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Here, we aimed to answer important and fundamental questions in germ cell biology with special focus on the age of the male
donor cells and the possibility to generate embryonic stem cell- (ESC-) like cells. While it is believed that spermatogonial stem cells
(SSCs) and truly pluripotent ESC-like cells can be isolated from adult mice, it remained unknown if the spontaneous conversion
of SSCs to ESC-like cells fails at some age. Similarly, there have been differences in the literature about the duration of cultures
during which ESC-like cells may appear. We demonstrate the possibility to derive ESC-like cells from SSC cultures until they reach
adolescence or up to 7 weeks of age, but we point out the impossibility to derive these cells from older, mature adult mice. The
inability of real adult SSCs to shift to a pluripotent state coincides with a decline in expression of the core pluripotency genes Oct4,
Nanog, and Sox2 in SSCs with age. At the same time genes of the spermatogonial differentiation pathway increase. The generated
ESC-like cells were similar to ESCs and express pluripotency markers. In vitro they differentiate into all three germ lineages; they
form complex teratomas after transplantation in SCID mice and produce chimeric mice.

1. Introduction

Pluripotent stem cells (PSCs) are undifferentiated cells which
have the potential for proliferation, self-renewal, and dif-
ferentiation into ectodermal, mesodermal, and endodermal
cells of all three embryonic germ layers in vitro and in
vivo [1]. So far, several different approaches were used
for the generation of PSCs, including ESCs obtained after
fertilization from the inner cell mass of an embryo at the
blastocyst stage [1, 2]. They were also procured by enforced
expression of pluripotency genes in somatic cells, giving

rise to the so-called induced pluripotent stem cells (iPSCs)
[3, 4]; one of the promising methods for a more natural
and ethical unproblematic establishment of PSCs is SSCs,
especially for therapeutic approaches in humanmedicine [5–
11]. SSCs are present in a small number in the testis, but they
can be isolated and expanded in vitro [5]. Although they are
unipotent stem cells under the environmental control of their
stem cell niche, under specific culture conditions outside the
niche and without any exogenous pluripotency genes, they
are able to convert to ESC-like cells at different times after
the initiation of culture or isolation of SSCs [5, 9, 10].
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The generation of PSCs of mouse testis cells dates back to
2004 by Kanatsu-Shinohara et al. [5], when they generated
ESC-like cells in SSC culture from two-day-old pups and
obtained these cells 4–7 weeks after the initiation of culture.
Guan et al. [9] obtained ESC-like cells from populations of
STRA8-GFP positive cells of 4–7-week-old adult mice. Ko et
al. repeated the induction of pluripotency in 5-week- to 7-
month-old Oct-4 GFP positive adult SSCs and described the
dependence of the induction on the initial number of plated
SSCs and the length of culture time of Oct-4-positive cells
without splitting [7]. On the other hand, this group worked
in the later published protocol of conversion of SSCs into
pluripotent stem cells only with SSCs of mice from postnatal
day 35 (5 weeks old) [8].

Also Seandel et al. generated adult spermatogonial-
derived stem cells from GPR125-positive cells in 3-week- to
8-month-old mice, but these cells were only multipotent [10].

In our experiments, we identified the spontaneous
conversion of SSCs in ESC-like cells from neonate and nearly
adult testis up to 7-week-old mice. On the contrary, it was
impossible to generate ESC-like cells from mice older than 7
weeks. According to the NIH criteria (http://www.research-
gate.net/post/At what age are laboratory mice considered
adult2), mice are considered adult after 8 weeks of age. The
sexual activity of mice starts between 5 and 6 weeks of age
[12]. According to Finlay and Darlington [13], mice should
be considered mature adult between 3 and 6 months of age.

The potential generation of pluripotent cells from SSCs
can apparently only be realized up to the age of 7 weeks.
Therefore, it is a debatable point whether generation of
pluripotent SSCs depends on their development status in
correlation with the completion of puberty. The possibility
of generating ESC-like cells from this cell type seems to stall
before donor mice are fully matured adults.

