Hindawi

Stem Cells International

Volume 2018, Article ID 2406462, 17 pages
https://doi.org/10.1155/2018/2406462

Review Article

Hindawi

Osteogenic Induction of Wharton’s Jelly-Derived Mesenchymal
Stem Cell for Bone Regeneration: A Systematic Review

Ayu Suraya Ansari,' Muhammad Dain Yazid,> Nur Qisya Afifah Veronica Sainik,’
Rabiatul Adawiyah Razali,' Aminuddin Bin Saim,” and Ruszymah Bt Hj Idrus ®'

'Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Cheras,

Kuala Lumpur, Malaysia

*Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Cheras,

Kuala Lumpur, Malaysia

’Ear, Nose & Throat Consultant Clinic, Ampang Puteri Specialist Hospital, 68000 Ampang, Selangor, Malaysia

Correspondence should be addressed to Ruszymah Bt Hj Idrus; ruszyidrus@gmail.com

Received 19 May 2018; Revised 27 July 2018; Accepted 3 September 2018; Published 11 November 2018

Academic Editor: Jeong-Chae Lee

Copyright © 2018 Ayu Suraya Ansari et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) are emerging as a promising source for bone regeneration in the
treatment of bone defects. Previous studies have reported the ability of WJ-MSCs to be induced into the osteogenic lineage. The
purpose of this review was to systematically assess the potential of WJ-MSC differentiation into the osteogenic lineage. A
comprehensive search was conducted in Medline via Ebscohost and Scopus, where relevant studies published between 1961 and
2018 were selected. The main inclusion criteria were that articles must be primary studies published in English evaluating
osteogenic induction of WJ-MSCs. The literature search identified 92 related articles, but only 18 articles met the inclusion
criteria. These include two animal studies, three articles containing both in vitro and in vivo assessments, and 13 articles on
in vitro studies, all of which are discussed in this review. There were two types of osteogenic induction used in these studies,
either chemical or physical. The studies demonstrate that WJ-MSCs are able to differentiate into osteogenic lineage and promote
osteogenesis. In light of these observations, it is suggested that WJ-MSCs can be a potential source of stem cells for osteogenic

induction, as an alternative to bone marrow-derived mesenchymal stem cells.

1. Introduction

1.1. Human Umbilical Cord. About 25 years ago, the umbili-
cal cord was considered to be a type of medical waste,
until it was found to be a rich source of stem cells [1].
The abundance of stem cells and the ease of isolation have
become deciding factors while choosing the source of adult
stem cells. The human umbilical cord (HUC) is approxi-
mately 65cm in length and 1.5cm in diameter [2, 3]; it
connects the fetus to the mother and supplies nourish-
ment. The cord is covered by single or multiple layer of
squamous cubic epithelial cells derived from the develop-
ing amnion [4-6]. The HUC contains two arteries and
one vein, which are surrounded by a mucoid connective
tissue known as Wharton’s jelly (WJ) [7]. This mucous

connective tissue is made up of mucopolysaccharides that
are hyaluronic acid and chondroitin sulphate [8]. Basi-
cally, W] can be divided into 4 layers with the outer
layer being the amniotic epithelium followed by cord lin-
ing WJ and intermediate WJ. The inner layer of WJ is
also known as perivascular W] which contains arteries
and vein [7] (Figure 1).

It has been reported that W] also contains myofibroblast-
like stromal cells, collagen fibers, proteoglycans, fibroblasts,
and macrophages. W] has garnered interest due to its avail-
ability, the noninvasive method of collection, and high cell
yields. It has been demonstrated that mesenchymal stem cells
(MSCs) isolated from the umbilical cord express matrix
receptors (CD44 and CDI105) and integrins (CD29 and
CD51), but not hematopoietic lineage markers (CD34 and
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FIGURE 1: Anatomical compartment of Wharton’s jelly mesenchymal stem cell.

CD45) [9]. These cells exhibit a phenotype similar to that of
mesenchymal stem cells from other tissue sources [10].
According to the International Society for Cellular Therapy
(ISCT), stem cells should demonstrate plastic adherence,
not expressing hematopoietic markers, and be able to com-
mit to the adipogenic, osteogenic, and chondrogenic lineage
[11]. W]-MSCs have a huge advantage where the phenotype
and stemness are remained despite being in a long-term cul-
ture. This enables a mass production of cells which is usually
required for regenerative medicine [12].

