM

was lower than in that cells treated with TNF-α and
control cells (Figures 5(b) and 5(d)). AZM inhibited
apoptosis in a dose-dependent manner (Figures 5(b) and
5(d)). To confirm if AZM promotes human PDLSC
osteogenesis differentiation associated with the suppression
of TNF-α-induced apoptosis, PDLSCs were cultured in
basal medium and then cultured with or without TNF-α
(100ng/ml) and AZM (10μg/ml, 20μg/ml) for 24hours.
Annexin V-positive cells were detected by flow cytometry
analysis. Moderate levels of TNF-α can promote apoptosis
in PDLSCs, but AZM mitigated this effect. Compared
with PDLSCs treated with TNF-α alone (Figure 6), the
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Figure 3: RT-qPCR analysis showed that AZM promotes the osteogenic differentiation of human PDLSCs and impacts the mRNA levels of
epigenetic-related genes. Quantitative real-time PCR analysis of RUNX2, BSP, OCN, KDM2A, KDM2B, and EZH2. PDLSCs were treated with
TNF-α and AZM as indicated. The top three images show the mRNA levels of (a) RUNX2, (b) BSP, and (c) OCN in cells treated with 1 μg/ml,
10μg/ml, and 20 μg/ml AZM, respectively. The middle three images show the mRNA levels of (d) RUNX2, (e) BSP, and (f) OCN treated with
20 ng/ml TNF-α and 1μg/ml, 10 μg/ml, or 20μg/ml AZM. The mRNA levels of (g) EZH2, (h) KDM2A, and (i) KDM2B are shown in the
bottom three images. PDLSCs were treated with 20 ng/ml TNF-α and 10μg/ml AZM or with 20 ng/ml TNF-α and 20 μg/ml AZM. ∗P < 0 05
indicates significant differences. The data are presented as means± SD.
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apoptosis level decreased in the presence of AZM. Our data
thus showed that AZM can block TNF-α-induced
apoptosis.

Taken together, these data demonstrate that AZM
promotes the osteogenic differentiation of PDLSCs by sup-
pressing TNF-α-induced apoptosis.

4. Discussion

Periodontitis is a complex progressive inflammatory disease
that is more prevalent in adults but also occurs in children
and adolescents. Notably, periodontitis can lead to alveolar
bone loss and systemic inflammation. Dysbiosis of the dental
plaque, which interacts with the host immune defense, initi-
ates periodontitis. Because the underlying mechanism is
complex, it is challenging to repair bone loss and improve
the deep periodontal pocket to achieve a satisfactory end
result [9]. Bartold et al. demonstrated that dental plaque is
essential but insufficient for periodontitis [4, 5, 36, 37].
AZM has anti-inflammatory properties and it is reported
by several groups [38, 39]. Here, we found that AZM can
reverse bone loss and suppress PDLSC apoptosis. PDLSCs
that can differentiate into osteoblasts show great potential
for treating patients with periodontitis.

TNF-α is a strong apoptosis inducer and a proinflamma-
tory cytokine that contributes to bone loss in local and
systemic inflammatory bone diseases [40]. TNF-α inhibits
the expression of the osteogenic-related gene Runx2 in two
ways. First, it suppresses Runx2 gene expression. Second, it
promotes Runx2 degradation [41]. Our data provide

evidence that AZM promotes PDLSCs osteogenic differenti-
ation in an inflammatory microenvironment.

This study had four major findings. First, PDLSCs osteo-
genesis was strikingly inhibited by TNF-α and clearly
enhanced by AZM. Second, Western blot analysis showed
that TNF-α increased the expression of phosphorylated
p65, phosphorylated IκB-α, and β-catenin. In contrast, the
levels of these proteins were inhibited by AZM in a
concentration-dependent manner. Third, stimulation with
TNF-α activated the cleaved caspase-3 protein and AZM
reversed the TNF-α-induced apoptosis of PDLSCs. Fourth,
flow cytometry analysis showed that moderate concentra-
tions of TNF-α promoted PDLSC apoptosis and that AZM
mitigated this process. Our finding that AZM can inhibit
the apoptosis of PDLSCs is consistent with the work of
Mizunoe et al. [42] and Stamatiou et al. [43].

Our data shed light on the mechanisms by which
AZM promotes osteogenesis. When trimeric TNF-α binds
to TNFR1, the TNFR1-associated death domain protein
(TRADD) is recruited to TNFR1. TRADD then acts as a
bridge to recruit other apoptosis-related proteins, such as
receptor-interacting protein (RIP), TNF receptor-associated
factor 2 (TRAF2), and the Fas-associated death domain
protein (FADD). Next, the integration of TRAF2 and
RIP leads to the recruitment of the IKK complex. Intrigu-
ingly, phosphorylated-IκBα is then degraded and this acti-
vates the NF-κB signaling pathway and mediates cell
apoptosis. TNF-α can trigger cell apoptosis in another
way, that is, via the caspase pathway. This pathway
involves FADD, caspase-8, and caspase-3. Caspase-3 acti-
vation allows it to cleave related proteins and results in
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cell death [34]. AZM blocks bone loss induced by TNF-α
in two ways. First, it suppresses the activation of NF-κB
signaling, and second, it inhibits the cleavage of caspase
family proteins.