2. Material and Methods

2.1. Isolation of SSCs and Establishment and Culture of ESC-
Like Cells. All animal experiments were confirmed to the
local and international guidelines for the use of experi-
mental animals and were approved by the Royan Institu-
tional Review Board and Institutional Ethical Committee
(Tehran, Iran) and by the regional authorities in Germany
(Regierungspräsidium Karlsruhe). Testis cells were isolated
from C57BL/6, 129/Sv mouse strains of 6-day- to 6-month-
old transgenic Oct4-GFP-reporter mice. After removing the
tunica albuginea, the seminiferous tubules were separated
and placed in a digestion solution which contained collage-
nase IV (0.5mg/mL, Sigma), DNAse I (0.5mg/mL, Sigma),
and Dispase I (0.5mg/mL, Roche) in HBSS buffer with Mg++
and Ca++ (PAA) at 37∘C for 8 minutes. Digestion enzymes
were stopped with 10% ESC-qualified FBS (Invitrogen) and
additionally the cell suspension was triturated by pipetting
to obtain a single cell suspension. After centrifugation, the
cell pellet was washed with DMEM/F12 (PAA), filtered
through a 70 𝜇m cell strainer, and centrifuged again for
10 minutes at 1200 rpm. The supernatant was completely
removed and the cells were resuspended in mouse SSC
medium (StemPro-34 medium, N2-supplement, D+ glucose,

bovine serum albumin, L-glutamine, 𝛽-mercaptoethanol,
penicillin/streptomycin, MEM vitamins, NEAA, estradiol,
progesterone, EGF, FGF, GDNF, LIF, ES-FBS, ascorbic acid,
pyruvic acid, and DL-lactic acid) and plated onto 0.1%
gelatin-coated culture dishes (5 × 105 cells per 9.6 cm2 for
neonate and 5 × 105 cells per 9.6 cm2 for adult mice). About
3–7 days later, cultures of cells from neonate mice and 7–14
days later from adult mice, GFP-positive SSC colonies were
manually selected from the primary culture and plated on
a mouse embryonal feeder (MEF) layer in at least four 24-
well plates (approximately 500 cells per well) per group. Cells
were passaged 1 : 1–1 : 4 every 3-4 weeks. At the beginning,
SSCs expressed Oct4-GFP especially from neonate mice and
much weaker in mice older than 7 weeks. But this signal was
downregulated after 2-3 weeks after the initiation of culture.
During SSC cultivation we screened daily for colonies which
were similar to mouse ESCs, ESC-like cells that re-expressed
a high level of Oct4-GFP.

These generated ESC-like cells were manually selected
and subcultured on aMEF feeder layer inmouse ESC (mESC)
medium with KO-DMEM, (Invitrogen) 15% ESC-qualified
FBS (Invitrogen), 1% NEAA (PAA), 1% L-glutamine (PAA),
1% Pen-Strep (PAA), 0.1% 𝛽-mercaptoethanol (Invitrogen),
and LIF (ESGRO, Millipore) at a final concentration of
1000U/mL. ESC-like colonies were grown in mESCs media
and were passaged every 3-4 days.

In the supplementary method section (in Supplementary
Material available online at http://dx.doi.org/10.1155/2016/
8216312), we describe inmore detail thematerial andmethods
of RNA extraction and RT-PCR analysis, gene expression
analyses (Fluidigm Biomark), immunofluorescence staining
(IMH), electrophysiology, FACS analysis, alkaline phos-
phatase assay, embryoid body (EB) formation, neuronal
differentiation, cardiomyocyte differentiation production of
teratoma and chimeric mice, and the statistical analysis.

3. Results

3.1. Isolation and Expansion of SSCs. After mild digestion
with collagenase, the seminiferous testicular tubules from
neonatal, 7-week-old, and 12-week-old mice were sepa-
rated and could be microscopically investigated under UV-
light. The Oct4-GFP signal was clearly observable in the
freshly isolated seminiferous tubules of neonate mouse testis
(Figure 1(a)), while in adult mice the number and intensity
of Oct4-GFP signals were much lower and very low in 12-
week-old mice (Figure 1(b)). After digesting and plating, the
expression of the Oct4-GFP signal was detectable in both
neonate and adult SSCs, although in adult SSCs to a much
lower extend and with lower intensity (data not shown). All
the isolated Oct4-GFP SSCs were positive for DDX4 (Vasa)
and negative for Vimentin immunocytochemistry (data not
shown). The morphology of SSCs was similar, irrespective of
the age of themice and the days of the culture. Representative
examples of spermatogonial cultures are shown in Figure 1.