1.2. WJ-MSCs and Their Potential in the Treatment of
Diseases. W], also known as substantia gelatinea funiculi
umbilicalis, consists of fibroblast-like cells and mast cells that
are embedded in proteoglycans, mainly hyaluronic acid. The
cells are thought to be trapped in W] during the early stage of
embryogenesis, when they migrate from the aortic gonado-
tropin mesonephric region to the fetal liver through the
umbilical cord [13]. W]-MSCs have many advantages over
other types of stem cells, including higher proliferation rates
and broader multipotency. WJ-MSCs are able to differentiate
into many cell types such as adipocytes [14, 15], osteoblasts
[14, 16], hepatocytes [17], chondrocytes [18], and neural cells
[19, 20]. Interestingly, it has also been demonstrated in a
three-dimensional model that WJ-MSCs are able to differen-
tiate in vitro into cornea epithelial-like cells, which may offer
a solution for patients with limbus stem cell deficiency [21].

Cui and colleagues have successfully improved cogni-
tive function in a mouse model of Alzheimer’s disease
using intravenously delivered WJ-MSCs, which reduced
oxidative stress and promoted hippocampal neurogenesis
[20]. In a clinical trial conducted by Hu and colleagues,
an intravenous infusion of WJ-MSCs in type 2 diabetes
mellitus patients improved the function of islet S-cells
and reduced the incidence of diabetic complications [22].
Additionally, WJ-MSC therapy is now used to treat cor-
neal epithelial, stromal, and endothelial disorders apart

from the conventional intervention such as surgery, ioniz-
ing radiation, or drug treatment [23, 24].

1.3. Immunomodulatory Aspect of WJ-MSCs and BM-MSCs.
W] harbours MSCs that possess a similar phenotype as
harvested from the bone marrow and other sources. WJ-
MSCs do not express HLA-DR and costimulatory molecules
CD40, CD80, and CD86 which are essential for the activation
of T-cells [1, 2, 9, 25-27]. W]-MSCs have been proven to
have lower immunogenicity than BM-MSCs as depicted by
Weiss et al. [1] who conducted an experiment using mixed
lymphocyte reaction (MCR) assay [26]. In a study conducted
by Prasanna et al. and Deuse et al., both consistently showed
low HLA-DR expression compared to BM-MSCs after stim-
ulation with IFN-y and proinflammatory cytokines [28, 29].
In normal culture conditions, HLA-DR is not expressed;
hence, the activation of T-cell is inhibited, reducing the risk
of allograft rejection which potentially makes it safe for
human transplantation.

It is documented that BM-MSCs harbour viruses, which
is a major drawback in clinical application. There are reports
from patients who undergo BM-MSC transplant who are
infected with viral infection as a complication of the cell-
based therapy [9]. Interestingly, the virus can escape from
detection therefore increasing the morbidity and mortality
[30]. Moreover, there are various diseases such as aplastic
anemia, leukaemia, and bone marrow failure that impedes
the application of BM-MSCs in therapy [31].

1.4. W]-MSC Homing and Migration for Bone Healing. Gen-
erally, MSCs are known to migrate towards the injury site
and help the healing process. The migration process,
known as homing, is defined as the arrest of MSCs within
the vasculature of a tissue before it crosses over the endo-
thelium [24, 32]. As for now, the mechanism of MSC
homing is still vague and BM-MSCs are postulated to have
a mechanism similar to leukocyte homing. The mechanism
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is initiated when MSCs collide with the endothelium roll-
ing, causing a slackening of cells in the blood flow. The G-
protein-coupled receptors activated the cells and activated
integrin mediation, causing activation-dependent arrest.
The process is completed with the transmigration of the
cells through the endothelium and the underlying base-
ment membrane [33]. There are several factors that
contribute to the homing mechanism which are growth
factor expression as well as chemokine and extracellular
matrix receptors on the MSCs’ surfaces [34].

In a study conducted by Granero-Molt¢ et al., MSCs are
migrated to the fracture site via the CXCR4 receptor causing
improvement of biomechanical properties and increasing the
cartilage and bone of the callus [24]. Zwingenberger et al.
demonstrated that the combination of the SDF-1 released
and bone morphogenetic protein 2 contributes to the migra-
tion of the stem cell [35]. This occurrence markedly boosts
bone regeneration. Apart from that, MSCs are also recruited
towards wear-particle-related osteolysis which is indicated by
the inflammatory macrophage that is also the chemokine CC
receptor (CCR) 1 of MSCs [30, 36]. The MSCs are demon-
strated to increase bone mineral density and decrease the
osteolytic process [37].

