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Trophoblasts, as the cells that make up the main part of the placenta, undergo cell differentiation processes such as invasion,
migration, and fusion. Abnormalities in these processes can lead to a series of gestational diseases whose underlying
mechanisms are still unclear. One protein that has proven to be essential in placentation is the peroxisome proliferator-activated
receptor γ (PPARγ), which is expressed in the nuclei of extravillous cytotrophoblasts (EVCTs) in the first trimester and villous
cytotrophoblasts (VCTs) throughout pregnancy. Here, we aimed to explore the genome-wide effects of PPARγ on EVCTs and
VCTs via treatment with the PPARγ-agonist rosiglitazone. EVCTs and VCTs were purified from human chorionic villi, cultured
in vitro, and treated with rosiglitazone. The transcriptomes of both types of cells were then quantified using microarray
profiling. Differentially expressed genes (DEGs) were filtered and submitted for gene ontology (GO) annotation and pathway
analysis with ClueGO. The online tool STRING was used to predict PPARγ and DEG protein interactions, while iRegulon was
used to predict the binding sites for PPARγ and DEG promoters. GO and pathway terms were compared between EVCTs and
VCTs with clusterProfiler. Visualizations were prepared in Cytoscape. From our microarray data, 139 DEGs were detected in
rosiglitazone-treated EVCTs (RT-EVCTs) and 197 DEGs in rosiglitazone-treated VCTs (RT-VCTs). Downstream annotation
analysis revealed the similarities and differences between RT-EVCTs and RT-VCTs with respect to the biological processes,
molecular functions, cellular components, and KEGG pathways affected by the treatment, as well as predicted binding sites for
both protein-protein interactions and transcription factor-target gene interactions. These results provide a broad perspective of
PPARγ-activated processes in trophoblasts; further analysis of the transcriptomic signatures of RT-EVCTs and RT-VCTs
should open new avenues for future research and contribute to the discovery of possible drug-targeted genes or pathways in
the human placenta.

1. Introduction

The human placenta serves as a critical bridge between
mother and fetus and thus plays a crucial role in maternal
and fetal physiology. The placenta is composed mainly of
trophoblast cells, which derive from the outer layer of the
blastocyst. Certain trophoblasts can be further distinguished

as villous cytotrophoblasts (VCTs), whose development pro-
gresses along with that of the placenta. In the process of
embryo implantation and placenta formation, VCTs that
invade the maternal uterus are known as extravillous cytotro-
phoblasts (EVCTs); these anchor the chorionic villi. Other
VCTs differentiate and fuse to form the syncytiotrophoblast
layer, which has critical functions in gas and nutrient
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exchange between the fetus and the mother. Defects in EVCT
invasion and VCT differentiation and fusion contribute to a
series of gestational diseases, such as fetus-related miscar-
riage [1], preterm birth [2], and preeclampsia [3]. The causes
of and mechanisms behind these diseases have been the focus
of much research, but as yet remain unclear.

As a member of the ligand-dependent nuclear receptor
superfamily, PPARγ regulates many downstream target
genes involved in lipid metabolism, cell differentiation, and
tumorigenesis. PPARγ functions by forming a heterodimer
with the nuclear receptor retinoid X receptor α (RXRα) and
then binding to the PPAR response element (PPRE) of target
genes [4]. It has been reported that a lack of PPARγ leads to
defects in trophoblast differentiation and abnormal vasculo-
genesis in mice [5, 6], and PPARγ-/- embryonic lethality
can be rescued via PPARγ transfection in the trophoblast
[7]. To be more specific, previous research showed that the
activation of PPARγ inhibited the invasion of first-trimester
EVCTs, which implicates PPARγ in the regulation of inva-
sion of the decidua [8, 9]. Furthermore, the activation of
PPARγ can also induce the differentiation of VCTs isolated
from term placenta [10]. Taken together, the current litera-
ture on the effects of PPARγ on the regulation of EVCTs
and VCTs suggests that it plays a critical role in trophoblast
invasion and differentiation but also that these effects differ
dramatically among different subtypes of trophoblast.
PPARγ thus appears to play a crucial but poorly understood
role in placental development.

To explore the role of PPARγ in biological processes, the
PPARγ-agonist rosiglitazone has been widely applied to var-
ious tissues. In human placenta, rosiglitazone has been used
for the study of placental metabolism [11, 12], inflammation
[13, 14], antioxidant response [15, 16], and preeclampsia
[17]. In vitro treatment with rosiglitazone has been shown
to reverse inflammation of the placenta that is mediated by
the PPARγ-NF-κB pathway [13]. Similarly, rosiglitazone
can improve the survival rate of trophoblasts under oxidative
stress via its effects on the PPARγ pathway [15]. Other inves-
tigations into the activity of this drug have identified new
potential target genes of PPARγ [17, 18]. Furthermore, the
activation of PPARγ in both first-trimester EVCTs and term
VCTs, as described in the research cited above on the influ-
ence of PPARγ in trophoblast invasion and differentiation,
was also accomplished by this PPARγ-agonist. Taken
together, these studies show the enormous potential and ben-
efit of rosiglitazone use in studies of the placenta.

In the human placenta, PPARγ is exclusively located in
the nuclei of EVCTs during the first trimester and of VCTs
throughout pregnancy [19–21]. To date, there is a lack of sys-
tematic research on the effects of PPARγ in these tissues and
during these developmental periods. Therefore, our purpose
here was to investigate the performance of PPARγ-activated
trophoblasts by analyzing the transcriptomic signatures of
rosiglitazone-treated EVCTs (RT-EVCTs) and VCTs (RT-
VCTs). In this study, we isolated EVCTs and VCTs from first
trimester and term human chorionic villi, respectively; cul-
tured these cells with rosiglitazone; and quantified the tran-
scriptome of each type of cell using microarray analysis, as
shown in Figure 1. Our results provide abundant information

on the biological processes and pathways affected by PPARγ,
as well as on the specific genes and pathways targeted, and
constitute an invaluable knowledge base for future research.