Up to 14–21 days after initiation of the primary testis
cultures with SSC medium, SSCs with a positive Oct4-GFP
signal were observed during the culture of neonate but were
observed very rarely during the culture of adult mice (Figures
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Figure 1: Number and intensity of GFP signals in the neonate and adult mouse testicular tubules (a, b) and SSC cultures (c, d) from transgenic
Oct4-GFP reporter mice. (A1–A3) In the freshly dissected testicular tubules, the number of Oct4-GFP positive cells and the intensity of the
Oct-GFP signal were higher and stronger in neonate mice than in adult mice >7 weeks (B1–B3). (C1–C3) Oct4-GFP positive SSCs were clearly
present during initial cultures fromneonatemice, while in adultmice>7weeks SCCsOct4-GFP signals weremuchweaker from the beginning
(D1–D3). SSC colonies were grown on MEF feeder layers. (A1–D1) bright field; (A2–D2) green fluorescence for Oct4-GFP; (A3–D3) merged
images. Scale bars: (a)–(c) 50 𝜇m, (d) 25 𝜇m.
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Figure 2: Different gene expression profiles of neonatal and adult SSCs with germ cell-enriched and pluripotency associated genes. Adult
SSCs were obtained from 7- and 12-week-old mice. (a) Dendrogram and (b) PCA demonstrate that neonate and adult SSCs are distinct and
localize in separated trees in the dendrogram or areas in the PCA. (c) Heat map shows array of pluripotency and germ cell associated genes
with a cluster of different populations of neonatal SSCs (coloured dark blue), while adult SSCs cluster from 7- and 12-week-old mice in a
separate tree (coloured light blue and green).

1(c) and 1(d)). After three weeks, the Oct4-GFP signal was
completely downregulated and in the near of not observable
during long-term culture (data not shown). The SSCs were
passaged for more than 22 times and could be cultivated up
to one year and longer.

3.2. Gene Expression Profiling of SSCs from Neonatal and
Adult Mice. We quantified and analyzed the expression of
important germ cell-enriched genes (LHX1, Stella, VASA,
DAZL, CD9, EPCAM, GPR125, GDF3, THY1, STRA8, GFRa1,
1ITGB1, TAF4b, KIT, ETV5, and BCL6B) and pluripotency
associated genes (Oct4, Nanog, Sox2, TDGF1, KLF4, MYC,

LIN28, SALL4, DPPA3, and DPPA5) in neonatal and adult
SSCs, which were obtained from 7- and 12-week-old mice by
real-time PCR with Fluidigm nanofluid technology.

Hierarchical clustering (dendrogram) and principal com-
ponent analysis (PCA), as in Figure 2, made evident that
neonatal and adult SSCs are different and localized in sepa-
rated trees in the dendrogram or areas in the PCA.

The heat map analysis with an array of pluripotency and
germ cell associated genes revealed that a cluster of various
populations of neonatal SSCs was significantly different from
the other groups, while adult SSCs from 7- and 12-week-old
mice clustered in a separate tree.
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Figure 3: Bar plot showing expression of pluripotency and germ cell associated genes between neonatal SSCs (coloured dark blue), 7-week-
old adult SSCs (coloured light blue), and 12-week-old adult SSCs (coloured green blue). Red arrows mark significantly downregulated genes
and purple arrowsmark upregulated genes in adult SSCs (more than 2-fold and𝑃 < 0.05). Note that the core pluripotency genes Oct4, Nanog,
and Sox2 are downregulated in adult SSCs from 12-week-old mice.

The neonatal SSCs expressed a significantly higher level
of the pluripotency genes Oct4, NANOG, TDGF1, and Sox2
in comparison to adult SSCs (fold change > 2 and 𝑡-test 𝑃 <
0.05) (Figures 2 and 3; Supplementary Table 1).