L5. Cellular Mechanism of Bone Remodelling for Bone
Regeneration. Bone repair or bone regeneration is character-
ized by a series of tissue transformation mechanisms includ-
ing resorption and formation of hard and soft tissue.
Therefore, mineralized tissue remodelling is required for
the involvement of various cell types including osteoclast
and osteoblast. Osteoblasts are bone-forming cells that can
be found at the surface of bone, while osteoclasts are multi-
nucleated bone-resorbing cells derived from bone marrow
stem cells [38]. Bone remodelling is a cyclical process in
which bone undergoes consistent renewal to ensure the
replacement of primary bone, to maintain calcium homeo-
stasis, and especially to heal ischemic and microfractured
bone [7, 20, 32-34, 39]. This process requires a correct bal-
ance of bone resorption and bone formation and thus
involves osteoclasts and osteoblasts, respectively.

Bone remodelling consists of five consecutive phases: (1)
the resorption phase, where osteoclasts break down the bone
tissue, resulting in mineral release; (2) the reversal phase,
where mononuclear cells appear on the bone surface; (3)
the formation phase, where osteoblasts trapped in the bone
matrix become osteocytes; (4) the mineralization phase,
where osteocytes produce type I collagen and other sub-
stances that make up the bone extracellular matrix; and (5)
the termination phase [38, 40]. Resorption is initiated by
osteoclast progenitors that are recruited and disseminated
into the bloodstream. These cells proliferate and differentiate
into mature osteoclasts, aided by osteoblast stromal cells via
cell-to-cell interactions. These osteoblasts express two cyto-
kines, i.e., receptor activator of NF-«B ligand (RANKL) and
osteoprotegrin (OPG), involved in osteoclast progenitor cell
differentiation. Under parathyroid hormone (PTH) stimula-
tion, RANKL will bind to RANK, a cytoplasmic membrane
receptor on osteoclast progenitor cells, to stimulate their
fusion, differentiation, and activation. In contrast, OPG

binds to RANKL to counterbalance the effect of RANKL-
RANK, which thereby determines the extent of bone resorp-
tion. These events are important in maintaining bone
homeostasis [41] (Figure 2). Bone resorption is terminated
when osteoclasts undergo apoptosis and the reversal phase
is initiated. Reversal cells may thus represent the missing link
necessary to understand the coupling between bone resorp-
tion and formation. Researchers have found that reversal
cells colonizing the resorbed bone surface are immature oste-
oblastic cells that gradually mature into bone-forming osteo-
blasts during the reversal phase and prepare the bone surface
for bone formation [42].

1.6. Molecular Mechanism of Bone Remodelling for Bone
Regeneration. The differentiation of MSCs depends on which
signalling pathway is activated. Apart from osteoblasts, W]-
MSCs have also been demonstrated to differentiate into other
mesenchymal cell lineages such as hepatocytes [43], chon-
drocytes [18, 44], and adipocytes [14, 15]. The markers for
osteogenic differentiation are alkaline phosphatase (ALP),
an early marker of osteogenic differentiation and mineraliza-
tion, and RUNX2, a runt domain-containing transcription
factor that is crucial for osteogenic differentiation and bone
formation. The activation of RUNX2 triggers COL1 (collagen
type 1), osteopontin (OPN), and osteocalcin (OC), which are
osteoblast-specific markers. OPN is expressed later in the dif-
ferentiation stage [45, 46]. Both OPN and COLLI are synthe-
sized by osteoblasts. OC is also expressed later and is
important for maintaining bone resorption. Osterix (Osx) is
a downstream factor of Runx2 that binds to activated NFAT2
in bone development [47]. A study by Zhou et al. explored
the function of Osx where it regulates bone homeostasis after
birth for bone and cartilage formation [26].