2. Materials and Methods

2.1. Ethics Statement. Placenta samples in this study were col-
lected with patients’written informed consent, in compliance
with the Declaration of Helsinki. Placenta tissues were
collected from women with normal pregnancies during the
8-9th gestational weeks and at term (39 gestational weeks).
Our ethics committee (CCPRB Paris Cochin no. 18-05)
approved the collection of placentas from legal and voluntary
terminations of pregnancy in the first trimester as well as of
the normal term placentas.

2.2. Cell Isolation and Culture. As previously described [22],
five effective first-trimester placentas were obtained for
EVCT isolation. Villous tissues were rinsed and minced in
Ca2+-, Mg2+-free Hanks’ balanced salt solution for mem-
brane removal. Mononucleated VCTs were isolated using
digestion with trypsin-DNase and fractionation on a discon-
tinuous Percoll gradient according to the protocol of Kliman
et al. [23] and Alsat et al. [24]. In brief, villous tissues were
digested in Hanks’ balanced salt solution, containing
5 IU/mL of DNase I, 4.2mM MgSO4, 0.25% (wt/vol) trypsin
powder (Difco), 100 IU/mL penicillin, 25mM HEPES, and
100μg/mL streptomycin (Biochemical Industry), and moni-
tored under invert microscopy. The initial digested solution
(consisting mostly of red blood cells) was discarded while
the subsequent digested solution (clearly consisting of
EVCTs) was retained. A discontinuous Percoll gradient
(5–70% in 5% steps) was used to stratify the digested solu-
tions; the middle layer (which included EVCTs) was retained
for further analysis. The purified EVCTs were diluted with
Dulbecco’s modified Eagle’s medium (DMEM), with 2mM
glutamine, 100 IU/mL penicillin, 100mg/mL streptomycin,
and 10% decomplemented fetal calf serum (FCS), to a final
density of 0:9 × 106 cells/mL in 60mm diameter plastic tissue
culture dishes (Techno Plastic Products, Switzerland). In
preparation for culturing, culture plates (Techno Plastic
Products, Switzerland) were coated with Matrigel™
(7μg/cm2; Collaborative Biomedical Products, Le Pont de
Claix, France), then seeded with EVCTs at a density of
5 × 104 cells/cm2. To maintain continuous culture condi-
tions, DMEM-F12 medium was used that contained 10%
heat-inactivated fetal calf serum (FCS), Glutamax, 100μg/mL
streptomycin, and 100 IU/mL penicillin (Invitrogen). Plates
were incubated for 2 h at 37°Cand 5%CO2; then, nonadherent
EVCTs were rinsed off. At this point, fresh medium with or
without 1μM rosiglitazone (Cayman) dissolved at 1mM in
ethanol (treatment) or 0.1% ethanol (vehicle) was added for
another 24 h of incubation.

VCTs were isolated from five term placentas using the
following procedures. Placentas were oriented with the
maternal side facing upwards, and tissues were sampled at a
depth of 1.5 cm, half the distance from the edge to the centre.
Villous tissues were rinsed, minced, digested, and purified
using the steps described above. Culture dishes containing
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Figure 1: Summary of procedures. Extravillous cytotrophoblasts (EVCTs, HLAG+ cells) [22] and villous cytotrophoblasts (VCTs, CD49f+
cells) were isolated from human first trimester and term placental chorionic villi, respectively, treated with rosiglitazone, and analyzed
using microarrays. Differentially expressed genes (DEGs) were filtered for quality control and submitted for annotation. Terms associated
with DEGs and predictions of PPARγ-target genes were compared between the rosiglitazone-treated EVCTs and VCTs. PPARγ:
peroxisome proliferator-activated receptor γ. The top graphic was modified from Handschuh et al. (2007).
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0:9 × 106 cells/mL were placed in a humidified incubator at
37°C under 5% CO2 for 3 h. Nonadherent VCTs were rinsed
off, fresh medium with or without 1μM rosiglitazone
(Cayman) dissolved at 1mM in ethanol (treatment) or 0.1%
ethanol (vehicle) was added, and dishes were incubated for
another 24h.

2.3. Microarray Experiments. After 24h of incubation,
RT-EVCTs and control EVCTs were harvested for micro-
array experiments. Cell RNA was extracted using TRIzol®
reagents (Invitrogen) and purified using RNeasy® Mini Kits
(Qiagen). RNA integrity and purity were examined with a
2100 Bioanalyzer with the RNA 6000 LabChip kit (Agilent
Technologies). The U133A 2.0 GeneChip (Affymetrix, Inc.)
was used for gene expression detection according to the man-
ufacturer’s manual. From the 22,000 probe sets on the gene
chip, 14,500 genes were detected.

RT-VCTs and control VCTs were likewise harvested
after 24 h of incubation for microarray experiments; RNA
extraction, purification, and quality control were performed
as described. The SHDZ gene chip (Stanford University)
was used for gene detection as described in [25]: for each
sample, the MessageAmp RNA kit (Ambion) was used, with
1μg total RNA, for RNA amplification, and 3μg amplified
RNA were then labeled with Cy-dye using the 26 CyScribe
first-strand cDNA labeling kit (Amersham Biosciences).
Amplified RNA from rosiglitazone-treated VCTs was labeled
with Cy5, and amplified RNA from control VCTs was labeled
with Cy3. AMicrocon YM 30 column (Millipore) was used to
purify and concentrate the labeled mixture (Cy5 and Cy3)
after additional modifications with human cot-1, yeast tRNA,
and poly A. The probes were denatured and the mixture
was hybridized at 65°C overnight in a sealed humidified
hybridization chamber, then rinsed with 1XSSC, 2XSSC,
0.03% SDS, and 0.2% SDS solutions for 2min each. Arrays
were scanned with a GenePrix 4000A microarray scanner
(Axon Instruments).