In contrast, several germ cell associated genes in the adult
SSCs were expressed in descending order MYC, NODAL,
LHX1, GDF3, GPR125, BCL6B, TERT, CD9, ITGB1,VASA,
TAF4b, EPCAM, BCL2L2, ETV5, DAZL, KLF4, RET, and
THY1 and at a significantly higher level than in neonatal SSCs
(fold change > 2 and 𝑡-test 𝑃 < 0.05).

Not significantly regulated between neonate and adult
SSCs were GFRa1, KIT, STRA8, LIN28, and DPPA3 (fold
change > 2 and 𝑡-test 𝑃 < 0.05).

In a comparison between neonatal SSCs and SSCs
obtained from 12-week-old mice, these differences became
even more apparent (see Supplementary Tables). Moreover,
comparing SSCs from 7-week-old and 12-week-old mice, the
pluripotency genes are significantly higher expressed in SSCs
obtained from 7-week-old mice.

As apparent in the bar plot (Figure 3), the core pluripo-
tency genes Oct4, Nanog, and Sox2 were significantly down-
regulated in adult SSCs from 12-week-old mice, while the
expression of germ cell genes was found more stable in
the more developed and differentiated epithelium of sper-
matogenesis. In contrast to neonatal SSCs and those from

7-week-old mice, Oct4 was also insignificantly differentially
expressed in 12-week-old mice in comparison to fibroblasts.
This possibly indicates that an important prerequisite for a
natural shift to pluripotency in male germ cells is lost during
adolescence. The decline in the expression of pluripotency
genes at the edge of adultness is demonstrated in aheat map
and correlation analyses in Figure 4 as well. The expression
levels of core pluripotency genes Oct4, Nanog, and Sox2
decrease in SSCs with the age of the animal.

3.3. The Occurrence of Pluripotent ESC-Like Cells from Oct4
GFP Positive Cells Is Restricted to Neonatal up to 7-Week-Old
Mice. As documented in Figures 5 and 6, ESC-like cells could
only be generated from SSCs obtained from mice not older
than 7 weeks, during a cultivation time of these SSCs between
46 days and 143 days. As shown in Figures 5(a) and 5(b), ESC-
like colonies were observed in days 46, 48, 84, 91, 101, and
119 in neonatal SSCs and after 116 and 143 days in 7-week-
old mice, counting from initiation of the culture (Figures 5
and 6). No ESC-like cells or colonies could be observed in
the groups of SSCs obtained from 9–16-week-old and 23-24-
week-old mice (Figures 5 and 6).

We observed no development of ESC-like colonies from
the SSC cultures at all before 46 days and after 143 days.
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Figure 4: Continued.
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Figure 4: (a) Heat map and (b–d) correlation analyses reveal expression levels of core pluripotency genes Oct4, Nanog, and Sox2 decrease
in SSCs with age of the animal. A decline in Oct4, Nanog, and Sox2 expression is clearly observable after 7 weeks of age and becomes even
more evident after 12 weeks of age. Arrows in (b–d) mark the localization of Oct4, Nanog, and Sox2 in the correlations.
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Figure 5: (a) Table and (b) graph demonstrate that ESC-like cells can only be obtained with SSCs obtained frommice until the age of 7 weeks.
SSCs obtained from older adult animals are unable to show a shift to pluripotency (red arrows).

3.4. The ESC-Like Cells Are Fully Pluripotent, Form Teratoma,
and Produce Chimera. ESC-like colonies had a packed
spindle- to round-shaped morphology with smooth borders
(Supplementary Figure 2A1).Moreover, they displayed a high
intensity of the Oct4-GFP signal (Supplementary Figures
2A2, 2A3). The ESC-like cell lines were passaged 1 : 5–1 : 8

for more than 15 times following trypsin digestion, with
an estimated doubling time of 48–72 h. They still expressed
Oct4-GFP after long-term cultivation. The cells preserved
their undifferentiated state in multiple passages. The estab-
lished ESC-like cell lines were successfully expanded, cry-
opreserved, and thawed with no loss in proliferation or
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Figure 6: Schematic illustration pinpoints that occurrence of
pluripotent ESC like cells from Oct4 GFP positive cells with the
production of chimera and formation of teratoma is restricted to
neonatal up to 7-week-old mice.