In osteoblasts, lineage-specific gene expression control
by specific transcription factors, i.e., Cbfa-1/RUNX2, acts
to regulate osteoblastic specific gene expression [48]. Cbfa-
1/RUNX2 is required for osteoblast differentiation, since
Cbfa-1 knockout mice display impaired or even absent bone
formation [49, 50]. This transcription factor contains a runt
DNA-binding domain, which can bind to DNA as a mono-
mer or as a subunit of a monomeric complex. It binds to var-
ious enhancers and promoters, including those for the genes
encoding osteocalcin, osteopontin, bone sialoprotein, and
GM-CSF. The expression of these proteins contributes to
the bone matrix, leading to the maturation of osteoblasts.
These genes can also be used as markers for different stages
of osteoblast development [51-53].

The expression of transcription factors is controlled by
several pathways that are activated by growth factors (GFs)
that bind to a specific receptor. These growth factors include
fibroblast growth factor (FGF), transforming growth factor-f8
(TGF-f), insulin-like growth factor (IGF), platelet-derived
growth factor (PDGF), and vascular endothelial growth fac-
tor (VEGF) [54]. It has been reported that these GFs are
responsible for regulating the expression of Cbfa-1/RUNX2
via the MAPK [55], ERK [52], and PI3K-Akt pathways [54,
56]. GF binding to its receptor tyrosine kinase (RTK) acti-
vates a downstream signaling cascade. The activated RTK
activates class I phosphatidylinositol 3-kinase (PI3K) or
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FIGURE 2: Mechanism of bone regeneration and activation of signaling pathways.

guanosine nucleotide-binding protein (Ras) and propagates
the signal through direct binding or tyrosine phosphoryla-
tion. This then activates Akt/PKB, IxK/IxB, or Raf/MEK,
which then activates NF-«B or MAPK, accordingly. Acti-
vated NF-xB and MAPK act through direct binding to phos-
phorylate ERK/JNK-cJun, which then activate Cbfal/
RUNX2 gene expression. TGF-f3 plays important roles in
osteoblast precursor recruitment, FGF enhances osteoblast
recruitment and proliferation, IGF is involved in the regula-
tion of bone matrix synthesis and migration, VEGF regulates
osteoblast differentiation, and PDGF is involved in osteopro-
genitor migration [51, 52]. Cumulatively, the osteogenic dif-
ferentiation capability owned by WJ-MSCs supplemented
with specific GF is postulated to have a high potential for
bone regeneration.

1.7. W]-MSCs for Bone Regeneration. Albeit many have used
WJ-MSCs in the studies, the safety and efficacy of its applica-
tion are indecisive particularly in bone regeneration. There
are several aspects that need to be considered prior to using
WJ-MSCs that may influence the yield and its stemness
potency. Different parts of the umbilical cord generated
diverse frequencies of MSCs and cell populations [6-8, 57—
59]. It is known that Runx2 plays a pivotal role in osteoblast
differentiation. In a previous study, it has shown that WJ-
MSCs have lower capability to differentiate due to the high
level of RUNX2 but lower ALP expression. ALP is important
for matrix maturation [60, 61]. WJ-MSCs also exhibited

higher expression of pluripotent markers, OCT 4, SOX 2,
and NANOG than in other parts of the umbilical cord [62].
From those findings, it can be postulated that regulation of
Runx2 and pluripotent impedes ALP expression, thus need-
ing a specific modulator that can serve as a molecular switch
of WJ-MSCs’ fate. Current study by Bustos and colleagues
have demonstrated that JARID1B (Jumonji AT-rich interac-
tive domain 1B) histone demethylase represses Runx2 in
undifferentiated WJ-MSCs. In JARID1B knockdown murine,
it can be seen that Runx2 is highly expressed and ready for
osteogenic commitment indicating that this molecular
mechanism is relevant to modulating osteoblastic lineage
commitment [63].

1.8. Clinical Application of W]-MSCs in Bone Regeneration.
The current standard commonly used for bone tissue
replacement is bone grafting obtained from patients
themselves (autograft) or from other individuals (allograft).
However, this has raised various effects including immunore-
activity and infection as well as procedure. WJ-MSCs have
proved its capability to help in bone regeneration for clinical
application. Qu et al. treated 36 patients with nonunion bone
fracture with WJ-MSCs cultured with platelet-rich plasma
(PRP) resulting in a faster recovery with no infection
recorded compared to the other 36 patients with autoiliac
treatment [64]. In another study, the intravenous injection
of 3-5 million WJ-MSCs alleviated the condition of Becker
muscular dystrophy patients with increased muscle strength,
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improved appetite, and also improved patient’s gait [65].
Recently, a patient in Indonesia with infected nonunion bone
is able to walk with no pain and no postoperative compli-
cations recorded after local implantation of 5 million cells
supplemented with BMP-2 and hydroxyapatite [66]. A
transplantation of autologous BM-MSCs and allogeneic
WJ-MSCs in treating osteonecrosis of femoral head
showed improvement where it relieved the pain and
improved the joint function [67].

