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Fibrosis is the endpoint of many chronic inflammatory diseases and is defined by an abnormal accumulation of extracellular matrix
components. Despite its slow progression, it leads to organ malfunction. Fibrosis can affect almost any tissue. Due to its high
frequency, in particular in the heart, lungs, liver, and kidneys, many studies have been conducted to find satisfactory treatments.
Despite these efforts, current fibrosis management therapies either are insufficiently effective or induce severe adverse effects. In
the light of these facts, innovative experimental therapies are being investigated. Among these, cell therapy is regarded as one of the
best candidates. In particular, mesenchymal stromal cells (MSCs) have great potential in the treatment of inflammatory diseases.
The value of their immunomodulatory effects and their ability to act on profibrotic factors such as oxidative stress, hypoxia, and
the transforming growth factor-f1 pathway has already been highlighted in preclinical and clinical studies. Furthermore, their
propensity to act depending on the microenvironment surrounding them enhances their curative properties. In this paper, we
review a large range of studies addressing the use of MSCs in the treatment of fibrotic diseases. The results reported here suggest

that MSCs have antifibrotic potential for several organs.

1. Introduction

Healthy tissues can be damaged under various conditions
by acute or chronic stimuli such as mechanical or chemi-
cal injuries, infections, or autoimmune reactions. In most
cases, the repair process consists of dead and damaged
cells replacement, thus restoring the organ’s unimpaired
functionality. The first stage of this mechanism, known as
the regenerative phase, corresponds to the replacement of
damaged cells by cells of the same type, thus ensuring
organ functionality. During the second phase, known as
fibroplasia or fibrosis, connective tissue replaces degraded
normal parenchymal tissue. Unchecked fibrosis leads to
substantial remodeling of the ECM (extracellular matrix)
with pathological features which results in the formation of
permanent scar tissue. Fibrosis may ultimately lead to organ
malfunction and death. It mainly originates from chronic
inflammation, tissue ischemia, and imbalance in the ECM
accumulation/degradation ratio [1].

Most organs are susceptible to fibrotic diseases, generally
as a consequence or feature of a preexisting pathology

(Figure 1). Obesity, aging, and environmental aggressions are
the main causes of fibrogenesis. Fibroproliferative diseases
are believed to be responsible for around 45% of deaths in
developed countries [2]. Although considerable efforts are
being devoted to the search for antifibrotic treatments, there
are currently few effective therapies for fibrotic diseases that
do not result in severe secondary effects. Anti-inflammatory
drugs have been considered as the most promising candidates
in clinical trials. A wide range of antioxidants have also been
tested. Nevertheless, most drug therapy protocols have failed
in achieving sufficient antifibrotic effect.

Thus, cell therapy has recently been put forward as a
possibility. In particular, mesenchymal stromal cell (MSC)
therapy seems to be a promising treatment. Indeed, preclin-
ical and clinical trials have shown MSCs’ ability to improve
outcomes in various diseases such as the consequences of
radiotherapy [3], autoimmune pathologies [4], neurodegen-
erative disorders [5], and other etiological agents. Preclinical
and clinical studies have also put forward the ability of MSCs
to adapt to their environment. Indeed, the regulation of
MSCs’ secretome is highly influenced by the surrounding
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FIGURE 1: Fibrotic pathologies in various organs. Common features of fibrosis development and progression in various organs and related

diseases (ECM: extracellular matrix).

tissue. Therefore, MSC therapy yields different results with
different pathologies. Consequently, these effects have led
several laboratories to investigate the antifibrotic potential of
MSCs.

2. Common Cellular and Molecular
Mechanisms of Fibrotic Diseases

2.1. Wound Healing: The Initiation of Fibrosis. Tissue injuries
induce damages to resident cells which secrete inflammatory
mediators which initiate an antifibrinolytic-coagulation cas-
cade associated with vascular congestion. A temporary ECM
is formed to serve as a scaffold for dead cells replacement.
Subsequent platelet activation causes the release of vari-
ous mediators including vasoactive factors (vasodilatation,
increased vascular permeability, and edema by plasma exuda-
tion), cytokines, and chemokines that enable the recruitment
of leukocytes. The formation of a fibrin clot serves as a
matrix for cell migration and platelet adhesion. Fibrinolysis
is later activated and leads to the dissolution of the fibrin clot
replaced by a granulation tissue. Plasmin is released from the
fibrin clot and activates the complement system, triggering
the release of chemotactic and vasoactive anaphylatoxins [1,
6].

Next, recruited leukocytes home by adhesion to
molecules such as selectins, integrins, and immunoglobulins.
Phagocytosis of tissue debris, dead cells, and any exogenous
organisms is carried out by macrophages and neutrophils.
They also produce cytokines and chemokines to recruit
endothelial cells necessary for neovascularization. The

interaction of fibroblasts, fibrocytes, or other resident cells,
such as hepatic stellate cells (HSCs), with the microen-
vironment induces their differentiation into myofibroblasts
which synthesize ECM and growth factors including
profibrotic TGF-f1 (transforming growth factor-f1). The
secretion of autocrine hormones enables the maturation
of myofibroblasts. a-SMA (a-smooth muscle actin) and
vimentin expression by myofibroblasts are responsible for
their contractile activity [7]. This contractibility is required
for the closure of the wound. The formation of this so-called
granulation tissue is characterized by the presence of many
blood capillaries allowing the supply of nutrients, hormones,
and respiratory gas [1, 2, 6].

Finally, the migration and maturation of epithelial and
endothelial cells then allow the formation of scar tissue
and neovascularization. The provisional ECM is degraded
by matrix metalloproteinases (MMPs) once complete tissue
replacement is achieved. The subtle equilibrium between
MMPs and their inhibitors, tissue inhibitors of metallopro-
teinases (TIMPs), controls ECM accumulation and degrada-
tion throughout the repair process. Thus, it guarantees proper
ECM remodeling by inducing a shift in matrix composition.
Next, myofibroblasts disappear by apoptosis, triggered by
the establishment of a negative activation loop indicating
regeneration of the injured tissue [1, 2, 6].

2.2. Specific Fibrosis Mechanisms. Various fibroproliferative
pathologies share common features. Fibrosis begins as a
normal tissue regeneration process. Resident and recruited
cells are activated to produce a provisional ECM facilitating
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repair. However, in the case of bacterial infection, ischemia,
chronic inflammation, or other persistent stimuli, a con-
stant loop of myofibroblast activation sets in, leading to
excessive ECM accumulation. Activated myofibroblasts also
produce chemokines to recruit cells from the immune system
(macrophages, T- and B-cells, neutrophils, and eosinophils),
thus perpetuating chronic inflammation. The pathologic
matrix progressively invades the tissue, eventually ending
in the presence of a permanent fibrotic scar. Histologically,
fibrosis can be defined by two distinct stages. Develop-
ment corresponds to the onset of matrix accumulation
where only scattered fibrosis areas are seen in the tissue,
whereas the endpoint is characterized by diffused spans of
ECM possibly distributed through the entire tissue. The
progressive replacement of dead cells by ECM suppresses
organ function and induces stiffness. Ultimately, the best
course of treatment for advanced fibrosis is often organ
transplantation.