differentiation capacities. Figures 7 and 8 make evident the
close similarity of the gene expression profiles of ESC-like
cells and ESCwith germ cell-enriched and pluripotency asso-
ciated genes but show clear distinction to fibroblasts. Reading
the dendrogram, PCA, and heat map, we observe the ESCs
derivation from neonatal and 7-week-old mice and the ESCs
intermingling in den trees und areas. Moreover, it becomes
evident from the bar plots that all of the pluripotency genes
were strongly expressed in ESC-like cells and ESCs (Figures
7 and 8; Supplementary Tables 1 and 2). DPPA3, BCL2L2,
SALL4, and Nanog were upregulated in ESC-like cells in
comparison to ESCs (fold change > 1.5 and 𝑡-test 𝑃 < 0.05).

The ESC-like cell lines showed the ability to differentiate
spontaneously in vitro into derivatives of all three germ layers
by EB formation at day 10 and after plating (Supplementary
Figure 4 and Supplementary Figure 5A). mRNA and protein
expression of the lineage specific marker genes for ectoderm
(Nestin,Map2, Tuj1,NeuN,GFAP, and Pax6) (Supplementary
Figure 4), mesoderm (Gata4, Brachyury, EPCAM1, Myf5,
MyoD, Islet1, SM-actin, and FLK1), and endoderm (Afp
and Keratin-18) demonstrate this (Supplementary Figure

5A). Moreover, directed differentiation into cardiomyocytes
showed 14 (±3) beating areas for each well of 6-well plate
with 87 (±36) beating contractions per minute (Supple-
mentary Figure 3C; Supplementary film). Also differentiated
cardiomyocytes were analyzed by whole-cell current clamp
for pacemaker activity. It was observed that beating cells
have a rhythmic action potential generation over time, with a
constant amplitude (Supplementary Figure 3C).

Thus, the expression of lineage specific marker genes,
Map2, Nestin, NeuN, Pax6, Tuj1, and GFAP, demonstrated
the directed differentiation into the neural cell phenotype
(Supplementary Figure 4). We further examined the func-
tion of ESC-like cell-derived neuronal cells by patch clamp
recordings (Supplementary Figure 3F). Upon a brief current
pulse of 5ms, all cells (𝑛 = 6) could fire an action potential.
There were cells that would fire continuously (2 cells out
of 6 cells recorded) and cells that would not fire (4 cells
out of 6 cells recorded, data not shown). Interestingly, the
recorded cells displayed a strong hypopolarizing current after
action potential generation. Moreover, the resting membrane
potential was variable between the cells.

We tested the capacity of the ESC-like cells to form a ter-
atoma and to generate chimeric mice to further confirm their
pluripotency. We subcutaneously transplanted 2 × 106 ESC-
like cells into SCID mice. At four weeks after injection, ESC-
like cells resulted in teratomas that contained all three germ
layers (Figures 9(a)–9(d); Supplementary Figure 5B). Histo-
logical analyses showed the presence of neural structures and
epidermis (as ectodermal derivatives), bone structure and
adipose tissue (as mesodermal structures), and gut structure
(as endodermal derivatives) in the teratoma sections (Figures
9(a)–9(d); Supplementary Figure 5B). To investigate chimera
formation, ESC-like cells were transferred into blastocyst and
chimeric mice were identified by coat color (Figures 9(e)–
9(h)).

4. Discussion

SSCs are the only source of naturally occurring truly pluripo-
tent stem cells in the organism after birth, which do not have
to be artificially reprogrammed such as iPSCs.Themolecular
mechanisms underlying the natural shift from a unipotent
to a completely pluripotent cell during the establishment of
mouse ESC-like cells from SSCs are not completely under-
stood until now. However, it appears that the age of animals,
the mouse strain used, the culture conditions with growth
factors involved, the cell density of SSCs during culture, the
time period after initiation of culture, and the length of
culturemight all be key players in the transition process [5, 8–
11].