To this date, there are many various positive outcomes
upon WJ-MSC treatment in clinical trials for different dis-
orders including neurology [67], hematology [68], liver
diseases [69], and particularly musculoskeletal diseases
[65, 70]. W]-MSCs have a huge potential to be used as
an alternative treatment for bone disorders as it does not
require ethical issues to obtain and it is alleviating
patients’ morbidities [71]. Since WJ-MSCs can retain the
stemness and phenotypic stability compared to BM-MSCs,
it has potency to be commercialised [72].

2. Methods

2.1. Search Strategy. A systematic review was conducted to
systematically assess articles on the potential of WJ-MSCs
for bone regeneration. Two databases were comprehensively
used to search for relevant studies, i.e., Medline via Ebscohost
and Scopus. For search term keywords, the combination of
words used was “Wharton’s jelly” AND “osteo*” OR “bone”.

2.2. Selection Criteria. The year limit for searches was from
1961 to 2018, and only studies published in English were
considered. The search outcomes identified all articles
containing the words Wharton’s jelly, umbilical cord, osteo-
genesis, osteogenic, and bone. Databases were searched indi-
vidually to ensure all relevant studies were considered. The
titles and abstracts were carefully screened for eligibility
related to the topic of interest. Primary studies related to
bone formation or bone regeneration were included. Review
articles, news articles, letters, editorials, and case studies were
excluded from the search.

2.3. Data Extraction and Management. Data were extracted
from each eligible article by two reviewers. The selected
papers were screened in several phases prior to inclusion.
First, the titles that were not relevant to the topic were
excluded. Next, the abstracts of the papers were screened,
and unrelated studies were excluded. All duplicates were
removed. The following data were summarized from the
selected studies: (1) authors, (2) type of study, (3) subject/
sample, (4) induction factor, (5) methodology, (6) results,
and (7) conclusions.

3. Results

3.1. Search Results. The primary searches identified 386 arti-
cles: 41 articles came from Medline and 345 articles were
found in Scopus. To minimize bias and improve the strength
of the related articles, two reviewers independently assessed
the articles according to the inclusion and exclusion criteria.
There were 244 articles removed as they were unrelated to

either Wharton’s jelly or osteogenesis/bone. A joint discus-
sion was conducted to achieve consensus where differences
emerged during the assessment. From the 142 remaining
articles, 50 duplicates were removed before full articles were
retrieved. From 92 articles, 74 articles were rejected based
on the inclusion criteria as the articles were not primary stud-
ies, were not related to Wharton’s jelly or osteogenesis, or
were not available as full articles. Finally, a total of 18 studies
were selected for data extraction in this review. The flow
chart of the selection process is shown in Figure 3.

3.2. Study Characteristics. All studies were published between
1961 and 2018. An article reported on animal studies
(in vivo), two articles on both in vitro and in vivo assess-
ments, and 14 articles on in vitro studies. There were six arti-
cles which included scaffold fabrication in the study. Three
out of six scaffold studies involved the optimization of the
scaffold component for better bone regeneration. Eleven
studies proposed a different type of tissue as the MSC source.
From the generated data, we classified the articles into two
subgroups: (1) chemical methods to promote osteogenesis
and (2) physical methods (scaffolds) to promote osteogene-
sis. A summary of the studies is provided in Table 1.

4. Discussion

The database search provided 18 articles related to Whar-
ton’s jelly, umbilical cord, osteogenesis, osteogenic lineage,
and bone. From these articles, various tissue sources were
assessed for potential MSCs. Each of these sources was exam-
ined regarding MSC differentiation capacities into the adipo-
genic, chondrogenic, and osteogenic lineages. This review
assessed the osteogenic potential of WJ-MSCs, which may
have remarkable potential for bone regeneration in the clinic.