Fibrosis is a complex pathology driven by numerous
biological factors such as chronic inflammation and hypoxia.
Ionizing radiation, for example, induces endothelial cell death
and oxidative stress, resulting in prolonged inflammation and
potentially fibrosis. The constant recruitment of inflamma-
tory cells generates an activation loop of myofibroblasts and
maintains a steady pool of profibrotic cells.

One of the main molecular agents inducing fibrosis is
TGF-f1, mainly synthesized by T-cells during the healing
process [8]. TGF-f31 is secreted in a latent form associated
with LAP (latency associated peptide). LAP is cleaved to allow
the activation of TGF- 31 which is able to bind its receptors
TGF-BRI1 (transforming growth factor receptor- 1) and TGF-
PBR2. Therefore, there is a large pool of inactive TGF-f1in the
extracellular environment. Various agents can induce TGF- 81
activation: MMPs [9], reactive oxygen and nitrogen species
(ROS and RNS) [10], cytokines [11], or other stimuli such as
ionizing radiation [12]. The binding of TGF-f1to its receptors
activates the Smad (small mothers against decapentaplegic
homolog) signaling pathway which induces the transcription
of various genes, including genes encoding members of the
extracellular matrix (collagens mostly) [13]. It also activates
the differentiation of fibrocytes toward functional fibroblasts.

EMT (epithelial-to-mesenchymal transition) and
EndMT (endothelial-to-mesenchymal transition) are also
described as important sources of fibroblasts. Epithelial
or endothelial cells assume a spindle shape, lose their cell
markers, and express typical fibroblast markers such as
FSP-1 (fibroblast specific protein-1), a-SMA, and vimentin
[14, 15]. They also acquire the ability to produce collagen
and fibronectin (extracellular matrix components) [16].
TGF-p1 has also been shown to decrease the expression and
activity of MMPs and increase the expression of TIMPs [17].
Thus, TGF-f1 is considered to be one of the major factors in
fibrosis development.

Other growth factors take part in prolonged fibrogenesis.
CTGF (connective tissue growth factor) acts synergistically
with TGF-f1 to stimulate the signal transduction pathway
dependent on TGF-p1 [18]. CTGF can also stimulate the
proliferation, migration, and adhesion of fibroblasts and the
production of the extracellular matrix [19, 20].

Thus, fibrosis is a multicomponent pathology driven
by multiple factors (Figure 2). One of the main issues in
treating fibrosis lies in its self-maintenance. Hence, various
therapies might be considered depending on the stage of
fibrogenesis. Indeed, preventive or curative strategies should
differ based on the ECM components and the mechanisms
involved. Moreover, combined therapies should be used to
simultaneously act on various profibrotic mechanisms and
enhance treatment efficacy.

3. Fibrosis Models

Opver the years, many models of fibrosis in animals have been
developed. Mechanical or chemical procedures are used to
mimic damage observed in patients.

Heart. Cardiac fibrosis is characteristic of many heart dis-
eases. Doxorubicin (DOX) or isoproterenol (ISO) is widely
used to induce myocardial infarction (MI). It is hypothesized
that DOX-induced cardiac damage increases the concen-
tration of reactive oxygen species, thus causing injury to
mitochondria, leading to apoptosis and fibrosis [21]. ISO
injection directly into the heart produces diffuse myocardial
cell death and fibrosis, leading to progressive heart failure
[22]. Finally, ligation of the interventricular artery results in
ischemia and eventually leads to fibrosis [23].

Kidney. Interstitial fibrosis and glomerulosclerosis are com-
mon features of kidney pathologies such as chronic kidney
disease (CKD), chronic allograft nephropathy (CAN), or
ureteral obstruction. In the reversible unilateral ureteral
obstruction (UUO), fibrosis is induced by oxidative stress
[24]. Atherosclerotic renal artery stenosis (ARAS) is found
among 50% of atherosclerotic patients with other atheroscle-
rotic diseases [25]. In preclinical studies, ARAS is modeled
by placing an irritant coil in one of the main renal arteries to
induce chronic inflammation [26]. Removal of one or both
kidneys and kidney allograft can be performed to create a
CAN model [27]. “Nephrectomy + ischemia-reperfusion +
cyclosporine” (NIRC) is a recent model mimicking CKD.
Oxidative stress caused by ischemia, exacerbated by the
immunosuppressive effect of cyclosporine, induces intersti-
tial fibrosis following ischemia-reperfusion [28]. Lastly, in the
remnant kidney model (RKM), also called 5/6 nephrectomy
(5/6 NX), interstitial fibrosis is induced by removing one
kidney and two-thirds of the second. It is hypothesized
that subsequent oxidative stress and inflammatory reaction
generate fibrosis [29].

Liver. Fibrosis in the liver, or cirrhosis, is the common
endpoint of chronic liver diseases. It originates from not
only numerous pathologies such as alcoholic liver disease
and viral or autoimmune hepatitis but also hepatotoxic drugs
and toxins. Carbon tetrachloride (CCl,) induces irreversible
pathologies such as fatty liver, fibrosis, cirrhosis, and cancer
and is mainly used in liver damage models [30].

Lungs. Pulmonary fibrosis is an increasingly frequent pathol-
ogy due to the growing number of smokers and the pollution
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FIGURE 2: Fibrosis is a multicomponent pathology driven by multiple factors. Fibrotic diseases are driven by multiple factors such as
inflammatory reaction, hypoxia, and oxidative stress leading to the activation of the TGF-f1 pathway (DC: dendritic cell, EMT: epithelial-
to-mesenchymal transition, LAP: latency associated protein, MMP: matrix metalloproteinase, RNS: reactive nitrogen species, ROS: reactive
oxygen species, Smad: small mothers against decapentaplegic homolog, TGF: transforming growth factor, and TIMP: tissue inhibitor of

metalloproteinases).

resulting from current lifestyles. The onset of fibrosis in the
bleomycin, mainly originating from DNA single and double
strand breaks, is a major side effect of this drug which
is now widely used in the development of animal models
of pulmonary fibrosis [31]. Exposure to silica also induces

fibrotic responses. The resulting persistent toxic effect causes
chronic inflammation resulting in fibrogenesis [32].

Peritoneum. Peritoneal fibrosis can be initiated by toxins,
infectious peritonitis, or incompatible dialysate products.
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Chlorhexidine gluconate (CG) was one of the first com-
pounds believed to cause encapsulating peritoneal sclerosis
(EPS) during dialysis. Peritoneal exposure to CG leads to an
inflammatory reaction causing fibrosis in animal models [33].

