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Chiglitazar is a promising new-generation insulin sensitizer with low reverse effects for the treatment of type II diabetes mellitus
(T2DM) and has shown activity as a nonselective pan-agonist to the human peroxisome proliferator-activated receptors
(PPARs) (i.e., full activation of PPARγ and a partial activation of PPARα and PPARβ/δ). Yet, it has no high-resolution complex
structure with PPARs and its detailed interactions and activation mechanism remain unclear. In this study, we docked
chiglitazar into three experimentally resolved crystal structures of hPPAR subtypes, PPARα, PPARβ/δ, and PPARγ, followed by
3 μs molecular dynamics simulations for each system. Our MM-GBSA binding energy calculation revealed that chiglitazar most
favorably bound to hPPARγ (-144.6 kcal/mol), followed by hPPARα (-138.0 kcal/mol) and hPPARβ (-135.9 kcal/mol), and the
order is consistent with the experimental data. Through the decomposition of the MM-GBSA binding energy by residue and the
use of two-dimensional interaction diagrams, key residues involved in the binding of chiglitazar were identified and
characterized for each complex system. Additionally, our detailed dynamics analyses support that the conformation and
dynamics of helix 12 play a critical role in determining the activities of the different types of ligands (e.g., full agonist vs. partial
agonist). Rather than being bent fully in the direction of the agonist versus antagonist conformation, a partial agonist can adopt
a more linear conformation and have a lower degree of flexibility. Our finding may aid in further development of this new
generation of medication.

1. Introduction

In the year 1999, the World Health Organization estimated
that by 2025 roughly 300 million people would be suffering
from diabetes. However, in 2014, the World Health Organi-
zation reported 422 million people suffering from diabetes
worldwide, surpassing the estimate by a shocking 122 million
people with 11 years to spare. This statistic highlights the
ongoing and crucial need for an effective treatment for type
II diabetes mellitus (T2DM) [1–3].

Human peroxisome proliferator-activated receptors
(PPARs) belong to a subfamily of nuclear hormone recep-
tors that act as ligand-activated transcription factors to reg-
ulate a variety of biological processes including glucose
metabolism, lipoprotein metabolism, and immune response
[4–6]. The ligand-binding domain (LBD) of PPARs forms
a heterodimer with the retinoid X receptor (RXR) and binds
specific DNA sequences in the regulatory region of target
genes to modulate their transcription (Figure S1). Upon
ligand binding, conformational changes occur to the PPAR
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LBD which promotes the recruitment of coactivators such as
nuclear receptor coactivator 2 (NCOA2). However, the exact
mechanism by which full activation and partial activation
occur at the PPAR LBD remains to be fully understood,
despite being well studied in the past. A common conception
of PPAR full agonists is that the activation mechanism
primarily occurs through the stabilization of helix 12 [7] in
the activation function 2 (AF-2) region. However, a number
of studies show that for both full and partial agonists the
activation of the receptor is not solely dependent on the
stabilization of helix 12 but that interactions with helices 3,
4, 6, 7, and 11 and the beta region also play a role [8–13]. It
has also been shown that the agonists of PPAR can adopt
multiple binding poses [9, 14] suggesting that a one true
understood mechanism for all PPAR agonists is not feasible
and that a detailed binding mode is needed to fully
understand the unique activation mechanism of the receptor.

The hPPARs are divided into three distinct subtypes:
PPARα (NR1C1), PPARβ/δ (NR2C2), and PPARγ (NR3C3)
(Figure 1), each of which are discrete in terms of expression
and biological function. PPARα plays an important role in
lipid and glucose metabolism [6, 15–20], PPARβ/δ is integral
in energy metabolism [21], and PPARγ has a variety of
implications in adipocyte differentiation and sensitivity, cell
cycle regulation, inflammation, and even immune responses
[6, 15–18, 20, 22–24]. Thiazolidinediones (TZDs) rosiglita-
zone (Avandia) and pioglitazone (Actos) are selective full
agonists to the PPARγ receptor and were once a common
method for T2DM treatment. TZDs act as insulin sensitizers
that improve glycemic control but have now become “Non-
formulary oral options that are nonpreferred but can be con-
sidered in patients at high hypoglycemia risk where cost is
an issue” because studies have linked these drugs to hepato-
toxicity, increased risk for cardiovascular failure, myocardial
infarction, increased risk for bladder cancer, and body
weight gain [6, 25–32]. Despite the adverse effects of current
medications, development of new PPAR agonists are still of
great interest because of the unique and promising feature of
this class of drug, including the ability to directly target insu-
lin resistance and provide a more durable glycemic (HbA1c)
control when compared to other antidiabetic medications
[33]. In an attempt to reduce the reverse effects, alternative
approaches were considered to target the PPAR receptors
including partial PPARγ agonists [34–44], multitargeted
cooperative PPARα/γ dual agonists [28, 31, 40, 45–58],
and PPARα/β/γ pan-agonists [30, 35, 59–65].