Increasing evidence shows that the WNT pathway plays
an important role in bone metabolism. There are two WNT
signaling pathways: the canonical pathway, termed the
WNT/β-catenin pathway, and the noncanonical WNT/Ca2+

pathway. The activation state of β-catenin is central in the
WNT/β-catenin pathway. When WNT proteins bind to
Frizzled receptors, β-catenin is activated and accumulates in
the cytoplasm. Stable β-catenin is transported into the
nucleus and mediates the transcription of downstream genes
([44], Huang, and [45–47]). Notably, high expression of
β-catenin decreased the mRNA expression of Runx2,
COL1, and OCN in PDLSCs extracted from an inflamma-
tory microenvironment. Some researchers asserted that
high β-catenin expression decreases osteogenesis via the
noncanonical pathway, while others considered this to occur
via the canonical pathway [47, 48]. Because we examined the
protein expression of β-catenin, we do not know which

pathway AZM inhibits and additional experiments are
needed to determine the precise mechanism.

Epigenetic regulation of gene expression is heritable and
reversible. The DNA sequence is not altered in epigenetics;
rather, there is methylation of lysine or arginine residues in
the histone tails. The methylated lysine residues are consid-
ered epigenetic signals that may be related to gene activa-
tion, as for methylation at H3K4 and H3K36, or to gene
repression, as for methylation at H3K9 and H3K27 [49,
50]. The histone lysine demethylases (KDMs) KDM2A
and KDM2B demethylate H3K4me3 and H3K36me1/2
[50]. KDM2B plays an important role in BCOR mutation-
associated diseases [51]. Moreover, the interactions
between KDM2A and BCOR can inhibit osteogenesis by
suppressing epiregulin (EREG) gene transcription, which
is required for the expression of osterix (OSX) and distal-
less homeobox 5 (DLX5) [52]. Our results are consistent with
these reports.

KDM2B is a component of the noncanonical PRC1
(polycomb repressive complex 1), and it recruits Ring1B
and Nspc1 to promote H2AK119 monoubiquitylation [53].
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Figure 5: Immunocytochemical staining and the expression levels of the apoptosis proteins caspase-3 and caspase-8 in human PDLSCs.
(a) Immunofluorescence staining. PDLSCs were incubated in osteogenic medium with or without TNF-α and AZM as indicated for 24 h.
(b–d) The expression levels of caspase-3,caspase-8,cleaved caspase-3, and cleaved caspase-8 were detected byWestern blot analysis. The results
showed that TNF-α induced cell apoptosis and that AZM treatment prevented PDLSCs from undergoing TNF-α-induced apoptosis. AZM
alone at 10 or 20μg/ml had no effect on apoptosis. ∗P < 0 05 indicates significant differences. Data are presented as means± SD.
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The recruited Ring1B may interact with RNA polymerase II
(RNAPII), leading to a bivalent state [54]. KDM2B localizes
to regions where H3K36me2 levels are low. TNF-α stimula-
tion promotes the removal of the dimethyl markers at
H3K36 and inhibits osteogenic-related gene transcription.
EZH2, a member of PRC2 (polycomb repressive complex
2), is a type of histone lysine methyltransferase (KMT).
EZH2 mainly catalyzes H3K27 trimethyl markers. The
canonical PRC1 complex is recruited to the appropriate loca-
tions by PRC2, which can recognize H3K27me3 [55]. EZH2
has been known for decades to be a negative mediator of
MSC osteogenesis, which is in accordance with our findings.
AZM may promote osteogenesis through three ways. First,
it can block PRC1 binding to the H2AK119ub promoter
and then decrease the level of H2AK119ub. Second, it can
increase the level of H3K36me2 and then promote gene
transcription. Third, it can decrease the level of H3K27me3
and reduce the recruitment of PRC2, which can inhibit
transcription inhibition and promote the expression of
downstream genes.

Periodontal diseases contribute to the formation of a
complex inflammatory microenvironment. This study
showed that AZM has potential as a new drug for treating
periodontal diseases. Although AZM cannot completely
reverse bone loss, it is likely to be helpful to have some
insights into the putative effects of AZM on periodontal
diseases. There may be additional mechanisms involved
that we did not explore here. In a TNF-α-induced inflam-
matory microenvironment, we detected the expression of
osteoblast-specific genes and cell apoptosis in vitro, and we

concluded that AZM promotes the osteogenic differentiation
of PDLSCs in an inflammatory microenvironment by
inhibiting the WNT and NF-κB signaling pathways and the
process associated with suppression of TNF-α-induced apo-
ptosis. This study has some limitations. In particular, this
was an in vitro study; animal studies were not conducted.
Further experiments focusing on tissue regeneration are
needed to better model the environment in humans.

In summary, our study suggested that AZM has potential
as a new drug to treat periodontitis diseases and offered some
insights into AZM and epigenetics. Further experiments are
needed to investigate AZM as a therapeutic drug for peri-
odontitis and bone tissue regeneration.

5. Conclusion

Our results showed that AZM promotes PDLSCs osteogenic
differentiation in response to TNF-α stimulation by inhibit-
ing the WNT and NF-κB signaling pathways and by attenu-
ating TNF-α-induced apoptosis.
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