In our work, we demonstrated the scarcity of the con-
version of SSCs to ESC-like cells. Conversion occurred
spontaneously from SSCs of neonate and up to 7-week-old
mouse testis but not from older mice considered adult or
even mature adult [12, 13]. This observation implies that the
generation of ESC-like cells from SSCs coincides with the
general development of the mouse up to an adolescent stage
and thereafter ceases. Although mice are sexually mature by



Stem Cells International 9

ESC-like neonatal
ESC-like neonatal

ESC-like neonatal
ESC-like neonatal

ESC-like neonatal

ESCs P17

ESCs P17
ESCs P17

Fibroblasts, CF1
Fibroblasts, CF1
Fibroblasts, CF1

50 100
ESC-like, 7 w adult

w adult

w adultESC-like, 7

ESC-like, 7

(a)

ESC-like, 7w
ESC-like, neonatal

ESCs

Fibroblasts

PC1
−66−68 −64 −62 −60 −58 −56 −54 −52 −50 −48 −46 −44

PC
2

−16

−18

−20

−22

−14

−12

−10

−8

−6

−4

−2

0

2

4

6

8

(b)

SOX2

DAZL
DPPA5

GFRa1

NANOG
DPPA3
TDGF1

THY1
Vimentin

NODAL

LHX1

MYC

BCL6B

RET

VASA

OCT4

LIN28

KLF4

TERT
GPR125

KIT

SAL4

TAF4b

EPCAM

STRA8

CD9

ITGB1
FN1

ES
C-

lik
e n

eo
na

ta
l

ES
C-

lik
e n

eo
na

ta
l

ES
C-

lik
e n

eo
na

ta
l

ES
C-

lik
e n

eo
na

ta
l

ES
C-

lik
e n

eo
na

ta
l

Fi
br

ob
la

sts
, C

F1

Fi
br

ob
la

sts
, C

F1

Fi
br

ob
la

sts
, C

F1

ETV5

BCL2L2

GDF3

ES
C-

lik
e,
7

w
 ad

ul
t

ES
C-

lik
e,
7

w
 ad

ul
t

ES
C-

lik
e,
7

w
 ad

ul
t

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

(c)

Figure 7: Similar gene expression profiles of ESC-like cells and mESCs with germ cell-enriched and pluripotency associated genes. (a)
Dendrogram and (b) PCA clearly demonstrate that ESC-like cells and mESCs are similar to each other but distinct to fibroblasts which
localize in separated trees or areas. (c) Heat map shows array of pluripotency and germ cell associated genes with a cluster of ESC-like cells
and mESCs (both underlined with orange bar), while fibroblasts cluster in a separate tree (underlined with black bar).

35 days of age, relatively rapidmaturational growth continues
for most biological processes and cells. Tissues and organs
continue to develop in the mouse until about three months
of age [12, 13].

We observed that the amount of positive cells and signal
density of Oct4-GFP in the seminiferous tubules of the
neonate mouse testis was higher than in old mouse testis
(after 7 weeks of age). Reduction of Oct4, Nanog, Sox2, and
TGF𝛽1 expression with agingmay be related to a reduction of
the undifferentiated SSCpool.Thesemight include gonocytes
and prespermatogonia in the testis of neonates and older
animals. These observations might also indicate difficulties
for the generation of ESC-like cells from older mice.

We also observed another limitation for appearance of
ESC-like cells after initiation of culture that only occurred

during a special time window (46 until 143 days) after
initiation of SSCs cultures. Several reports concerning long-
term cultivation for SSCs failed to describe this spontaneous
shift of SSCs to pluripotent ESC-like cells [14, 15].