Chiglitazar (Figure 2), discovered and synthesized by
Shenzhen Chipscreen Biosciences Ltd., has recently com-
pleted phase III clinical trials in China. Chiglitazar is a non-
TZD insulin sensitizer and is described as a nonselective
pan-agonist to the three PPAR receptor subtypes shown to
act on the PPARα, PPARβ/δ, and PPARγ subtypes with an
EC50 value of 1.2, 1.7, and 0.08μM, respectively [33, 66, 67].
Research into chiglitazar’s activity has significantly progressed
over time. Initially considering chiglitazar as a PPARα/γ dual
agonist in 2006, Li and coworkers determined that in addi-
tion to improving insulin and glucose tolerance, chiglitazar’s
therapeutic effect on lipid homeostasis was discrete of the
mechanism used by rosiglitazone and suggested that it was

this distinction that would decrease multiple risk factors
associated with selective PPARγ full agonists [67]. Further
research performed by He and coworkers in 2012 demon-
strated chiglitazar’s transactivating activity on each of the
PPARα, PPARβ/δ, and PPARγ subtypes with a favorable
distribution pattern, reclassifying chiglitazar as a PPAR
pan-agonist. Through a comparison between chiglitazar
and rosiglitazone in their work, He and coworkers studied
chiglitazar’s in vitro and in vivo activities highlighting the
differential effects observed by the use of chiglitazar; a safer
cardiac profile and no heart or body weight gain observed
also provided evidence to support less risk for side effects
[66]. Research by Pan and coworkers in 2017 further sup-
ported the benefits of chiglitazar’s discrete mechanism
through a comparison to two TZD drugs rosiglitazone and
pioglitazone. In their study, Pan and coworkers described
the interactions of chiglitazar as the full activation of
PPARγ, linked to insulin-related resistance gene expression,
and a partial activation of PPARα and PPARβ/δ that allows
a balance between glucose and fatty acid uptake that posi-
tively affected other mechanisms implicated in insulin resis-
tance and obesity [33]. Therefore, the current understanding
is that chiglitazar’s distinct interactions with the three PPAR
subtypes will show enhanced efficacy and produce less long-
term side effects than previously marketed T2DM drugs.
Although chiglitazar is promising, molecular details on the
full and partial activation mechanisms and the interactions
and binding mechanism remain elusive. For example, Pan
and coworkers molecular docking data showed that chiglita-
zar and the two TZD drugs bind differently to PPARγ [33].
While rosiglitazone and pioglitzone form hydrogen bonds
with PPARγ Tyr473, chiglitazar forms hydrogen bonds with
Ser289 and Glu343 instead. To verify the different binding
modes, three point mutations (Tyr473Asp, Ser289Ala, and
Glu343Ala) were studied. Unexpectedly, Tyr473Asp signifi-
cantly diminished the transactivity of chiglitazar as well as
rosiglitazone and pioglitzone [33]. Of the other two point
mutations, only Ser289Ala attenuates the transactivity of chi-
glitazar which is different from rosiglitazone and pioglitzone.
Clearly, molecular docking data does not completely explain
the binding interaction between chiglitazar and PPARγ.

By the use of a computational approach, research has
studied protein-ligand interactions at the PPAR receptor that
have successfully provided experimentally verified detailed
structural information at the molecular level and identified
a large number PPAR agonists [8, 22, 36, 38, 63, 68–80].
These include a number studies combining virtual screening
with molecular modeling [64, 69], molecular docking [36],
molecular dynamics (MD) simulations [81], and in vitro
assays [38, 68] for further validation. Additionally, Ricci
and coworkers have successfully used a dynamic network
model coupled with principal component analysis to deter-
mine the allosteric pathways of the PPARγ-RXRα nuclear
receptor complex [78]. However, without an experimentally
solved crystal structure of chiglitazar bound to the PPAR
receptors, neither a detailed binding mode nor the structural
and dynamic properties can yet be elucidated. To approach
this in our study, we used molecular docking and molecular
dynamics simulations to ascertain detailed structural and
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dynamic information at the molecular level to characterize
the interactions of chiglitazar in complex with the PPARα,
PPARβ/δ, and PPARγ receptors. Through visual inspection
of structural clustering analysis, decomposition of the MM-
GBSA binding energy by residue, and use of two-
dimensional interaction diagrams, key residues involved in
the binding of chiglitazar were identified and characterized
for each complex system, supporting chiglitazar’s activity as
a pan-agonist and providing dynamic details to describe the
underlying mechanism for fully activating PPARγ and par-
tially activating PPARα and PPARβ.