2.4. Data Processing. Since gene expression in EVCTs and
VCTs was detected using different microarray platforms, dif-
ferent procedures were followed for data processing. For
EVCT gene expression, which was quantified using the
GeneChip (U133A 2.0, Affymetrix) application, data pro-
cessing used the following filter thresholds: (i) percentage of
missing data was no more than 50%, (ii) threshold to identify
up- and downregulated genes for statistical comparison was
set to a fold change of 1.5, (iii) maximum false discovery rate
(FDR) was set to 5%, and (iv) fold change of one gene was
equal to mean of treated groups minus mean of control
groups and then divided by the minimum value from all
(fold change = ðmean ðtreatedÞ – mean ðcontrolÞÞ/minimum
ðtreated, controlÞ) [22]. For VCT gene expression, which was
measured using the SHDZ GeneChip/Stanford University
(GPL21609) application, data processing used the following
filter thresholds: (i) background-corrected data were log2-
transformed and subjected to the Loess normalization
method [11], (ii) differentially expressed genes (DEGs) were
determined via the significance analysis of microarrays
(SAM) method [26], and (iii) the maximum false discovery

rate (FDR) was set to 1%, without a fold change threshold
imposed [27].

2.5. GO and Pathway Enrichment Analyses. ClueGO is a
Cytoscape plug-in application for the functional classifica-
tion of genes [28]. Our analysis used Cytoscape version
3.7.1 (The Cytoscape Consortium, New York, NY) and
ClueGO version 2.5.4 (released 28 Feb 2019), with the simul-
taneous update of gene ontology (GO) terms. Using ClueGO,
we recovered the GO terms associated with the dataset of all
DEGs as well as of up- or downregulated DEGs only; this
same application was also used for KEGG and Reactome
pathway analysis. GO terms were compared between EVCTs
and VCTs using the R package clusterProfiler (version 3.9,
synced to latest GO terms and pathways) [29]. For term com-
parison in clusterProfiler, 10 category terms for each group
were selected for inclusion in charts. Instead, ClueGO analy-
ses were based on approximately 30 terms per group in order
to generate more detailed visualizations. P values lower than
0.05 identified significant enrichment.

2.6. Protein-Protein Interaction (PPI) Network. The STRING
database (https://string-db.org) was used to analyze the
interactions of DEG-encoded proteins and construct a PPI
network. For this, the significant confidence score was set
to greater than 0.4. Cytoscape was used to visualize and orga-
nize the PPI network. Proteins interacting with PPARγ or
RXRα were indicated by different colors, and shapes were
used to represent different groups. Binding site interactions
between transcription factors and target genes were predicted
by the Cytoscape plug-in iRegulon (based on the TRANS-
FAC database; version 1.3). Putative regulatory regions were
defined as 10 kb around transcription starting sites. The FDR
was set to 0.1% to verify the interaction. The resulting chart
was modified in Cytoscape using red to indicate upregulated
genes and blue to indicate downregulated genes.

3. Results

3.1. Gene Expression Profiling of RT-EVCTs and RT-VCTs.
Microarrays were used to characterize gene expression in
EVCTs and VCTs with or without rosiglitazone treatment.
Our microarray data have been deposited in the Gene
Expression Omnibus public repository (https://www.ncbi
.nlm.nih.gov/geo/; EVCT microarray data under accession
number GSE28426, VCT microarray data under accession
number GSE137434). Gene expression profiles of the
rosiglitazone-treated (TRT) samples of EVCTs and VCTs
were normalized (Figure 2(a)). Four of the five independent
RT-EVCT samples yielded consistent results, with one sam-
ple appearing slightly different; instead, all five independent
RT-VCT samples yielded similar results. Next, DEGs were
detected based on thresholds for both fold change in expres-
sion levels and FDR. In RT-EVCTs, a total of 139 genes were
identified as DEGs (P < 0:05), of which 114 genes were
upregulated (red) and 25 genes were downregulated (blue).
In RT-VCTs, a total of 197 genes were identified as DEGs
(P < 0:05), of which 181 genes were upregulated (red) and
16 genes were downregulated (blue) (Figure 2(b)).
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Figure 2: Microarray data normalization and DEG heatmap of RT-EVCTs and RT-VCTs. (a) RT-EVCT gene expression microarray was
performed with the Affymetrix GeneChip while the RT-VCT microarray used the SHDZ/Stanford University chip. DEGs were detected
based on the thresholds of 1.5-fold change and 5% FDR for the RT-EVCT microarray matrix; a threshold of 1% FDR was applied for the
RT-VCT microarray matrix. The Loess normalization method was used to normalize both datasets. Box plots represent microarray data
before and after normalization, with blue indicating data from RT-EVCTs and pink data from RT-VCTs. (b) Heatmaps of five
independent samples of RT-EVCTs and RT-VCTs. Upregulated DEGs are represented in red and downregulated DEGs in blue. DEGs:
differentially expressed genes; RT-EVCTs: rosiglitazone-treated extravillous cytotrophoblasts; RT-VCTs: rosiglitazone-treated villous
cytotrophoblasts; FDR: false discovery rate; TRT: treated.

5PPAR Research



3.2. Gene Ontology and Pathway Terms of all DEGs from
RT-EVCTs and RT-VCTs. The entire set of DEGs from
RT-EVCTs and RT-VCTs was separated by cell type of origin
and submitted independently to ClueGO with the default
parameters. GO and pathway enrichment were set up for
analysis. DEGs were classified by three ways: by GO biologi-
cal process, GO molecular function, and GO cellular compo-
nent. Enriched pathways were identified through a search of
the KEGG and Reactome databases. The results are visual-
ized in Figure 3.