Skin. Skin fibrosis is part of a wide range of human disor-
ders including keloids, hypertrophic scars, and scleroderma.
Subcutaneous injections of bleomycin produce lesions mim-
icking scleroderma [34]. Radiation exposure can lead to
fibrosis in a number of different organs. Cutaneous radiation-
induced fibrosis is caused by a strong inflammatory reaction,
apoptosis, and oxidative stress and is a commonly used
animal model [35]. Another in vivo cutaneous fibrosis model
has been developed in mice by producing full-thickness
wounds which consequently lead to chronic inflammation
(36, 37].

Pancreas. The incidence of chronic pancreatitis is approx-
imately 30 per 100,000 and is increasing over time [38].
Since existing treatments are limited, continuous efforts
are being devoted to preclinical studies in animal models.
Intravenous administration of dibutyltin dichloride (DBTC)
induces damage to the bile duct epithelium. Subsequent
inflammation causes fibrosis in the pancreas [39].

Colon-Rectum. 5 to 10% of patients receiving pelvic radio-
therapy develop chronic radiation proctopathy due to the
high radiosensibility of organs in the radiation field (colon,
rectum, and bladder) [3]. Radiation proctopathy is modeled
in animals by delivering a high radiation dose to the rectum
[40]. Radiation-induced damage to the tissue as well as
oxidative stress induces fibrosis in this model.

Common features are characteristic of these animal
models of fibrosis. Chemical compounds, physical agents, or
surgery procedures are used to induce the initial injury. This
protocol is often repeated periodically or maintained over
a prolonged time. Subsequent damage to the tissue induce
chronic inflammation, oxidative stress, and/or hypoxia nec-
essary to activate resident and recruited cells toward a
profibrotic phenotype. In most cases, fibrotic features appear
weeks to months after the initial stimulus.

4. Antifibrotic Effects of Mesenchymal
Stromal Cells Therapy

MSCs are widely described for their immunoregulatory prop-
erties. Nevertheless MSCs’ antifibrotic functions are poorly
described. Syntheses of in vivo study outcomes are described
in Table1 (heart), Table 2 (liver), Table 3 (kidneys), Table 4
(lungs), Table 5 (peritoneum), Table 6 (pancreas), Table 7
(skin), and Table 8 (rectum). The synthesis of in vitro study
outcomes is shown in Table 9.

4.1. Immunological Aspects. Pathogenic fibrosis results from
chronic inflammatory reactions. Recent advances in the
immunobiology of MSCs have led to increased interest in
their use as a new therapeutic modality to address chronic
inflammation associated with fibrosis (Figure 3) [78, 79].
The immunosuppressive effect of MSCs has been extensively

studied and documented, particularly because of its value
in organ transplantation. MSCs operate on the T and B
lymphocytes by blocking them in the GO0/Gl1 phase of the
cell cycle, inhibiting the production of immunoglobulins
(IgA, IgG, and IgM) and the differentiation of B lympho-
cytes. MSCs induce a change in polarity in T lymphocytes
from a proinflammatory Thl state to an anti-inflammatory
Th2 condition [80, 81]. They act in the differentiation and
maturation of dendritic cells and make them tolerogenic
[82]. Furthermore, MSCs inhibit the cytotoxic activity of
natural killer cells on HLA-1 (human leukocyte antigen-1)
negative cells and reduce the production of cytokines: TNF-
a (tumor necrosis factor-e), IFN-y (interferon-y), and IL-10
(interleukin-10) [83]. Therefore, MSCs are of value for the
treatment of diseases with an inflammatory component.

Numerous studies have highlighted the benefits of
immunomodulation by MSCs in the treatment of fibrosis.
MSC-induced decreased TLR (toll-like receptor) expression
suggests their ability to limit chronic inflammation [40].
After the transplantation of MSCs, a decreased infiltration
of monocytes/macrophages, neutrophils, and lymphocytes
in the tissue was observed in various models [40, 69,
70, 73, 74]. This correlates with the decreased expression
of MCP-1 (monocyte chemoattractant protein-1) in some
cases [74]. Additionally, underexpression of VCAM-1 (vas-
cular cell adhesion molecule-1) and ICAM-1 (intercellular
adhesion molecule-1), involved in leukocyte-endothelial cell
interactions, suggests reduced inflammatory cell infiltration
[74]. In a model of radiation-induced skin fibrosis, MSCs
induced macrophage transition toward a regulatory pheno-
type, thus limiting chronic inflammation causing fibrosis
[76]. Decreased iNOS (nitric oxide synthase) expression after
MSC transplantation suggests a reduction of M1 macrophage
activity [40]. An increased proportion of anti-inflammatory
M2 macrophages were reported after MSC transplantation in
a heart fibrosis model [45] and a radiation-induced proctitis
model [40]. Microvesicles purified from MSC-conditioned
medium, while significantly decreasing the amount of inflam-
matory cells, produced lower effects compared to MSC
transplantation in the lung [69].

MSCs inhibit the expression of IFN-y, which exerts a
proinflammatory effect by inducing overexpression of IL-
6 and TNF-« [67]. The decrease in mRNA expression and
protein concentration of TNF-«, a profibrotic cytokine, was
detected in the tissue after MSC transplantation [40, 58, 60,
65-67, 70, 74, 76, 77]. IL-la [76], IL-1B [70, 76], and IL-
6 [40, 63, 65, 70, 74] are underexpressed in several fibro-
sis models following MSC injection. Increased expression
of anti-inflammatory cytokines IL-4 and IL-10 after MSC
transplantation was observed, suggesting the transition of T
lymphocytes to a Th2 profile [65]. Similarly, MSCs induced
increased IL-10 expression and concentration in a model of
cutaneous and rectal radiation-induced fibrosis [40, 76].

Antiapoptotic effects of MSC therapy can also be dis-
cussed, as fewer apoptotic events correlate with reduced
inflammation. In fibrotic tissues following MSC transplanta-
tion, a decrease in apoptotic events was observed [41, 42, 52,
65]. Accordingly, MSCs may protect resident cells, increasing
functionality and recovery.
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TABLE 5: MSC treatment on preclinical peritoneum fibrosis model.

References Organism Model — Treatment  MSCsource Timing Quantity Route Outcome
(i) Decreased infiltration of
monocytes/macrophages
A Rk miigtes gcl))si}:iev(::ucceel?s umber ofpomad2
Rat CG ine inj BM 107 cells Int itoneal
(73] 2 ir?:rlzlin:irif ;;Zﬂ after CG cetls Intrapetiionea (iii) Decreased number of -SMA and
P Y injection FSP-1 positive cells

(iv) Decreased concentration of
collagen I and collagen III

Outcomes are expressed compared to control groups (i.e. groups treated but not transplanted with MSCs) unless stated otherwise (a-SMA: a-Smooth Muscle
Actin; BM: Bone Marrow; CG: Chlorhexidine Gluconate; FSP: Fibroblast Specific Protein; pSmad: phosphorylated Small Mothers Against Decapentaplegic

Homolog).