2. Materials and Methods

2.1. Protein Preparation and Receptor Grid Generation.
The crystal structures of the hPPARα (PDB ID: 3VI8),
hPPARβ (PDB ID: 3TKM), and hPPARγ (PDB ID: 2PRG)
receptor subtypes were obtained from the Protein Data
Bank website. A sequence alignment of these receptors is
presented in Figure 1. In Figure 1, the sequences were aligned
using PPARγ as a reference and each residue that differs is
colored based on side-chain chemistry where red indicates
residues D and E (acidic and hydrophilic); blue represents
residues R, K, and H (basic and hydrophilic); green repre-
sents residues G, A, V, I, L, and M (neutral, hydrophobic,
and aliphatic); orange represents residues F, Y, and W (neu-
tral, hydrophobic, and aromatic); cyan represents residues
S, T, N, and Q (neutral and hydrophilic); yellow represents
residue C (primary thiol); and dark grey represents residue
P (imino acid).

Using the Protein Preparation Wizard implemented in
Maestro 10.2 [82], the following modifications were made
to prepare the proteins: hydrogens and missing side chains
were added, water molecules beyond 5Å were deleted, and
the proteins were optimized at pH7.0. For hPPARγ, only
chain A was used. The optimized proteins underwent a
restrained minimization to relax the protein structure using
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Figure 2: Chemical structure of chiglitazar.
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an OPLS3 force field [83]. To generate the receptor grid for
each PPARα, PPARβ/δ, and PPARγ, the centroid of the crys-
tal ligand was used as the active site [83]. Each receptor grid
was generated using the default Van der Waals scaling factor
of 1 and a partial charge cutoff of 0.25.

2.2. Ligand Preparation. The two-dimensional structures
of all ligands (chiglitazar, rosiglitazone, pioglitazone, and
WY-14643) were downloaded from the PubChem website.
The three-dimensional ligand structures were prepared
using Maestro Elements 2.2 implemented in the Maestro
10.2 software. The ionization/tautomeric states were gen-
erated at pH = 7 using EPIK which uses refined Hammett
and Taft methodologies [83]. The lowest ionization/tauto-
meric state was selected. Ligand structure was relaxed via
restrained minimization.

2.3. Ligand Docking. Glide XP docking provides a compre-
hensive and systematic search for the most favorable
ligand-receptor conformations for a drug complex. Standard
Glide dock was used to dock each crystal ligand into its
respective receptor grid (3VI8 (hPPARα), 3TKM (hPPARβ),
and 2PRG (hPPARγ)) using Glide XP scoring functions

under default parameters [84, 85]. Following the same pro-
tocol, prepared chiglitazar was docked into each receptor,
then additional induced fit docking protocol was used to
optimize the docking pose. The results from the induced fit
docking of chiglitazar and the initial crystal structure are
shown in Figure 3.

2.4. Molecular Dynamics Simulation Setup and Production
Runs. Using the prepared receptor-ligand complexes, six
molecular dynamics simulation systems were created: the
crystal ligands in complex with PPARα, PPARβ, and PPARγ
and chiglitazar in complex with PPARα, PPARβ, and PPARγ.
Each system was solvated in an orthorhombic water box
using the SPC water model with a 10Å water buffer [86].
To neutralize the systems, Na+ ions were added with a salt
concentration of 0.15M NaCl. After successful solvation of
each system, the OPLS3 force field [83] was used to represent
the receptor-ligand complex.

For each system, the default relaxation protocols were
followed in the Desmond simulation package [87]. Detailed
relaxation procedures follow our early work [88–90]. After
the relaxation step, three independent 1000 ns production
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Figure 3: Structure comparison between the crystal complex and the induced fit docking of chiglitazar to PPARα with a partial agonist
APHM13 (PDB ID: 3VI8), PPARβ with a partial agonist GW0742 (PDB ID: 3TKM), and PPARγ with a full agonist rosiglitazone (PDB
ID: 2PRG). Chiglitazar is shown in green, whereas each crystal ligand is shown in yellow.
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runs were carried out for each system, leading to a total of
3000 ns for each system.

2.5. Convergence of Simulation. In order to check the conver-
gence of the simulation systems and determine whether the
complex systems had reached a steady state, the Cα (protein)
and ligand RMSDwas generated using the average of all three
simulation runs for the systems (Figure 4 and Figure S2).
From the RMSD plot, we see that the simulation systems
reach a steady state around 500 ns; thus, the last 500 ns
were used for subsequent analysis.