4.1. Mesenchymal Stem Cells: Potential Sources. Mesenchy-
mal stem cells (MSCs) have attracted attention because of
their unique plasticity and ability to differentiate into multi-
ple cell lineages, i.e., osteoblasts, chondrocytes, and adipo-
cytes, with potential for clinical usage. The bone marrow is
a primary source of MSCs. However, it has been reported
that the frequency as well as the differentiation potential of
BM-derived MSCs (BM-MSCs) decline with increasing age
[73]. Therefore, alternative sources of MSCs are needed,
especially those that can be obtained noninvasively. Cur-
rently, various tissues are under consideration for MSC isola-
tion, including adipose tissue, muscle, amniotic fluid,
menstrual blood [74, 75], fetal blood [76], and periodontal
ligaments (PDL) [61]. The human umbilical cord is a prom-
ising source of MSCs, as MSCs can be isolated either from the
whole umbilical cord [16, 77], the umbilical vein subendothe-
lium [78], or WJ [14, 19, 74]. One group of researchers
divided the umbilical cord into three anatomical segments,
i.e., the maternal, middle, and fetal segments [79]. They dem-
onstrated that MSCs from the maternal and fetal segments
displayed greater viability, possessed significantly higher pro-
liferation rates, and underwent more complete osteogenic
differentiation, showing that these segments are a good
source of MSCs for bone tissue engineering [79].
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F1GURre 3: Flow chart of the article selection process using the Scopus and MEDLINE databases.

It is important to characterize cells derived from tissues
to determine the type of cell population that exists in the
preparation. A heterogeneous population could influence
the differentiation properties, specifically the osteogenic
potential of MSCs for bone regeneration. There are a few sur-
face markers that are commonly reported for MSCs such as
CD13, CD29, CD44, CD73, CD90, CD105, and CD166.
MSCs do not express CD31, CD144, and CD309 (endothelial
cell markers) or CD14, CD34, CD45, CD117, and CD133
(hematopoietic cell markers) [61, 79].

4.2. Wharton’s Jelly Mesenchymal Stem Cells Undergo
Osteogenic Differentiation. WJ-MSCs have been shown to
have good potential for osteogenic differentiation. These cells
display all features of functional osteocytes/osteoblasts based
on osteogenic gene expression, extracellular matrix (ECM)
mineralization, and the ability to adhere to a fabricated
scaffold [80, 81]. Although WJ-MSCs have been broadly
investigated, there are still problems when it comes to trans-
plantation, as an immune response and rejection could occur
[82]. In the database search, we only found one article that
used autoserum for WJ-MSCs in vitro as a substitute for
FBS to reduce the rejection rate. Autoserum is serum
obtained from the umbilical cord blood. Baba et al. reported

that the cell culture medium using autologous serum is supe-
rior in quality to medium using FBS. W]-MSCs cultured in
autologous serum exhibited successful osteoblastic and
adipogenic differentiation. The WJ-MSCs were then trans-
planted subcutaneously into nude mice, and their potential
to form bone was proven [16].

4.2.1. Chemical Induction. Seven studies out of 18 selected
articles used chemical factors to promote osteogenesis in
WJ-MSCs. Batsali et al. [83] demonstrated that WJ-MSCs
are able to differentiate into the osteogenic lineage,
although this was inferior compared to BM-MSCs. They
demonstrated that WISP1, a canonical Wnt pathway target
protein, was able to promote better osteogenic differentia-
tion in WJ-MSCs [83]. A study by Szepesi et al. [61]
showed that adipose tissue-derived mesenchymal stem
cells (AT-MSCs) and periodontal ligament-derived mesen-
chymal stem cells (PDL-MSCs) have excellent potential for
bone replacement applications and better endothelial dif-
ferentiation ability as compared to WJ-MSCs [61]. The
high degree of calcification in AT-MSCs and PDL-MSCs
demonstrates that calcium deposition was better as com-
pared to WJ-MSCs for generating vascularized bone grafts
[61]. Similar findings were reported by [84] where AD-
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MSCs were found to be superior to WJ-MSCs in terms of
differentiating into the osteogenic lineage after 21 days
compared. In a different study by Lim and colleagues,
MSCs derived from different parts of the umbilical cord,
ie, the fetal, middle, and maternal segments, have the
ability to differentiate into osteogenic lineage cells using
the osteogenic medium consisting of dexamethasone,
ascorbic acid, and f-glycerophosphate. The fetal part was
shown to have the best differentiation potential [79]. A
study by Hsieh et al. [14] showed that BM-MSCs express
more osteogenic genes compared to WJ-MSCs; conversely,
WJ-MSCs are more responsible for angiogenesis [66].
Bone morphogenetic protein 2 (BMP-2) was used in a
study by Hou et al. to promote osteogenic differentiation
in WJ-MSCs [15].