TABLE 6: MSC treatment on a preclinical pancreas fibrosis model.

References Organism Model Treatment MSCsource Timing Quantity = Route  Results
(i) Reduced inflammatory cell infiltration
score
8 mg/kg .(11) Redgced monocyte/macrophage
DBTC 5 days infiltration
.. . fter 6 . (iii) Reduced expression of MCP-1, VCAM-1,
Rat  DBTC ucC a 2.10° cell 1
(74] ¢ injected in DBTC cells Jugularvein 1\ 1, 1L-6, and TNF-a
the tail . . .
vein injection (iv) Reduced fibrosis score

(v) Reduced expression of TGF-f31
(vi) Reduced concentration of collagen
(vii) Reduced number of a-SMA-positive cells

Outcomes are expressed compared to control groups (i.e., groups treated but not transplanted with MSCs) unless stated otherwise (a-SMA: a-smooth muscle
actin; DBTC: dibutyltin dichloride; ICAM: intercellular adhesion molecule; IL: interleukin; MCP: monocyte chemoattractant protein; TGF-f3: transforming
growth factor-B; TNF-a: tumor necrosis factor-a; VCAM: vascular cell adhesion molecule).

MSCs may induce regression in pathophysiological pro-
cesses associated with fibrosis. These effects are in part medi-
ated by a reduction in chronic inflammation. MSCs likely
proceed by a change in immune cell function, an increase in
anti-inflammatory cytokines, and a decrease in proinflamma-
tory cytokines and cell apoptosis. These immune mechanisms
contribute to a modification of the microenvironment, thus
diminishing tissue fibrosis, increasing resident stem cell
proliferation, and eventually leading to tissue regeneration.

4.2. The TGF-PI Pathway. TGF-f1 has been described as
one of the major players in fibrosis. Its binding to receptors
induces the activation of a signaling cascade leading to
the proliferation of phenotypically profibrotic cells such as
myofibroblasts. In particular, it induces the EMT and EndMT
in part responsible for the proliferation of cells synthesizing
ECM. The TGF-pI signaling pathway is one of the prime
targets for antifibrotic therapies and its regulation has been
abundantly studied in treatment trials with MSCs. Generally,
MSC transplantation reduces the expression and concentra-
tion of TGF-f31 [40, 49, 59, 60, 65, 67, 70, 71, 73-76]. The same
effect is induced by transplanting exosomes isolated from
MSC-conditioned medium [47]. In vitro, Ueno et al. showed
the inhibition of TGF- 1 overexpression induced by glucose
in a coculture model of MSCs and peritoneal mesothelial
cells [73]. This effect was associated with the decrease in the
phosphorylation of Smad-2, as also shown in an exosome

transplantation model [47, 73]. Reduced expression of a-
SMA [44, 48, 50, 51, 60, 65, 66, 73] and the lower number
of a-SMA positive cells [52, 53, 59, 64, 74, 75] suggest a
decrease in the proliferation of myofibroblasts and, to a
lesser extent, of TGF-fl-mediated EMT. In vitro, a reduced
concentration of a-SMA in a coculture of MSCs and HK2
(human kidney 2) cells pretreated with TGF-f1 suggests a
direct effect by MSCs on phenotypic changes leading to the
accumulation of profibrotic cells [64]. A decreased expression
and concentration of CTGF in several models also participate
in diminishing profibrotic cells proliferation [40, 63].
Interestingly, several studies have underlined the impor-
tance of HGF (hepatocyte growth factor) secreted by MSCs
for their antifibrotic effects [44, 47, 73]. MSCs transfected
with an HGF expression plasmid yielded better results than
nontransfected MSCs in a pulmonary fibrosis model [72]. The
use of recombinant HGF partially reproduced the effects of
MSCs in a coculture model with albumin-treated proximal
tubular epithelial cells (PTECs) [62]. The inhibition of TGF-
Pl expression by HGF and its ability to ameliorate the
degradation of collagen through the increase in MMP-1
concentration highlights the value of such therapy [84].
Moreover, the increased expression of p-Met, which induces
the phosphorylation of c-Met, the HGF membrane receptor,
is also part of the action mechanisms of MSCs [59].
Recently, Qi et al. highlighted the importance of TSG-6
(TNF-stimulated gene 6) in the antifibrotic effect of MSCs. In
addition to suppressing the secretion of TNF-« by activated
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TABLE 9: Summary of various in vitro studies using MSC-conditioned medium or MSCs cocultured with cells of interest.
References Culture conditions Cell type MSC source Outcome
(i) Reduced collagens I and III deposit
(ii) Decreased viability
(iii) Decreased expression of a-SMA
(iv) Increased of MMP-2 and MMP-9 activity
(v) Increased expression of MT1-MMP
MSC-conditioned Cardiac (vi) Decreased expression of TIMP-2
[44] . BM . .
medium fibroblasts MMP-2 —/— MSC-conditioned medium:
(i) No change in collagen concentration
Incubation with anti-HGF antibody:
(i) Reduced MMP-2 and MMP-9 activity
(ii) Decreased expression of MMP-2
(iii) Increased expression of TIMP-2
MSC-conditioned TGF-Sl-treated (i) Decreased concentration of a-SMA
[64] . BM M . .
medium HK2 (ii) Increased concentration of E-cadherin
[51] Coculture: MSCs Fibrotic BM Increased secretion of FGF2
hepatocytes
(i) Decreased expression of TGF-f1
Coculture: MSCs in (ii) Decreased expression of fibronectin
73 BM
(73] Transwell HPMCs (iii) Decreased concentration of pSmad2
(iv) Decreased expression of a-SMA
Coculture LPS + Activated (i) Reduced concentration of TNF-« and IL-12
[77] BM o )
IFN-y-treated MSCs macrophages (ii) Reduced concentration of NO
(i) Reduced expression of TNF-«, IL-6, IL-8, MCP-1,
and CCL-5
MSCs in Transwell (11) Inhibition of NF-xB nuclear translocation
(iii) Reduced EMT
(621 Pretreatment of one or PTECs EM (iv) Increased expression and concentration of HGF
both cell types with HSA P

and TSG-6 by MSCs exposed to HSA
(v) Recombinant HGF or TSG-6 partially reproduces
MSCseffects

Influence of culture conditions on the outcome. Outcomes are expressed compared to control groups (i.e., groups treated without the use of MSC treatment)
unless stated otherwise (a-SMA: a-smooth muscle actin; BM: bone marrow; CCL: chemokine ligand; EMT: epithelial-to-mesenchymal transition; FGF:
fibroblast growth factor; HGF: hepatocyte growth factor; HK2: human kidney 2; HPMC: human peritoneal mesothelial cells; HAS: human serum albumin;
HGF: hepatocyte growth factor; IFN-y: interferon-y; IL: interleukin; LPS: lipopolysaccharide; MCP: monocyte chemoattractant protein, MMP: matrix
metalloproteinase; MSC: mesenchymal stromal cell; NF-«B: nuclear factor kappa-light-chain-enhancer of activated B-cells; NO: nitric oxide; proximal tubular
epithelial cell; pSmad: phosphorylated small mothers against decapentaplegic homolog; TGF-f: transforming growth factor-f; TIMP: tissue inhibitor of
metalloproteinase; TNF-a: tumor necrosis factor-a; TSG-6: TNF-stimulated gene 6).

macrophages, this protein induces a change in the TGF-
BU/TGF-B3 balance, from a profibrotic high ratio to an
antifibrotic low ratio [77]. These results are confirmed in
a coculture model in which recombinant TSG-6 partially
reproduced the effects of MSCs [62].