2.6. Simulation Interaction Diagram (SID) Analysis. The SID
tool within Desmond was used to analyze the interactions
between the protein and ligand in each of the simulation sys-
tems. We also included 2D interaction diagrams (Figure 5),
secondary structure changes (Figure 6), protein and ligand
root mean square fluctuation (RMSF) (Figures 7–9), protein-
ligand contacts (Figure S5), and torsional angle profiles
(Figure S6). The protein and ligand RMSF, 2D interaction

diagrams, secondary structure diagram, torsional angle plots,
and 2D interaction profiles were generated using a combined
trajectory of the simulation runs.

2.7. Clustering Analysis. The trajectory clustering tool imple-
mented in Desmond [91] was used to group together the
complex structures of the simulation period for each system
based on structural similarity. The merging distance cutoff
was set to 2.5Å for the hierarchical clustering with the aver-
age linkage method [91]. The structure with the largest num-
ber of neighbors in the structural family (centroid structure)
was used to represent the structural family. These centroid
structures (>1% of the total structure population) are pre-
sented in Figure 10. For further analysis, we repeated our
clustering analysis technique on our combined trajectory
for each system (Figure S4).

2.8. Binding Energy Calculations. Molecular Mechanics-
General Born Surface Area (MM-GBSA) binding energies
were calculated for the last 200 nanoseconds of the combined
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Figure 4: Average root mean square deviation (RMSD) plot for the three MD simulation runs of each protein-ligand complex over the length
of the trajectory. The Cα-RMSD for the protein (shown in blue) and ligand RMSD (shown in red) is based on the initial protein alignment.
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trajectory for each system (Table 1). For this calculation,
the OPLS3 force field, VSGB 2.0 solvation model, and
the default Prime protocol were used to separately minimize
the receptor, ligand, and receptor-ligand complex using the
equation for the total binding free energy: ΔGðbindÞ =
Ecomplex ðminimizedÞ – ðEligand ðminimizedÞ + Ereceptor ðminimizedÞÞ. The
components (Coulombic+H-bond+GB solvation+van der
Waals+π-π packing+self-contact+lipophilic) were further
merged into the following three groups to provide deeper

insight into the binding process: Eelectrostatic, EvdW, and
Elipophilic (where Eelectrostatic = Ecoulombic + EH−bond + EGB−solvation
and EvdW = EvdW + Epi−pi stacking + Eself−contact).

2.9. Normal Mode Analysis. The combined trajectories were
used in the VMD Normal Mode Wizard [92] to generate
principal component analysis (PCA) of the top 5 modes,
and their associated root mean square fluctuation graphs
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Figure 5: Two- and three-dimensional interaction diagrams of chiglitazar’s binding pose in complex with the PPARα (a), PPARβ (b), and
PPARγ (c) receptors from the most abundant cluster of the combined MD simulation.

6 PPAR Research



were generated (Figure S7–S8). The antistrophic network
models were generated using the ANM 2.1 webserver [93].

2.10. Dynamical Network Model. The combined trajectories
of each system were used to generate a dynamic network
model, defined as a set of nodes connected by edges, [94–
98] using the NetworkView plugin [94] in VMD [99]. For
each system, we generated a contact map (Figure 11(a))
which added an edge between nodes whose heavy atoms
interacted within a cutoff of 4.5Å for at least 75% of the
MD simulation time. The early study has shown that the
effect of the cutoff parameter on the network properties is
minor when the cutoff distance~4:5Å [100]. In this contact
map, the edge distance was derived from pairwise correla-
tions [94] using the program Carma [101], which defines

the probability of information transfer across a given edge
using the following equation:

Cij =
Δrl
* tð Þ ⋅ Δr j* tð Þ

� �D E

Δrl
* tð Þ2

� �D E
Δr j
* tð Þ2

D E� �1/2 : ð1Þ

In the pairwise correlation equation (Cij), the term ri
* ðtÞ

is the positon of the atom used to define the node “i” and
Δ ri

* ðtÞ = ri
* ðtÞ − hri* ðtÞi which represents the change in the

position of this atom at two different times. Using the pair-
wise correlation data in the dynamic network model, the
edges are weighted (wij) between two nodes i and j using
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the following calculation: wij = − log ðjCijjÞ. The weight of
the edge represents the probability for information to trans-
fer across the edge between the two nodes; thus, a thicker
edge represents a higher probability of information transfer.

Each network was then further grouped into subnet-
works, termed communities, based on groups of nodes with
stronger and more frequent connections to each other. This
was done by applying the Girvan-Newman algorithm to the
original network [102]. Critical nodes that connect commu-
nities to another were also identified (Figure 12).