These results give the impression of a critical time
window for the generation of pluripotent cells from SSCs
and the impracticality of ESC-like cells being generated from
continuous Oct4-GFP SSC culture. Kanatsu-Shinohara et al.
also generated ESC-like cells during a time window about
4–7 weeks after initiation of culture in the neonate mouse
SSCs [5]. To answer the question related to the origin of the
SSC-ESC-like shift, different reporters including Stra8 [9],
GPR125 [10], and Oct4 [7, 8] were employed for generation
of ESC-like cells. Furthermore, Kanatsu-Shinohara et al.
[16] analyzed the developmental fate of a single cell from
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Figure 8: Bar plot showing expression of pluripotency and germ cell associated genes between ESC-like cells (coloured pink or dark red) and
mESCs (coloured light red). Note that the core pluripotency genes Oct4, Nanog, and Sox2 are not differentially regulated between ESC-like
cells and mESCs.
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Figure 9: Pluripotency characterization of ESC-like cells with teratoma formation including tissue structures of all germ layers (a–d) and
chimera formation (e–h). (a) Skin formationwith keratinizing squamous epithelium, (b) respiratory epitheliumwith goblet cells, (c) neuronal
rosette, and (d) primitive cartilage. (e, f) Blastocysts injected with GFP-marked ESC-like cells and chimera formation. Scale bars: (a), (e), and
(f) 50 𝜇m, (b) and (d) 10 𝜇m, and (c) 25 𝜇m.

a SSC culture that appeared during transfection experi-
ments. But in all these experiments, the original cell source
was heterogeneous, although the ESC-like cells were highly
enriched.

Ko et al. [8] showed the induction of pluripotency from a
SSC culture fromOct4 transgenic reportermouse at postnatal
day 35.They argued that this transitionwasmainly dependent
on a distinct number of SSCs and on the length of culture
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for reprogramming (2–4 weeks), while they did not really
mention if reprogramming occurred in every stage of the SSC
culture.

We demonstrated that the ESC-like cells are fully pluripo-
tent, express pluripotency markers, have the potential for
complex teratoma formation, and produce chimera in the
recipient mouse similar to mouse ESCs. Moreover, they are
highly capable of differentiating into neuronal and cardiomy-
ocyte phenotypes after in vitro differentiation, which also has
been shown by other groups [17, 18].

It would be of major interest to study factors, including
small molecules, that could increase the probability and
also the restricted time window of SSC to PSC conversion.
Recently it has been shown that the addition of glycogen
synthase kinase-3 inhibitors to the testis-derived SC cultures
increases the likelihood for the occurrence of ESC-like cells
from SSCs [11].

In the primary culture of isolated cells from Oct4 trans-
genic reporter mice, we observed that the Oct4-GFP signal
was expressed at a moderate level in neonate up to a low
level in older or adult SSCs. This expression was completely
downregulated during short- and long-term SSC culture [19],
and a high density signal only remerged after conversion to
ESC-like cells.

mRNA expression profiling confirmed that the expres-
sion of germ cell specific genes increased with age and
was therefore significantly higher in SSCs from 7- to 12-
week-old mice compared with neonatal SSCs. In parallel,
we observed that the expression of Oct4a and Nanog, and
Sox2 was significantly upregulated in neonatal SSCs and
downregulated in the adult SSCs.

In PSCs, core transcriptional genes control the expression
of different lineage specific genes and prevent pluripotent
cells from differentiation [20]. It has been demonstrated that
these genes as well as other genes associated with pluripo-
tency are already expressed in neonatal SCCs although
mostly to a lower extent [5]. Our analysis showed a crucial
time window for a shift of SSCs to ESC-like cells derived
from mouse SSCs which occurred with a downregulation
of germ cell genes and upregulation of core pluripotency
genes in the postnatal mouse until adolescence. The natural
potential of mouse SSCs to convert into a fully pluripotent
cell comparable to mouse ESCs is still not understood. Some
controversial challenges for pluripotency and multipotency
of ESC-like cells exist (especially in ESC-like cells which
were generated from human testis) [6]. However, the natural
shift from a unipotent cell involved in spermatogenesis to a
versatile cell population, which is able to differentiate into
germ cells and cells of all germ layers, offers an ethically
unproblematic and nonartificial alternative for regenerative
medicine. But there might be limitations, which could be
related to the age of the donor and also to a special time
window in which natural reprogramming of SSCs can be
observed during culture.

This study has come to the conclusion that the natural
reprogramming of unipotent SSCs into pluripotent cells can-
not occur during adulthood and implies that this conversion
is only observable until adolescence and during a special time
window after initiation of culture.
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