Among the DEGs identified in RT-EVCTs, the main GO
biological processes represented were “negative regulation of
epithelial cell apoptotic process,” “long-chain fatty-acyl-CoA
biosynthetic process,” and “phosphatidylcholine biosynthetic
process.” For the same group of DEGs, the GO molecular
functions were mainly classified as “alpha-tubulin binding,”
“wide pore channel activity,” “positive regulation of cold-

induced thermogenesis,” “glutathione transferase activity,”
“long-chain fatty acid binding,” “regulation of cell adhesion
mediated by integrin,” and “positive regulation of non-
motile cilium assembly.” Finally, the GO cellular component
that was most associated with these DEGs was “desmosome.”
In the pathway enrichment analysis of RT-EVCTs, DEGs
were mainly associated with the terms “HIF-1 signaling path-
way,” “p53 signaling pathway,” “glutathione metabolism,”
“NRAGE signals death through JNK,” “PPAR signaling
pathway,” “plasma lipoprotein assembly,” and “remodeling
and clearance”.

In the analysis of GO terms associated with the RT-VCT
dataset, DEGs were mainly involved in the following biolog-
ical processes: “regulation of receptor biosynthetic process,”
“negative regulation of nucleotide metabolic process,” “cyclic
nucleotide biosynthetic process,” and “negative regulation of
B cell apoptotic process.” The molecular functions of this

GO terms Pathways

RT-EVCTs
All-DEGs

RT-VCTs
All-DEGs

Activation
Binding

Catalysis
Expression
Inhibition

Reaction

Activations

Inhibitions

Associations

No directed actions

Figure 3: GO and pathway terms associated with all DEGs in RT-EVCTs and RT-VCTs. All DEGs were submitted separately according to
their cell type of origin to ClueGO with the default parameters. GO and pathway enrichment were set up for analysis. DEGs were classified by
three ways: by GO biological process, GO molecular function, and GO cellular component. The KEGG and Reactome database was consulted
to determine pathway enrichment. An exhaustive list of all terms (including those not shown above) can be found in supplementary materials
(Tables S1-S8). DEGs: differentially expressed genes; RT-EVCTs: rosiglitazone-treated extravillous cytotrophoblasts; RT-VCTs: rosiglitazone-
treated villous cytotrophoblasts; GO: gene ontology; KEGG: Kyoto encyclopedia of genes and genomes.
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same group of DEGs were mainly linked to “negative regula-
tion of DNA replication,” “regulation of protein deacetyla-
tion,” “ubiquitin-like protein conjugating enzyme activity,”
“Hsp90 protein binding,” “negative regulation of intracellular
protein transport,” and “positive regulation of phosphopro-
tein.” With respect to GO cellular components, DEGs were
mainly associated with the terms “NuRD complex,” “cellular
metabolic compound salvage,” and “immunological syn-
apse.” Finally, the pathway enrichment analysis of RT-VCTs
revealed that DEGs were mainly involved in “tight junction,”
“regulation of HIF by oxygen,” “unfolded protein response,”
“HIF-1 signaling pathway,” “nuclear receptor transcription
pathway,” and “plasma lipoprotein remodeling”.

3.3. GO and Pathway Terms Associated with Upregulated
DEGs in RT-EVCTs and RT-VCTs. DEGs that were upregu-
lated in RT-EVCTs and RT-VCTs were submitted separately
to ClueGO following the same procedure as described above.
The results are visualized in Figure 4. In RT-EVCTs, upregu-
lated DEGs were mainly associated with the GO biological
processes “fatty acid derivative biosynthetic process” and
“negative regulation of epithelial cell apoptotic process,”
and the GO molecular functions “positive regulation of insu-
lin secretion,” “temperature homeostasis,” “wide pore chan-
nel activity,” “nuclear receptor activity,” and “regulation of
plasma lipoprotein particles levels.” The main GO cellular
components implicated in the activity of these DEGs were

GO terms Pathways

RT-EVCTs
Up-DEGs

RT-VCTs
Up-DEGs

Activation
Binding

Catalysis
Expression
Inhibition

Reaction

Activations

Inhibitions

Associations

No directed actions

Figure 4: GO and pathway terms associated with DEGs that were upregulated in RT-EVCTs and RT-VCTs. These DEGs were submitted
separately to ClueGO by their cell type of origin with the default parameters. GO and pathway enrichment were set up for analysis.
Upregulated DEGs were classified by three ways: by their GO biological process, GO molecular function, and GO cellular component. The
KEGG and Reactome databases were consulted to determine pathway enrichment. All additional enrichment terms (not shown above)
can be found in supplementary materials (Tables S1-S8). DEGs: differentially expressed genes; RT-EVCTs: rosiglitazone-treated
extravillous cytotrophoblasts; RT-VCTs: rosiglitazone-treated villous cytotrophoblasts; GO: gene ontology; KEGG: Kyoto encyclopedia of
genes and genomes.
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“desmosome” and “intrinsic component of mitochondrial
membrane.” Finally, the pathway enrichment analysis indi-
cated that upregulated DEGs in RT-EVCTs were mainly
involved in the “p53 signaling pathway,” “HIF-1 signaling
pathway,” “peptide hormone metabolism,” “PPAR signaling
pathway,” “p57 NTR receptor-mediated signaling,” and “sig-
naling by retinoic acid”.