3. Results

3.1. Docking Revealed Subtle Differences in the Binding Poses
of Chiglitazar Compared to the Crystal Structures. For the
PPARs, several structural features are conserved amongst
the receptor subtypes (PPARα, PPARβ, and PPARγ) which
include the activation function 1 (AF-1), DNA binding
domain (DBD), activation function 2 (AF-2), and ligand-
binding domain (LBD) [58, 103, 104] whose sequence align-
ment is presented in Figure 1 and shows a 65% homology
amongst the three subtypes [15, 27, 104]. Based on the cur-
rent experimental understanding of chiglitazar’s activity on
each receptor subtype’s LBD, the following receptors were
used in our study (Table S1): a partial agonist (APHM13)
system of PPARα (PDB ID: 3VI8) [105], a partial agonist
(GW0742) system of PPARβ (PDB ID: 3TKM) [106], and a
full agonist (rosiglitazone) system of PPARγ (PDB ID:
2PRG) [107]. To validate the docking protocol, the crystal
ligands were successfully docked back to their respective
receptors, overlapping well with the original crystal pose
(data is not shown). Using identical Glide XP docking
protocol followed by the induced fit docking protocol, we
docked chiglitazar into each of the PPARα, PPARβ, and
PPARγ receptors and compared the binding of chiglitazar
to the crystal ligands (Figure 3). Though subtle differences
in binding poses were observed between chiglitazar and the

crystal ligands, the overall agreement provided additional
validation for the docking procedure used in this study.

3.2. MD Simulation. We used a combined trajectory from
three independent simulation trajectories for our MD analy-
sis. The protein-ligand RMSD plot (Figure 4) of the com-
bined trajectories shows that both the protein and ligand
remained stable throughout the simulation runs. The Cα of
PPARα experiences a gradual increase in deviation for the
entirety of the simulation period, whereas chiglitazar, in
complex with PPARα, undergoes more prominent deviations
until roughly 300 ns averaging at ~1.25Å for the last 750 ns.
For PPARβ, Cα experiences gradually increasing deviations
until ~600ns, where it maintained a deviation of ~2Å for
the remainder of the simulation period; as for chiglitazar in
complex with PPARβ, only minor deviations were observed
throughout the length of the trajectory maintained at
~1.5Å. PPARγ’s Cα showed a gradual increase in deviation
until roughly 500 ns, where it maintained a deviation of
~2.6Å; chiglitazar in complex with PPARγ showed very little
deviation across the simulation period maintaining a devia-
tion of roughly 1.4Å for the entirety of the simulation period.
In addition to this, the RMSD of the simulated crystal systems
for PPARα, PPARβ, and PPARγ are presented in Figure S2,
and the crystal complex structures are well maintained in the
MD simulation. The binding pose of chiglitazar from the
induced fit binding and the MD simulation are presented in
supporting Figure S3 and shows very minor changes in the
position of chiglitazar for each system.

3.3. MM-GBSA Binding Energy Calculations Predicted
PPARγ Was Most Energetically Favorable Followed by
PPARα and PPARβ. The MM-GBSA binding energy calcula-
tions (Table 1) showed that chiglitazar binds most favorably
to PPARγ (-144.6 kcal/mol) followed by a comparable bind-
ing interaction with PPARα (-138.0 kcal/mol) and PPARβ
(-135.9 kcal/mol), where PPARγ binds more strongly to
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chiglitazar than to PPARα by 6.6 kcal/mol and to PPARβ by
8.7 kcal/mol. Van der Waals interactions contributed the
most to the binding of PPARγ (-87.9 kcal/mol), PPARα
(-82.9 kcal/mol), and PPARβ (-76.4 kcal/mol). However, the
lipophilic term also contributed greatly to the binding of chi-
glitazar to PPARγ (-71.3 kcal/mol), PPARα (-67.5 kcal/mol),
and PPARβ (-71.9 kcal/mol).