4.3. Hypoxia/Oxidative Stress. Accumulation of ECM in the
tissue, death of endothelial cells, and increased levels of
reactive oxygen and nitrogen species (ROS and RNS, resp.)
result in hypoxia and oxidative stress during fibrosis. These
factors lead to increased apoptosis and activation of TGF-p1.
The improved vascularization of tissue and a more effective
neutralization of oxidizing radicals would therefore enhance
the effectiveness of antifibrotic therapies.

MSCs’ ability to relieve oxidative stress has already been
shown in several works. First, they seem to increase the
expression and concentration of enzymes responsible for
scavenging free radicals, such as NQO1 (NADPH quinone

oxidoreductase 1), Gr (glutathione reductase), GPx (glu-
tathione peroxidase), and HO-1 (heme oxygenase 1) [85, 86].
Nrf2 (nuclear factor (erythroid-derived 2)-like 2) activa-
tion is protective against oxidative stress and induces SOD
(superoxide dismutase) production which decreases ROS
concentration in the liver. MSC treatment correlates with
an increase in Nrf2 and SOD which might reduce ROS
accumulation, thus decreasing oxidative stress [87]. In a
coculture model, an increased survival of cerebellar neurons
is correlated with the secretion of SOD3 by MSCs [88].
MSC-mediated angiogenesis has also been demonstrated.
MSCs are able to secrete a large range of angiogenic factors
such as VEGF (vascular endothelial growth factor), FGF-
2 (fibroblast growth factor-2), and MCP-1 [89-91]. Some
studies also suggest their ability to promote endothelial cell
proliferation [92, 93]. The reduced expression of VEGE
associated with improved microcirculation in the tissue after
MSC transplantation, was observed [53]. Mias et al. showed a
stimulation of angiogenesis following treatment with MSCs
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FIGURE 3: MSCs exert various effects on immune cells. A summary of MSC-mediated effects on the immune response. Various factors
secreted by MSC exert an inhibitory effect on cells of the immune system which are involved in the fibrotic process (HGF: hepatocyte growth
factor, HLA: human leukocyte antigen, IDO: indoleamine 2,3-dioxygenase, IFN-y: interferon-y, Ig: immunoglobulin, IL: interleukin, MSC:
mesenchymal stromal cell, NO: nitric oxide, PGE2: prostaglandin E2, Tc: cytotoxic T-cell, TGF-f: transforming growth factor-f3, TNF-a:

tumor necrosis factor-«, Th: helper T-cell, and Treg: regulatory T-cell).

[44]. The transplantation of MSC sheets into the scarred
myocardium increased neovascularization in a myocardial
infarction model [45]. The authors also reported evidences of
MSCs differentiating to participate in the formation of new
vascular structures.

Conversely, an increased expression of VEGF posttreat-
ment, with the concomitant overexpression of HIF-1a, was
shown in a renal fibrosis model, indicating elevated tissue
hypoxia [61]. HIF-la (hypoxia-inducible factor-la) stimu-
lates the expression of VEGF under hypoxic conditions. In
the same way, in a radiation-induced proctitis model, the
overexpression of VEGF was accompanied by a reduction in
angiopoietin and PDGF expression [40]. It can be hypothe-
sized that insufficient angiogenesis in these models induces
these variations. This gene expression profile may reflect
proangiogenic signals mediated by MSCs. The evaluation of
tissue vascularization would give better insights into MSCs
effect on angiogenesis in these models.

MSCs may therefore act in different ways on hypoxia
and oxidative stress by increasing angiogenesis in the tissue
and by improving the inactivation of ROS and RNS. This
feature, contributing to the inhibition of LAP cleavage from
TGF-p1 and reduction of apoptosis, could contribute to
MSCs’ antifibrotic effects.

4.4. Matrix Remodeling. Excess production of ECM and
the failure to degrade it are the hallmark of fibrosis. Thus,
the ultimate goal in case of fibrotic diseases is to restore
a nonpathological healing process, by inhibiting ECM pro-
duction and enabling the degradation of its various compo-
nents. Indeed, the imbalance of MMPs, responsible for the
degradation of ECM, and TIMPs, their inhibitor, results in
improper ECM remodeling, hence preventing restoration to
a nonpathological matrix.

In different fibrosis models, a decreased expression and
concentration of collagen, the main component of the ECM,
were found after MSC transplantation [41, 43-46, 48-53,
56, 58, 59, 64-68, 71, 73, 76]. This effect is also obtained
after transplanting microvesicles or exosomes secreted into
an MSC culture, suggesting a paracrine control of MSCs on
ECM degradation [47, 69].

Changes in the expression and concentration of MMPs
and TIMPs have also been studied. After MSC transplanta-
tion, the increased expression of MMP-2, MMP-9, MMP-13,
and MMP-14 has been observed in several fibrosis models
[48, 65, 75]. Following the addition of MSC-conditioned
culture medium to a culture of heart fibroblasts, an increase
in the activity of MMP-2 and MMP-9 was found [44].
Conversely, several studies have shown reduced expression,
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concentration, or activity of MMPs. Accordingly, Alfrano et
al. noted the decreased activity of MMP-2 after transplan-
tation in the NIRC model [64]. In some fibrosis models,
MMP-2, MMP-9, and MMP-13 have a lower expression and
concentration following treatment with MSCs [43, 61, 68].
However, these variations suggest restoration to levels similar
to untreated controls.

MSCs seem to have a repressive effect on the expression of
TIMPs such as TIMP-1 [50, 65]. A reduction in the concen-
tration of TIMP 1 to 4 was shown after MSC transplantation
[67]. In an in vitro model, a decrease in the expression of
TIMP-2 was observed, suggesting that MSCs have a paracrine
effect [44]. Finally, Linard et al. demonstrated a tendency
toward the resolution of fibrosis by calculating the collagen-
to-MMP-to-TIMP ratio, a marker of fibrosis evolution [40,
94].