Instead, from the DEGs that were upregulated in
RT-VCTs, no significantGObiological process was identified.
In the classification of GO molecular functions, these DEGs
were mainly linked with “positive regulation of cell cycle”
and “mitotic DNA damage checkpoint,” and the most sig-
nificant GO cellular component was “transcription factor
complex.” In the pathway enrichment analysis, upregulated
DEGs in RT-VCTs were mainly associated with the
terms “mTOR signaling pathway,” “cell cycle checkpoints,”
“DNA repair,” “developmental biology,” “metabolism,” and
“vesicle-mediated transport”.

3.4. GO and Pathway Terms Associated with Downregulated
DEGs in RT-EVCTs and RT-VCTs.DEGs that were downreg-
ulated in RT-EVCTs and RT-VCTs with respect to controls
were submitted to ClueGO using the same procedure as
described above. Results are visualized in Figure 5. In
RT-EVCTs, downregulated DEGs were mainly associated
with the GO biological process “positive regulation of small
molecular metabolic process;” the GO molecular functions
“membrane fusion,” “regulation of epithelial cell migration,”
“response to estriol,” and “protein kinase binding;” and the
GO cellular component “phosphorylase kinase complex.”
From the analysis of pathway enrichment based on the KEGG
and Reactome database, downregulated DEGs in RT-EVCTs
appeared to be mainly associated with pathways linked with
“glycogen breakdown,” “influenza infection,” “protein pro-
cessing in endoplasmic reticulum,” and “regulation of actin
cytoskeleton”.

Instead, DEGs that were downregulated in RT-VCTs
were mainly involved in the GO biological processes “cyclic
nucleotide biosynthetic process,” “negative regulation of
nucleotide metabolic process,” “ncRNA 3’-end processing,”
and “O-glycan processing;” the GO molecular functions
“nuclear receptor activity,” “histone deacetylation,” “regula-
tion of TOR signaling,” “Hsp90 protein binding,” “ion chan-
nel regulator activity,” “nuclear envelope organization,” and
“peptidyl-threonine modification;” and the GO cellular com-
ponent “organellar ribosome.” In the pathway enrichment
analysis of RT-VCTs, downregulated DEGs were mainly
associated with the “HIF-1 signaling pathway,” “transfer
of ubiquitin from E1 to E3,” “cell-cell communication,”
“transcription regulation of RUNX3,” and “formation of
NR-MED1 coactivator complex”.

3.5. Comparison of GO Terms Associated with Tissue-Specific
or Tissue-Generalist DEGs. Next, we wanted to determine the
extent to which the cellular processes affected by rosiglita-
zone treatment were specific to either EVCTs or VCTs, and
which instead were present in both tissue types. To do this,
we characterized the up- and downregulated DEGs of
RT-EVCTs and RT-VCTs separately using clusterProfiler,

using information from the GO and KEGG databases, as well
as the Disease Ontology (DO) and Disease Gene Network
(DisGeNET) databases. Terms appearing in at least three
columns were thought important in both, while terms
appearing only in the RT-EVCT or RT-VCT dataset were
labelled tissue-specific; significance was determined by
P values less than 0.05.

In both RT-EVCTs and RT-VCTs, the GO biological
processes “regulation of endothelial cell migration,” “non-
canonical Wnt signaling pathway,” “receptor metabolic
process,” “negative regulation of protein phosphorylation,”
and “metabolism process” appeared to play important roles.
Instead, processes specific to RT-EVCTs included “glycogen
catabolic process,” “cellular carbohydrate catabolic process,”
“embryo implantation,” “fatty acid derivative biosynthetic
process,” and “long-chain fatty-acyl-CoA biosynthetic pro-
cess,” while those specific to RT-VCTs were “cytoplasmic
mRNA processing body assembly,” “ribonucleoprotein com-
plex biogenesis,” “positive regulation of phosphoprotein
phosphatase activity,” and “negative regulation of nucleotide
metabolic process” (Figure 6(a)).

The GO molecular functions “nuclear hormone receptor
binding,” “long-chain fatty acid binding,” “fatty acid bind-
ing,” “nuclear activity,” and “transcription factor activity”
seemed to be important in both RT-EVCTs and RT-VCTs.
Functions specific to RT-EVCTs included “steroid hormone
receptor binding,” “eicosanoid receptor activity,” “phos-
phatidylinositol phosphate kinase activity,” and “fatty acid
ligase activity,” while those specific to RT-VCTs were
“Wnt-activated receptor activity,” “cyclin-dependent protein
kinase activity,” “transferase activity,” and “ubiquitin-specific
protease activity” (Figure 6(b)).

Both tissue types shared the significant GO cellular com-
ponents “smooth endoplasmic reticulum,” “ruffle,” “transcrip-
tion factor complex,” “apical plasma membrane,” “lumen,”
and “cell-cell junction.” Instead, the component terms “beta-
catenin destruction complex,” “M band,” “integral component
of lumenal side of endoplasmic reticulum membrane,” and “A
band” were found only in RT-EVCTs, while “spliceosomal
complex,” “Wnt signalosome,” “pronucleus,” “microtubule
end,” and “autophagosomemembrane” appeared to be specific
to RT-VCTs (Figure 6(c)).

Through a search of the KEGG database, the following
pathways appeared to be important in both tissue types: “pro-
tein processing in endoplasmic reticulum,” “glucagon signaling
pathway,” “Epstein-Barr virus infection,” “PPAR signaling
pathway,” “HIF-1 signaling pathway,” “progesterone-mediated
oocyte maturation,” and “mTOR signaling pathway.” Path-
way terms specific to RT-EVCTs included “primary immu-
nodeficiency” and “fatty acid metabolism,” while those
specific to RT-VCTs were linked with “bacterial invasion of
epithelial cells” and “parathyroid hormone synthesis, secre-
tion, and action” (Figure 6(d)).