3.4. The Clustering Analysis Identified the Major Binding
Poses of Each Complex System. As described in Materials
and Methods, the major binding pose from each complex
system was identified using structural clustering of the com-

bined trajectories [91], where the most abundant structure
was used to represent the structural family (Figure 10). Clus-
tering of the combined trajectory (Figure S4) revealed
three major clusters for PPARα (48.9%, 31.9%, and 18.1%),
two clusters for PPARβ (98.8% and 1.09%), and one cluster
for PPARγ (100%). Superimposition and inspection of the
receptor complexes show that although there is a good
overlap of receptors themselves, the position of chiglitazar in
complex with each receptor reveals subtle differences that
may be responsible for the differences in binding energies
between systems. Chiglitazar in complex with both PPARγ
and PPARα was positioned with the carbazole side chain
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wrapped around the left side (respective for the point of
view used in this study) of helix 3, whereas in the PPARβ
system, chiglitazar positioned the 4-flourobenzophenone
side chain around the left side of helix 3. The carbazole
side chain of chiglitazar shows enhanced interactions with
helices 3, 7, and 11 in the PPARγ and PPARα systems,
whereas the PPARβ conformation allows the least potential
for interaction on the lower right region of the binding
pocket (H6, H7, and H2′).

3.5. The Two-Dimensional Protein-Ligand Interaction
Diagrams Revealed Key Residues Involved in the Binding
of Chiglitazar to PPARα, PPARβ, and PPARγ. Key residues
that maintained interactions with chiglitazar within 2Å for
at least 30% of the simulation period were identified to be
involved in the binding of chiglitazar to each receptor sub-
type using the Desmond Simulation Interaction Diagram
(Figure 5).

For PPARα, the major interactions included hydrophobic
interactions between Tyr334 and the oxygen at position 4 of
chiglitazar for 97% of the simulation period, as well as the
aromatic ring starting at position 30 for 56% of the simula-
tion period (see Figure 9 for reference to numbering).
Through an interaction with water, Gly335 maintained inter-
action with chiglitazar for 39% of the simulation period and

Lys358 for 38% of the simulation period. Hydrogen bonding
between the oxygen at position five and the hydrogen
attached to the nitrogen on position 7 also occurred for
67% of the simulation period. Hydrophobic interactions also
played a key role in the binding of chiglitazar, where residues
Cys275, Cys276, Tyr314, Leu321, and Val332 all interacted
with chiglitazar for at least 30% of the simulation period.

For PPARβ, the key interacting residue was Lys331,
which interacted with the oxygen at positions 3 and 4 for
34% and 50% of the simulation run, respectively, while also
interacting with the oxygen at position 3, through water, for
39% of the simulation period. His413 interacted with the
oxygen at position 4 for 34% of the simulation period as well
as maintained hydrophobic interactions with the aromatic
ring at position 30. Hydrogen bonding between the oxygen
at position five and the hydrogen attached to the nitrogen
on position 7 also occurred for 30% of the simulation period.
In addition, Cys249 and Val305 maintained hydrophobic
interactions with the carbazole side chain for at least 30%
of the simulation period.

For PPARγ, Glu343 interacted with the oxygen at positon
4 for 83% of the simulation period, and through an interac-
tion with water Lys265 also interacted with the oxygen at
position four for 30% of the simulation period. Lys367 inter-
acted directly with the pyrrole core of the carbazole side
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Figure 9: Ligand RMSF diagrams of chiglitazar in complex with PPARα (red), PPARβ (blue), and PPARγ (green) in the combined
trajectories.
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chain for 42% and one of the aromatic rings for 46% of the
simulation period. Hydrogen bonding between the oxygen
at position five and the hydrogen attached to the nitrogen
on position 7 also occurred for 30% of the simulation period.
Additionally, Ile431, Leu330, and Phe282 maintained hydro-
phobic interactions with chiglitazar for at least 30% of the sim-
ulation period. In addition, Figure S5 provides a histogram

plot summarizing the type and fraction of interaction of
each major residue in the combined trajectory systems.

3.6. Secondary Structure Analysis Reveals Differences in
Helices 2, 2′, 3, 5, and 11 between Systems. The secondary
structure analysis (Figure 6) represents the residue index
and the percentage of the secondary structure element

PPAR𝛼 PPAR𝛽 PPAR𝛾

Superimposed complex Superimposed ligand Ligands

H1
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Figure 10: Structural comparison of the most abundant complex structure of each PPARα (3VI8), PPARβ (3TKM), and PPARγ (2PRG)
including the superimposed complex. Chiglitazar is represented in blue, green, and red for the PPARα, PPARβ, and PPARγ complexes,
respectively, and each receptor is colored based on mobility where blue is the most mobile and red is the least.

Table 1: MM-GBSA binding energies with standard deviation of chiglitazar bound to PPARα, PPARβ, and PPARγ receptors.