MMP and TIMP expression are impaired in fibrotic
pathologies. In fact, lower TIMP expression is generally
associated with fibrosis resolution. In cases of heart failure,
an increased expression of MMPs has been observed in
the initial and final phase [95, 96]. It has been shown that
increased MMP-2 activity is associated with pathological
ECM remodeling in the kidney [97]. Thus, decreased activity
following MSC therapy suggests a transition to a nonpatho-
logical state. On the contrary, it has been shown that MMP-
2 is implicated in alveolar regeneration, which could explain
its increased activity after transplantation in a pulmonary
fibrosis model [98]. Finally, as certain MMPs activate latent
TGEF-f1, a decrease in their concentration would result in
a lesser activation of downstream effectors. Taken together
with a decreased fibrotic area and ECM component (collagen,
fibronectin, etc.) expression, these results indicate a change in
ECM composition, close to that observed in nonpathological
animals. Hence, MSCs seem to improve ECM quality, allow-
ing the appearance of a microenvironment favorable to tissue
regeneration.

4.5. Transplantation Conditions. Various transplantation
conditions have been assessed in the studies reported in
this work including MSC activation and the optimization
of MSC delivery. First, melatonin has been shown to
improve MSC survival after transplantation, as well as having
proangiogenic abilities [99, 100]. In both occurrences of
this treatment, melatonin-treated MSCs exerted increased
beneficial effects compared to nontreated cells, as evidenced
by reduced ECM deposit and inflammation [44, 63]. Qiao
et al. showed potentiation in predifferentiated MSCs treated
with baicalin, which possesses anti-inflammatory and
antioxidant properties [58]. Cotreatment with atorvastatin
increased the survival and efficacy of MSCs [41].

Multiple transplantation timings have been compared to
investigate their respective effect. Alfarano et al. showed that
transplantation 7 days after ischemia-reperfusion was more
effective on ECM deposition, myofibroblast proliferation, and
MMP activity in their model compared to transplantation
after 14 days [64]. In bleomycin-induced lung fibrosis, Ortiz
et al. also observed greater effectiveness from MSCs when
transplanted earlier [68].
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Interestingly, Ishikane et al. demonstrated that the trans-
plantation of fetal membrane or bone-marrow-derived MSCs
yielded similar results on myocardial infarction [45].

In two different studies, the value of MSC differentiation
before transplantation was observed. In the rat model of
CCl,-induced fibrosis, opposite effects were reported. Hardjo
et al. showed a higher potential for nondifferentiated MSCs,
compared to adipogenic and hepatogenic differentiation, on
ECM accumulation and MMP expression [57]. Conversely,
in the exact same model, Qiao et al. found that hepatogenic
predifferentiation had no significant influence on the effect of
MSCs [58].

Recently, new delivery procedures have been studied to
improve MSCs engraftment in fibrotic tissues. MSCs grown
in two-layered sheets and transplanted in a rat model of
myocardial infarction were found in significant number 28
days after transplantation. Part of these cells showed evi-
dences of differentiation, participating in neovascularization
of the infarct [45]. Indeed, MSC homing in the damaged tis-
sue is generally transient, which could explain the decreased
long-term benefit often observed. Embedding MSCs in scaf-
folds or biomaterials could improve their beneficial effects
(101, 102].

5. MSC Clinical Trials

In clinical settings, the transplantation of MSCs has been
studied on numerous pathologies. A systematic review of
clinical trials evaluated the safety of MSC injections. Thirty-
six studies were included representing 1012 patients. The
meta-analysis did not reflect any serious complications
related to MSC injections. Only a transient fever was high-
lighted (reviewed in [103]). Around 30 clinical trials are
currently registered worldwide for evaluating MSC therapy
for fibrosis (http://clinicaltrials.gov). Liver and pulmonary
fibrosis are most widely represented, but some occurrences
of renal and vocal fold treatment exist. MSCs engraft pref-
erentially in the lungs and liver which is the reason for a
higher number of clinical trials on these organs [104]. In
most of these studies, only organ functionality is evaluated
but not fibrosis markers. Thus, it is not clear whether the
improvement of the symptoms and quality of life is due to
fibrosis reduction or the amelioration of other pathological
features.

Bone-marrow-derived MSCs improve liver function in
patients with liver cirrhosis as evidenced by phase I clinical
trials [105-107]. The Model for End-stage Liver Disease
(MELD) score is used to evaluate the mortality risk in
patients with end-stage liver disease (reviewed in [108]). The
mean MELD score is significantly lower after MSC injection
compared to placebo controls. In patients with decompen-
sated liver fibrosis, MSCs significantly improved quality of
life as evidenced by the increase in physical and mental
component scales [105] and through the SF-36 questionnaire
[109]. Inducing hepatic differentiation prior to MSC injection
improved liver function in treated patients [106]. Finally,
fibrosis markers were measured on 30 patients during a phase
I trial [107]. Laminin, hyaluronic acid, and type IV collagen
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were significantly decreased 48 weeks after intervention.
On the other hand, HGE an antifibrotic growth factor, was
increased after 48 weeks, as compared to nontreated patients.
Based on these clinical trials [107], it appears that MSCs may
exert an antifibrotic effect on liver cirrhosis.

The results of a phase I study show the ability of MSCs
to reduce allograft rejection after renal transplantation [110].
MSCs decreased graft rejection by exerting immunosup-
pression and probably by preventing interstitial fibrosis. The
absence of a placebo control in this trial did not permit the
comparison and identification of the specific effect of MSCs.
Thus, it is necessary to gather additional clinical data.

MSC therapy has proven to be effective in patients
suffering from complications following acute myocardial
infarction [111,112]. In the first trial, functional testing showed
an improvement in both heart and lung functions. There
was evidence that MSC treatment led to reverse remodeling,
which could be correlated with fibrosis reduction [113].
Six months after treatment, global symptom scores were
significantly better in the MSC group versus the placebo
group [111]. In the second study, MSC treatment reduced
symptoms associated with ischemic cardiomyopathy. There
was also evidence of reverse remodeling concomitant with
infarct size reduction, probably linked to reduced fibrosis
[112].

Pelvic radiation disease (PRD) is induced in 5 to 10% of
patients within 10 years after abdominopelvic radiotherapy.
Fibrosis to the colon and rectum is the main characteristic
of late complications of radiotherapy. Since no satisfactory
treatment exists for PRD and given the results of MSC
therapy on radiation-induced burns [114], the curative poten-
tial of MSCs is being evaluated in clinical trials for PRD
treatment. In particular, 4 patients suffering from serious
intestinal radiation-induced lesions following overdosage of
radiotherapy have been treated. The systemic administration
of MSCs resulted in efficient analgesic and anti-inflammatory
effects as well as hemorrhage reduction [3]. These results
indicate the potential of MSC to diminish the adverse effect
of radiotherapy and possibly radiation-induced fibrosis.