From the Disease Ontology database, the terms “pre-
eclampsia,” “HELLP syndrome,” “spinocerebellar ataxia,”
“familial hyperlipidemia,” “lipid metabolism disorder,” and
“musculoskeletal system cancer” were important in both
EVCTs and VCTs. Terms specific to RT-EVCTs included
“breast benign neoplasm,” “thoracic benign neoplasm,”
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“lipomatous cancer,” “amyloidosis,” and “vein disease,”while
those specific to RT-VCTs were “alveolar rhabdomyosar-
coma,” “osteopetrosis,” “giant cell tumor,” and “germ cell
and embryonal cancer” (Figure 6(e)).

From a search of the DisGeNET database, the terms “pre-
eclampsia,” “hypertrophic cardiomyopathy,” “immunologic
deficiency syndromes,” “diabetes mellitus,” “vascular inflam-
mations,” “hematopoietic neoplasms,” “non-alcoholic fatty
liver disease,” “vascular disease,” “ischemic cardiomyopathy,”
and “triploidy syndrome” were significant for both tissue
types. Instead, “chronic neutrophilic leukemia,” “glycogen
storage disease,” and “myeloid, chronic, atypical, and BCR-
ABL negative leukemia” were specific to RT-EVCTs, and
“alport syndrome” and “aggressive non-Hodgkin lymphoma”
were specific to RT-VCTs (Figure 6(f)).

3.6. PPARγ Interactions with DEGs of RT-EVCTs and
RT-VCTs. Since the gene expression changes we observed
here were caused by the activation of PPARγ by rosiglita-
zone, we next attempted to predict (i) the protein-protein
interactions (PPI) of PPARγ with DEG-encoded proteins
and (ii) the transcription factor-target gene (TF-TG) interac-
tions of PPARγ with DEG promoters. In RT-EVCTs
(Figure 7(a)), the following proteins appeared to interact
directly with the PPARγ complex: MGLL, FABP5, HMOX1,
SERPINE1, ABCG2, PHC1, VLDLR, INSIG1, DPP4,
ANGPTL4, FAPB4, ACSL1, and CPT1A. Instead, ACSL5,

PFKP, AKR1B1, LOX, GXTA4, SOWAHC, GJA1, SLC19A1,
RUNX1, PERP, ENPEP, SLFN12, CDC42EP, and LIPG
participated in secondary interactions. In RT-VCTs
(Figure 7(b)), the PPARγ complex interacted directly with
MYOD1, MAPK8, HDAC2, GAPDH, APOB, ANGPTL4,
and PDCD4 and secondarily with PDIA3, MAPK8IP2,
NR4A1, GNG2, and CCR1. Our analysis of TF-TG interac-
tions in RT-EVCTs (Figure 7(c)) predicted that the target
genes of the PPARγ complex were the upregulated DEGs
DLC1, SEMA3C, ARL6IP5, PCTP, ISL1, ZNF395, SR1,
DPP4, ALOX5AP, ANGPL4, CDC42EP4, GKN1, ATXN1,
CAPN2, LPCAT3, SERPINE1, NET1, LPCAT3, CPT1A,
RAB30, GADD45A, MMP19, FHL1, MMD, CCNE1, and
ESRRG, as well as the downregulated DEGs ADAM12,
GSTA4, PSG5, and DACT1. The same analysis of RT-VCTs
(Figure 7(d)) predicted that the target genes of the PPARγ
complex were the upregulated DEGs CLIP1, GAPDH, and
LPP, as well as the downregulated DEGs CELF2, ZNF512B,
SLC39A10, WDR7, FURIN, RRBP1, ATXN1, MRPL4,
INNPP4B, ZMYND8, BCL6, ASAP1, UBE2K, RORC,
RGL2, ADCY3, FUT8, ANKRD11, SPTAN1, and BAZ2B.

3.7. Expression of Genes Targeted by PPARγ in RT-EVCTs
and RT-VCTs. We next filtered our datasets to examine only
the DEGs targeted directly by the PPARγ complex, based
on the TF-TG predictions described above. The filtered
RT-EVCT database contained 26 upregulated and 4
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Figure 5: GO and pathway terms associated with DEGs that were downregulated in RT-EVCTs and RT-VCTs, respectively, compared to
controls. Downregulated DEGs of RT-EVCTs (a, b) and RT-VCTs (c, d) were submitted to ClueGO separately, with the default
parameters. GO and pathway enrichment were set up for analysis. DEGs were classified by three ways: by GO biological process, GO
molecular function, and GO cellular component (a, c). Pathway enrichment was determined via comparison with the KEGG database
(b, d). (a) The GO terms most associated with DEGs that were downregulated in RT-EVCTs. (b) The pathways that were most
enriched among the downregulated DEGs in RT-EVCTs. (c) The GO terms most associated with DEGs that were downregulated in
RT-VCTs. (d) The pathways that were most enriched among the downregulated DEGs in RT-VCTs. An exhaustive list of all associated
terms (including those not pictured above) can be found in supplementary materials (Tables S1-S8). DEGs: differentially expressed
genes; RT-EVCTs: rosiglitazone-treated extravillous cytotrophoblasts; RT-VCTs: rosiglitazone-treated villous cytotrophoblasts; GO: gene
ontology; KEGG: Kyoto encyclopedia of genes and genomes.
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Figure 6: Continued.
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downregulated DEGs (Figure 8(a)), while the filtered RT-
VCT database contained 3 upregulated and 21 downregu-
lated DEGs (Figure 8(b)). Only one target gene, ATXN1,
was present in both datasets; it was upregulated in RT-
EVCTs and downregulated in RT-VCTs (Figure 8).