Term PPARα PPARβ PPARγ

ΔE (kcal/mol) -138:0 ± 7:3 −135:9 ± 5:3 −144:6 ± 5:6
ΔΔE (kcal/mol) 6.6 8.7 0.0

ΔVDW −82:9 ± 3:8 −76:4 ± 2:9 −87:9 ± 3:0
ΔΔVDW 5.0 11.5 0.0

ΔLIPO −67:5 ± 3:0 −71:9 ± 2:4 −71:3 ± 2:2
ΔGBELE 12:4 ± 4:8 12:4 ± 2:3 14:6 ± 3:5
Experimental EC50 (μM) 1:2 ± 0:3 1:7 ± 0:2 0:08 ± 0:02
ΔE: MM-GBSA binding energy (complex-receptor-ligand). ΔΔE: relative binding energy with reference to an active complex. ΔVDW: change of van der Waals
energy (VDW+π-π stacking+self-contact correction) in gas phase upon complex formation.ΔGBELE: change of electrostatic interactions (GB/generalized born
electrostatic solvation energy+ELE/Coulomb energy+hydrogen bonding) upon complex formation. Change of lipophilic term (lipophilic energy) upon complex
formation.
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abundance for the combined trajectory analysis. Changes in
the SSE are represented by dips and reflect bends in the
transmembrane regions. Black arrows are used to represent
major differences in the secondary structure between sys-
tems. The PPARα complex differs from both PPARβ and
PPARγ in helices 2, 2′, and 11. The PPARβ complex differs
from both PPARα and PPARγ in helices 3, 5, and 12, and
the PPARγ complex differs from both PPARα and PPARβ
in helices 2′ and 6.

3.7. The Protein Cα Root Mean Square Fluctuation Confirms
the Overall Stability of PPARα, PPARβ, and PPARγ. Overall,
the protein RMSF (Figure 7) for each system were compara-
ble. The RMSF for each system remained relatively low for
the residues of the core. The most significant differences were
within the first 60 residues of each receptor with PPARα
showing slightly larger fluctuations around residues 20 to
40 and from 50 to 60. Small fluctuations were present in
the last 60 residues of each system, which may correspond
to the movement of the terminal helix 12. However, differ-
ences were also observed for helix 11 between systems. The
RMSF broken down by helix is presented in a supporting
document (Table S2).

3.8. The Protein Root Mean Square Fluctuation of Chiglitazar
in Complex with Each Receptor Subtype as Comparable to the
Crystal Systems for Each PPARα, PPARβ, and PPARγ. In

order to better understand the relative fluctuation of chiglita-
zar, as compared to known full and partial agonists, we com-
pared the RMSF of our combined MD simulation runs to a
simulation run of the crystal ligand system for each PPARα,
PPARβ, and PPARγ (Figure 8). For PPARα with a partial
agonist (APHM13), chiglitazar shows comparable fluctua-
tions when compared to the crystal system. The RMSF of chi-
glitazar and the crystal system for PPARβ with a partial
agonist (GW0742) are very comparable with chiglitazar
showing a slightly higher fluctuation in the 2′ helix as com-
pared to the crystal system. For PPARγ, there are slightly
higher fluctuations overall, as compared to the crystal system
with a full agonist (rosiglitazone). Specifically, out of the
three subtypes, PPARγ shows the highest fluctuation of helix
12 when compared to the crystal systems.

3.9. The Ligand Root Mean Square Fluctuation for Chiglitazar
in Complex with PPARα, PPARβ, and PPARγ Shows Minor
Fluctuations.With the largest fluctuation (Figure 9) of chigli-
tazar being ~2.25Å in the case of PPARγ around position 18,
the overall fluctuation of chiglitazar remained minimal
across the combined trajectories. The overall ligand RMSF
of chiglitazar was very comparable for the PPARα and
PPARγ systems, where PPARγ experienced ~0.25Å greater
fluctuations on average. The PPARβ complex showed the
lowest ligand RMSF averaging ~1Å. Additionally, a lower
exposure to the solvent of chiglitazar in complex with PPARβ

PPAR𝛼 PPAR𝛽 PPAR𝛾

(a)

(b)

Figure 11: Unweighted (a) and weighted (b) network models of PPARα, PPARβ, and PPARγ.
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might explain the lower ligand RMSF observed when com-
pared to PPARα and PPARγ.

3.10. Torsional Angle Distribution Profile of the Ligand Reveals
Key Differences in the Major Binding Pose of Chiglitazar in
Complex with PPARα, PPARβ, and PPARγ. The torsional
angle distribution profile of the ligand (Figure S6) presents
differences of PPARβ when compared to PPARα and
PPARγ consistent with PPARβ having a major binding
pose that was fundamentally different from the comparable
poses of PPARα and PPARγ. Most notably, PPARβ differed
from PPARα and PPARγ in the two bonds nearest the
carbazole side chain (depicted in purple and brown), as well
as for both the angle connecting the carboxylic acid at
positon 31 (dark green) and for the angle connecting the
aromatic ring at positon 32 (light green).