4.2.2. Physical Induction. It is noteworthy that the microenvi-
ronment influences cell behaviour and leads to the pro-
duction of a specific chemical composition that builds
the ECM. Therefore, fabricated scaffolds have been actively
investigated to find better materials and to produce the
best structure of ECM-like components. From the database
search, eight out of 18 articles investigated the fabrication
of various scaffolds to test the potential of WJ-MSCs to
promote complex bone regeneration. Various biomaterials
were used to construct these scaffolds, ranging from colla-
gen hydrogels [85] to bioactive glass [80]. 3D scaffolds
have been documented as one of the best carriers for cell
delivery in bone regeneration. The ideal scaffold should
be osteoconductive, biocompatible, and bioresorbable; pos-
sess interconnected porosity; and promote cell binding/
attachment [82, 86].

The first phase in scaffold development used collagen as
the main organic component in bone tissue for bone grafting
[85]. Collagen type I can be isolated from Sprague-Dawley rat
tails after processing and pelleting. Genipin has been selec-
tively used for crosslinking collagen scaffolds to improve
the stability and mechanical strength of the scaffolds in the
culture medium [74]. Other crosslinkers have also been used,
such as glutaraldehyde and formaldehyde. However, those
have been reported to have some cytotoxic effects [87]. Cal-
cium phosphate is another major constituent in bone that
has been widely studied as a scaffold material for bone tissue
engineering [88]. A study by Karadas et al. [74] produced an
in situ mineralized collagen scaffold whereby, after crosslink-
ing with genipin, the scaffold was immersed in a calcium and
phosphate solution. As a result, highly integrated calcium
phosphate minerals were successfully formed [74]. The com-
bination of collagen I and III has also been reported to resem-
ble the native ECM, where umbilical cord MSCs (UC-MSCs)
were found to have better osteogenic potential compared to
BM-MSCs [85]. In addition, porcine ECM, derived from
the urinary bladder, has also been used as a biomaterial for
scaffold preparation as it contains collagen, glycoproteins,
glycosaminoglycans, and GFs [89].

Scaffold design then moved to the second phase, in
which bioactive glass has been used as a scaffold in bone
tissue engineering [80]. Kargozar and colleagues used a
combination of bioactive glass/gelatin (BaG/Gel) scaffolds,
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aiming for a highly porous structure, which is considered
ideal for bone substitution. A comprehensive physiochem-
ical analysis showed that the structure had an intact, 3D
porous microstructure with interconnected pores. It was
also shown that the properties were very close to those
of natural spongy bone [80]. They demonstrated that neo-
vascularization was significantly better in the UC-MSC-
seeded scaffold when compared to the BM-MSC-seeded
scaffold, indicating that the BaG/Gel scaffold is MSC
type-dependent. A study by Todeschi and colleagues used
hydroxyapatite (HA), beta-tricalcium phosphate (B-TCP),
or a mixture of the two [81] as the scaffold. They showed
that a significantly higher number of blood vessels were
present in the UC-MSC-seeded implants [81].

5. Conclusion

WJ-MSCs were first isolated by Mitchell et al. in 2003.
During embryogenesis, totipotent cells such as primordial
germ cells and hematopoietic stem cells migrate from the
yolk sac through this region to populate target tissues in
the embryo and fetus [90]. Characterization indicated that
these cells are stem cells, as they express c-kit and can dif-
ferentiate into neural cells. WJ-MSCs have similar prolifer-
ation and differentiation capacity and have multilineage
differentiation potential [77], including osteogenesis. This
review demonstrates that WJ-MSCs are capable of differ-
entiation into osteoblasts, which may be useful for more
effective bone fracture healing as these cells have been
shown to migrate into and colonize a collagenous matrix.
With the aid of 3D scaffolds, cell proliferation and survival
are improved as these scaffolds provide structural stability
similar to that of bone. However, MSCs have to be com-
patible with the scaffold prior to integration and incorpo-
ration into engineered bone.
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