4. Discussion

The human placenta is a critical bridge between mother and
fetus, facilitating nutrient exchange and various endocrine
and immunological processes. As the cells that form the main
part of the placenta, trophoblasts undergo extensive cell
differentiation, including invasion, migration, and fusion.
Abnormalities in these physiological processes can lead to a
series of gestational diseases such as preeclampsia or
intrauterine growth restriction. Specifically, both of these
disorders appear to be associated with irregularities in the
invasion of EVCTs into the maternal uterus, a biological pro-
cess that is tightly controlled both spatially and temporally
[30, 31]. However, the underlying mechanism linking EVCT
invasion to gestational dysfunction has yet to be fully investi-
gated. Our team has previously shown the critical influence
of activated PPARγ on trophoblasts via treatment of the
natural ligands of PPARγ or its specific agonist rosiglitazone
[9, 20, 22, 32]. Rosiglitazone is the first synthetic chemical
compound to be developed that demonstrates high selectivity
for PPARγ (Kd approximately 40 nM); concentrations of
up to 100μM of this compound have been reported to
activate only PPARγ (including the PPARα/β/δ complex

[33]). Moreover, our previous research revealed that a
concentration of only 1μM rosiglitazone led to significant
alterations in trophoblast differentiation, with more than
50% inhibition of EVCT invasion [9]. In this study, we
treated EVCTs and VCTs with 1μM rosiglitazone in order
to more fully understand the effects of PPARγ on gene
expression in these tissues.

Our microarray results for EVCTs were published previ-
ously with the aim of identifying significant DEGs for further
study [22]. However, this work provided little information
about the relative enrichment of pathways and processes
among these DEGs and did not include any comparisons
with RT-VCTs. To more broadly determine the key genes,
biological processes, and pathways affected by activated
PPARγ in trophoblasts, in this study, we also analyzed gene
expression changes in VCTs using microarray profiling,
and, through various approaches, identified the enriched
processes that were linked with these DEGs in RT-EVCTs
and RT-VCTs. We were thus able to compare the similarities
and differences between EVCTs and VCTs affected by
activated PPARγ. In total, there were 139 DEGs in RT-
EVCTs and 197 DEGs in RT-VCTs, and these were asso-
ciated with enrichment in more than 200 GO and pathway
terms (Tables S1-S8). Of these terms, the most significant
and relevant are depicted in the figures. The majority of
the terms recovered in our analysis were consistent with
reports from the existing literature. For example, the
terms “long-chain fatty-acyl-CoA biosynthetic process,”
“regulation of plasma lipoprotein particle levels,” “plasma
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Figure 6: Comparison of enriched GO terms between RT-EVCTs and RT-VCTs. Up and downregulated DEGs of RT-EVCTs and RT-VCTs
were submitted separately to analysis in clusterProfiler, for a total of four groups. GO and pathway enrichment were set up for analysis. DEGs
were classified by their associated (a) GO biological process, (b) GO molecular function, and (c) GO cellular component. DEGs were further
compared with the (d) KEGG database to characterize pathway enrichment, (e) the Disease Ontology (DO) gene set, and (f) the Disease Gene
Network (DisGeNET) database. For the purpose of visualization, the top ten categories of enriched terms were included for each gene set. A P
value less than 0.05 determined significance. DEGs: differentially expressed genes; RT-EVCTs: rosiglitazone-treated extravillous
cytotrophoblasts; RT-VCTs: rosiglitazone-treated cytotrophoblasts; GO: gene ontology; KEGG: Kyoto encyclopedia of genes and genomes.
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lipoprotein remodeling,” and “PPAR signaling pathway” are
all associated with “fatty acid transport,” which in the
placenta is known to demonstrate sex-specific differences
due to the PPARγ-dependent response of genes involved
in lipogenesis [34]. Signaling molecules and dynamic
regulation of the cytoskeleton are required in trophoblast
invasion [35–37], which are related to such terms as
“regulation of epithelial cell migration,” “regulation of actin

cytoskeleton,” and “tight junction.” Among the specific
pathways highlighted, the HIF-1 signaling pathway is known
to participate in PPARγ-mediated placental angiogenesis
[16]; the P53 signaling pathway mediates trophoblast
apoptosis via ligand-specific activation of PPARγ [10]; the
JNK signaling pathway plays an essential role in blood-
placental barrier formation [38, 39], as well as in EVCT
migration and endothelial-like tube formation [40]; and the
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Figure 7: Interactions of the PPARγ and RXRα complex with DEGs of RT-EVCTs and RT-VCTs. Predictions were made of protein-protein
interactions between PPARγ and DEG-encoded proteins, as well as of the transcription factor-target gene (TF-TG) interactions of PPARγ
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mTOR signaling pathway regulates adipogenic proteins in the
placenta, with mTOR acting as a decidual nutrient sensor in
histotrophic nutrition, which is crucial to embryo viability as
well as early placental and fetal development [41].
Furthermore, our results were also consistent with the
posttranscriptional modifications involved in placentation,
with the terms “positive regulation of phosphoprotein,”
“regulation of protein deacetylation,” “histone deacetylation,”
and “ubiquitin-like protein conjugating enzyme activity” all
known from previous reports. Indeed, different subtypes of
trophoblast vary in phosphorylation status depending on the
stage of placental development and differentiation. For
example, EVCTs require Smad2/3 phosphorylation for
differentiation while the absence of pSmad2C is necessary
for VCTs [42]. Downregulation of histone deacetylase-9 can
repress trophoblast migration and invasion [43], and
likewise, inhibition of histone acetylation in human

endometrial stromal cells limits trophoblast invasion [44].
Ubiquitination of amino acid transporters expressed
specifically in the plasma membrane of the trophoblast can
decrease amino acid uptake, leading to abnormal
development of the placenta and restricted fetal growth
[45, 46]. In addition, PPARγ can be phosphorylated
through activation of the downstream ERKs 1/2 or p38/c-
JNK pathways [47, 48]. Rosiglitazone blocks the acetylation
of lysine residues of PPARγ at positions K268ac and
K293ac [49]. Atypical polyubiquitination of PPARγ reduces
proteasomal degradation and guarantees the stabilization of
PPARγ [50, 51].