Based on these clinical trials, MSC therapy has proven
to be safe and effective in patients suffering from diseases
associated with fibrosis without the adverse effect of MSC
transplantation. Nevertheless, there is a need for randomized
trials (phase 3) to gather statistically significant data and to
demonstrate MSCs’ efficacy in limiting fibrosis.

6. MSC Therapy versus the Current
Management of Fibrosis

The future of MSC therapy for fibrotic diseases mostly relies
on a comparison with current management strategies. Results
from preclinical and clinical trials highlight the ability of
MSCs to act on fibrosis through different mechanisms: (i)
immunosuppression, (ii) inhibition of the TGF-f1 pathway,
(iii) reduction of hypoxia and oxidative stress, and (iv)
restoration of ECM degradation. Thus, the potential of MSC
therapy lies in the ability to act simultaneously on various
fibrogenesis parameters. There are currently several therapy
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protocols for fibrotic therapies under assessment in clinical
trials. Most of those treatments are designed to act on a single
pathway underlying fibrosis development and progression,
unlike cell therapy.

Presently, therapy protocols for fibroproliferative diseases
mostly consist of symptomatic treatments. For example,
patients with idiopathic pulmonary fibrosis (IPF) are often
prescribed oxygen therapy and vaccination against viral
and bacterial infections of the airways is recommended, if
any exists. Likewise, antifibrotic strategies in the liver are
most effective when they are able to cure the underlying
disease. Many anti-inflammatories and antioxidants have
been unsuccessful candidates for fibrosis treatment [115].
Ultimately, organ transplantation is required to ensure the
survival of patients with fibrosis.

The first example of clinically used pharmacological
antifibrotic agent is pirfenidone, which acts on TGF-f1 activ-
ity and inflammation and which has antioxidative properties
[116]. It has been approved for the treatment of IPF in
Europe, Canada, South Korea, and Japan. Preclinical studies
have shown its ability to suppress TGF-f1 gene expression
and to significantly reduce its concentration in lavage fluid
in models of pulmonary fibrosis [117]. Pirfenidone is also
effective in animal models of heart [118], kidney [119], liver
[120], and radiation-induced fibrosis [121]. The FDA has
not yet approved pirfenidone for pulmonary fibrosis based
on a lack of efficacy and survival benefit, especially in
long-term clinical trials [122]. Moreover, a meta-analysis of
clinical trial results shows that pirfenidone induces adverse
gastrointestinal, neurological, and dermatological adverse
effects [123].

Other antifibrotic drugs are currently being examined for
clinical use (reviewed in [6, 124]). Those pharmacological
agents are mainly anti-inflammatory drugs and inhibitors of
the TGF-p1 signaling pathway acting on different molecular
targets. Despite the fact that some of these drugs have been
evidenced to exert antifibrotic effects in animal models, there
is a lack of clinical data that may lead to their approval.

Although some pharmacological compounds have
proven to be effective, the necessity to use multiple drugs
for the treatment of fibrosis is increasingly recognized.
Furthermore, MSCs specifically home to damaged tissues
and are able to behave depending on the surrounding
environment, delivering transiently and locally specific
molecules necessary for restoring tissue homeostasis.
Conversely, drugs affect every organ, regardless of its
pathological state. There is a need for more clinical data
on MSC therapy to ascertain its effectiveness and safety.
However, while inducing minor side effects, MSCs have
shown promising antifibrotic effects, regardless of the organ,
and should be considered as a major candidate.

7. Conclusion

Altogether, the objective analysis of the literature supports
the antifibrotic effect of MSCs. It is sometimes argued that
MSCs could have profibrotic properties because they are
likely to acquire a myofibroblastic phenotype in vitro [125]
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or that the mesenchymal origin of myofibroblasts [126]
indicates profibrotic properties. Nevertheless, there is, to our
knowledge, no example showing MSC transplantation to have
a profibrotic effect on a developing or established disease.

Since fibrosis is a very complex multicomponent pro-
cess, it can be hypothesized that MSCs act through dif-
ferent secreted factors on multiple pathways (Figure 4).
This assumption is supported by the fact that the role
of transplanted MSC depends mainly on the surrounding
environment.

The principal mode of action of MSCs may be exerted
mainly through inhibition of the TGF-f1 signaling pathway;,
mainly by blocking the passage from its latent form to its
active form. The reduction of inflammation in the tissue,
the improvement of angiogenesis, and the reduced oxidative
stress seem to be responsible for this effect. The decrease in
the concentration of activated TGF- 31 would lead to reduced
EMT and myofibroblast proliferation, consequently shifting
the balance between synthesis and degradation of the ECM.
Furthermore, results suggest that MSCs possess the ability
to inhibit TGF-1 mRNA as well as protein synthesis [47,

58]. Thus, they would act on two different levels, preventing
injury-triggered TGF- 1 overexpression and modifying the
surrounding microenvironment to lessen the concentration
of TGF- l-activating factors.

Another interesting and extensively studied feature of
MSC therapy against fibrotic diseases is their immunomodu-
latory ability. In numerous studies reported here, MSCs seem
to reduce immune cell homing in the damaged tissue [61, 70].
This could in part explain the decrease in proinflammatory
cytokines mRNA expression and production. Most notably,
TNF-a and IFN-y, two major profibrotic cytokines, were
underexpressed in several studies reported here [66, 67].
These observations are consistent with the implementation of
an antifibrotic “virtuous circle” in which fewer immune cells
migrate to damaged tissues, hence reducing proinflammatory
cytokines production. By inhibiting the acute inflammatory
reaction, it is conceivable that MSCs reduce the consequent
chronic inflammation.

Reduced hypoxia and oxidative stress are also an impor-
tant effect of MSCs in this context [52, 77]. In fact, high
ROS and RNS concentrations, combined with low oxygen
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intake, further increase TGF-f1 activation. It also induces
apoptosis in resident cells, resulting in increasingly elevated
inflammation. The ability of MSCs to improve the neutral-
ization of free radicals, already described in other models,
is supplemented by indications of improved angiogenesis
[44, 45]. The resulting improvement in tissue vasculature
reduces ischemia, allowing better regeneration of the injured
organ.

As expected, the inhibition of the TGF-fI signaling
pathway induces a substantial remodeling of the ECM
toward a nonpathological state. The decreased expression
and concentration of ECM components, associated with the
restoration of the MMP/TIMP balance, improve the quality of
the connective tissue [43, 64]. This can mostly be explained by
a lower profibrotic cell population (myofibroblasts mainly).
This allows for better homing of the cell types necessary for
regeneration of the damaged tissue, suggesting the possibility
of reversing fibrosis under the influence of MSCs.