A major aim of this study was to compare patterns of
enrichment between RT-EVCTs and RT-VCTs. During
EVCT invasion, noninvasive EVCTs undergo an epithelial-
mesenchymal transition to acquire the invasive phenotype
[52]. Invasive EVCTs then migrate away from the placenta
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up to the first third of the endometrium and colonize the
maternal spiral arteries. We found a comparison of these
two types of trophoblasts to be particularly compelling, given
the number of studies that have focused on their differences
and similarities. For example, the transformation of noninva-
sive EVCTs into invasive EVCTs involves expression differ-
ences in adhesion molecules, which manifest themselves
when EVCTs escape from the anchoring column and invade
into the endometrium (decidua, spiral arteries, and myome-
trium) [53]. Other studies have examined differences
between EVCTs and VCTs with respect to hCG secretion
for the normal maintenance of pregnancy [54] and placental
cytokine secretion [55]. These biological processes are
apparent in the terms recovered here that were associated
with “regulation of endothelial cell migration,” “embryo
implantation,” “steroid hormone receptor binding,” “secre-
tion and action,” and “preeclampsia.” The main point is that
these biological processes have all been reported to be regu-
lated by PPARγ. For example, the activation of PPARγ has
been found to prevent the TGF-β-induced epithelial-
mesenchymal transition via inhibition of transcription of
the E-cadherin and N-cadherin promoters [56]. Further-
more, PPARγ was reported to modulate basal levels of the
hCGα and hCGβ subunits, resulting in differences in expres-
sion between EVCTs and VCTs [57]. Additional evidence
has been obtained from studies with rosiglitazone; for exam-
ple, treatment with 1μM of the PPARγ agonist was found to
decrease and increase, respectively, the number of transcripts
of TGFβ2 and IL1β [32]. Such regulatory changes might be
represented here by the terms “regulation of endothelial cell
migration,” “Wnt signaling pathway,” “negative regulation
of protein phosphorylation,” “transcription factor activity,”
“PPAR signaling pathway,” and “HIF-1 signaling pathway”.

In general, our datasets revealed an abundance of biolog-
ical processes or pathways affected by PPARγ, many of which
are consistent with previous reports. This concordance
should increase confidence in our results and indicate ave-
nues for further study. However, because this study relied
on DNA microarray technology, it was inherently limited
by the probe set used; it is possible that some unknown genes
may not have been detected effectively and certain biological
processes or pathways may have been missed. Further explo-
ration with the application of advanced technology such as
RNAseq would be helpful to identify and fill in any missing
gaps in our dataset.

Finally, in order to facilitate study of the mechanisms
behind the molecular interactions, we attempted to predict
the protein-protein interactions between the DEGs recovered
here and PPARγ and RXRα. As was recently reviewed, the
transcription exerted by the PPARγ and RXRα complex can
be modified by different types of cofactors, such as the tran-
scriptional corepressors SMRT (silencing mediator of reti-
noid and thyroid hormone receptors) and NCoR (nuclear
receptor corepressor), which block transactivation or the
transcriptional coactivators CREB-binding protein (CBP),
histone acetyltransferase p300 (p300), and PPAR-binding
protein (PBP), which have the opposite effect [58]. We
propose that the interaction with PPARγ might affect the
transcription complex formed by PPARγ and RXRα, their

cofactors or transcription partners, which could then lead
to alterations in the regulation of different transcription cir-
cuits. Our results provided evidence for direct protein-
protein and protein-promoter interaction with the PPARγ
complex. Among the proteins that appear to interact directly
with PPARγ, several have been experimentally verified,
including ANGPTL4 [59–61], ABCG2 [62], APOB [63],
CCNE1 [64], CPT1B [65], FABP4 [66–69], HMOX1 [70],
and SERPINE1 [71, 72]. Many of the TF-TG interactions,
which were predicted using the position weight matrix
algorithm, have not been previously reported and await
further verification. Our interaction matrix (Figure 7) also
revealed more extensive upstream-to-downstream signaling
pathways, such as the PPARγ-MAPK-MMP signaling
pathway. Commonly, phosphorylated PPARγ stimulates
the MAPK-activated pathway, leading to the activation of
extracellular signal-regulated kinases (ERKs) that then
induce the upregulation of matrix metalloproteinase
(MMP) [73–75]. Here, only a single DEG, ATXN1, was
found in both types of rosiglitazone-treated trophoblast,
but with opposing responses in RT-EVCTs and RT-VCTs:
this gene was upregulated in RT-EVCTs and downregu-
lated in RT-VCTs. It has been reported that the ATXN1
protein family can regulate remodeling of the extracellular
matrix [76], which indicates a potential involvement in
trophoblast differentiation. However, further research is
needed to determine if this gene is solely responsible for
the different responses of the two distinct cell types to
PPARγ activation. In addition to the direct target genes
predicted here, the genes in secondary relationships should
be paid equal attention in terms of potential regulation by
other target genes. For example, our previous research has
shown the key role of LOX1, through secondary interac-
tions, in cytotrophoblast invasion [22].

5. Conclusions

To our knowledge, our results reveal for the first time the
widespread effects of PPARγ activation in EVCTs and VCTs,
highlighting extensive changes in gene expression and the
biological processes and pathways affected. This study pro-
vides a broad perspective of PPARγ-influenced biological
processes in trophoblasts and facilitates further study, partic-
ularly into potential drug-targeted genes or pathways in the
human placenta.
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