MSCs seem to have a paracrine effect highlighted by the
results obtained in studies using MSC-conditioned medium
[42, 44]. Several factors have been put forward as mediating
this effect. First, HGE, an antifibrotic mediator which also has
antiapoptotic properties, should be mentioned. MSC therapy
combined with antibodies against HGF greatly reduces the
effects of the treatment and recombinant HGF administra-
tion partially reproduces the effects of MSCs [44, 62]. The
treatment of fibrosis by HGF has already been assessed in
earlier studies and has shown great potential [127]. Moreover,
TSG-6, a recently discovered protein highlighted for its
immunosuppressant effect, seems to play a major role in the
antifibrotic action of MSCs [62]. The use of antibodies or
gene silencing methods significantly reduces MSCs’ ability to
alleviate fibrosis. Indeed, TSG-6 has been demonstrated to
inhibit the secretion of TNF-a by macrophages and to alter
the TGF-f1/TGF-f33 balance toward an antifibrotic ratio [77].

The study of MSC transplantation conditions also needs
extensive investigation. Data reported in this paper indicate
that the pretreatment of MSCs to potentiate their effect may
yield better outcomes. Equally, transplantation timing after
injury is of great importance. In fact, results suggest that
earlier therapies improve the efficacy of MSCs on fibrosis
[49, 64]. This is to be expected, as inhibition of the acute
inflammatory reaction by MSCs would prevent the onset
of chronic inflammation. MSC source is also an important
factor to be considered. It has been reported in this paper
that fetal membrane and bone-marrow-derived MSCs were
equally effective [45]. The comparison between different
sources of MSCs is an important matter considering the fact
that some tissues, such as adipose tissue, are easier to harvest
and/or contain higher numbers of stem cells. Moreover, the
value of predifferentiation is to be further investigated as
contrary data have been gathered. In any case, supplementary
studies need to be conducted to confirm these effects. Finally,
although preclinical data suggest the strong antifibrotic effect
of MSCs [41, 57, 70], most studies were carried on the
early stages of fibrosis development. Since fibrosis is often
diagnosed in more advanced phases, assessment of the effects
of MSCs on established fibrosis is required in order to
consider the routine use of MSC therapy on such pathologies.
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These observations highlight the great potential of MSCs
in the treatment of fibrotic diseases. Given these results,
MSCs seem to act in the same way, regardless of the organ,
and no occurrence of profibrotic effects has been reported.
However, the mechanisms by which MSCs act on fibrosis
have not yet been clearly elucidated and additional studies
are needed. Besides, concerns about effects promoting certain
pathologies, such as cancer, are still preventing their routine
clinical use. Thus, emphasizing many pathways triggered
by MSC homing is of great importance. Furthermore, the
regulation of phenotypic changes in MSCs needs to be
thoroughly evaluated. As described previously, exposing
MSCs to profibrotic stimuli may trigger various changes
in their secretome, probably leading to variable responses.
Understanding the relative implication of the factors influ-
encing MSC phenotype would provide valuable insight into
potentiation and possible adverse effects. In addition, it has
been shown that microvesicles or exosomes secreted by MSCs
partially reproduce their effect [47, 69]. Describing their
composition and elucidating the triggers influencing their
content are essential. The importance of MSC homing to
damaged tissues also needs to be addressed, mostly in terms
of cell-to-cell contacts and microenvironment influence.
Although few reports show the importance of engraftment
and the differentiation of MSCs [45], these processes are
likely to play a role in the beneficial effects of cell therapy.
Also, optimal treatment protocols remain to be established.
First, the timing of MSC transplantation surely influences
the success of the therapy. The immunomodulatory effect of
MSCs should in fact be most effective when transplantation
is undergone during the acute inflammatory reaction to
prevent the installation of chronic inflammation. Based on
the results reported in this review, it is unclear whether MSCs
could reverse fibrosis in its more advanced stage and fully
restore tissue homeostasis. Nonetheless, MSC therapy for
the treatment of fibrosis in any organ should be strongly
considered and studied as it shows promising potential.
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CG: Chlorhexidine gluconate
CKD:  Chronic kidney disease
Col: Collagen

CsA:  Cyclosporine A
CTGEF: Connective tissue growth factor
DBTC: Dibutyltin dichloride

DC: Dendritic cell
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DOX:
ECM:
EMT:
EndMT:
EPS:
FGEF:
FLK:
FM:
ESP:
GPx:

HGE:
HIF:
HK2:
HLA:
HO-1I:
HPMC:
HSA:
HSC:
ICAM:
IDO:
IFN-y:
Ig:
IGF:
IL:
IPF:
ISO:
IV:
LAP:
LPS:
MCP:
MI:
MMP:
MSC:
NF-«B:

NIRC:

NK:
NO:
NOS:
NQOL:
Nrf2:

PDGEF:
pSmad:

PGE2:
PTEC:
RKM:
RNS:
ROS:
R-UUO:

Smad:

SNP:
SOD:

Doxorubicin

Extracellular matrix
Epithelial-to-mesenchymal transition
Endothelial-to-mesenchymal transition
Encapsulating peritoneal sclerosis
Fibroblast growth factor

Fetal liver kinase

Fetal membrane

Fibroblast specific protein
Glutathione peroxidase

Glutathione reductase

Hepatocyte growth factor
Hypoxia-inducible factor

Human kidney 2

Human leukocyte antigen

Heme oxygenase 1

Human peritoneal mesothelial cells
Human serum albumin

Hepatic stellate cell

Intercellular adhesion molecule
Indoleamine 2,3-dioxygenase
Interferon-y

Immunoglobulin

Insulin-like growth factor
Interleukin

Idiopathic pulmonary fibrosis
Isoproterenol

Intravenous

Latency associated protein
Lipopolysaccharide

Monocyte chemoattractant protein
Myocardial infarction

Matrix metalloproteinase
Mesenchymal stromal cell

Nuclear factor
kappa-light-chain-enhancer of activated
B-cells

Nephrectomy + ischemia-reperfusion +
cyclosporine

Natural killer

Nitric oxide

Nitric oxide synthase

NADPH quinone oxidoreductase 1
Nuclear factor (erythroid-derived
2)-like 2

Platelet-derived growth factor
Phosphorylated small mothers against
decapentaplegic homolog
Prostaglandin E2

Proximal tubular epithelia cell
Remnant kidney model

Reactive nitrogen species

Reactive oxygen species

Reversible unilateral ureteral
obstruction

Small mothers against decapentaplegic
homolog

Sodium nitroprusside

Superoxide dismutase
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Tc: Cytotoxic T-cell
TGF-B: Transforming growth factor-f3
Th: Helper T-cell

TGF-BR: Transforming growth factor- 3 receptor

TIMP:  Tissue inhibitor of metalloproteinase

TLR: Toll-like receptor

TNF-a: Tumor necrosis factor-«

Treg: Regulatory T-cell

TSG-6: 'TNF-stimulated gene 6

UC: Umbilical cord

UUO:  Unilateral ureteral obstruction

VCAM: Vascular cell adhesion molecule

VEGEF: Vascular endothelial growth factor

VEGFR: Vascular endothelial growth factor
receptor.
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