3.11. The Dynamic Network Model Reveals Key Features in
the Overall Connectivity of PPARα, PPARβ, and PPARγ.
For each PPARα, PPARβ, and PPARγ, the backbone Cα res-
idues were used to generate an unweighted network model
(Figure 11(a)) where edges connect two residues that came
in contact within 4.5Å for over 70% of the length of the sim-
ulation period. The edges were then quantified using a corre-
lation matrix so that two residues with high correlation
would have smaller edges and those with low correlation
would have larger edges, as represented in the weighted net-
work model (Figure 11(b)). For each PPARα, PPARβ, and
PPARγ, the unweighted networks had very similar connec-
tivity, as expected for their similar structures and sequence.
There were subtle differences when looking at the weighted
network; for example, in the PPARα system, the area with
the lowest correlation was the omega loop; for PPARγ, these

Communities Critical nodes only Critical node in structure

(a)

(b)

(c)

Figure 12: Model of structural communities separated by color with critical nodes shown in purple for PPARα (a), PPARβ (b), and PPARγ
(c). Helix 12 is circled.
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areas were in helices 3 and 4/5; while for PPARβ, the
weighted network showed roughly equal edges throughout
so no notable correlations were observed.

Using the weighted network model, communities were
generated which grouped together residues that interacted
more frequently and stronger than the residues in other
communities (Figure 12). Critical residues were also identi-
fied as residues that were most essential in the collective
motions of different communities (Figure 12 and Table S3).
Most notably from the network analysis were the differences
in communities around helix 12 where PPARα (residues
548-462), PPARβ (residues 431-438), and PPARγ (residues
467-473) had helix 12 involved in completely different
communities. Specifically, for PPARα, helix 12 is completely
separate from other communities but shows some critical
edges linking its communication network to the lower
portion of helix 3. For PPARβ, helix 12 forms a large
community with the bottom of helix 3, but there are also
minor connections to helix 4. Then for PPARγ, the major
community formed with helix 12 includes helix 11 in its
entirety. Although very comparable, for the critical nodes, it
appears that those of PPARγ were slightly more focused
around the binding pocket as compared to the greatly
spread out nodes of PPARα and PPARβ.

3.12. A Principal Component Analysis of PPARα, PPARβ, and
PPARγ Revealed Significant Differences in Helix 12. A princi-

pal component analysis of the combined trajectories calcu-
lated the lowest energetic modes of the global motions of
each PPARα, PPARβ, and PPARγ (Figure S7). The lowest
vibrational mode, Mode 1 (Figure 13(a)), showed clear
differences at helix 12 where both PPARα and PPARγ are
moving outward away from the receptor, whereas PPARβ
is moving upward toward the receptor. Consistent with the
principal component analysis, the RMSF (Figure 13(b)) of
this mode showed that at helix 12, PPARγ had the highest
fluctuations, followed by PPARβ and then PPARα. The top
five modes of the combined trajectories, which include two
additional PCA analyses from the last 500ns of our combined
trajectories, split into two 250ns blocks (Figure S7), and the
RMSF plots of the top five modes of the combined trajectories
(Figure S8) are presented in a supporting document.

4. Discussion

With diabetes affecting over 420 million people worldwide,
there is a dire need for safe and effective treatment. The cur-
rent medications available, thiazolidinediones (TZDs), are
PPARγ full agonists associated with dangerous side effects
including hepatotoxicity, increased risk for cardiovascular
failure, myocardial infarction, increased risk for bladder can-
cer, and body weight gain. It has been shown that the overac-
tivation of PPARγ is likely the major causative factor for the
negative side effects [64]. Despite this, the development of
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Figure 13: Snapshots of Mode 1 from the trajectory-based principal component analysis (a) and root mean square fluctuation of Mode 1 (b).
For the principal component analysis, vectors (red) that are longer than 3.5 Å are shown.
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new PPAR agonists are still of great interest because of the
unique and promising features of this class of drug, like
the ability to directly target insulin resistance and provide
a more durable glycemic (HbA1c) control when compared
to other antidiabetic medications [33]. With this in mind,
the use of nonselective PPAR pan-agonists that interact
with PPARα, PPARβ, and PPARγ with a balanced activa-
tion profile is a promising new strategy for the treatment
of T2DM.

Chiglitazar is a pan-agonist to the PPAR receptors which
has shown promising results in both in vitro and in vivo
experiments for the treatment of Type 2 Diabetes Mellitus
(T2DM). Currently in stage III clinical trials, chiglitazar does
not produce harmful and potentially fatal side effects, like
cardiac toxicity, that other PPAR selective medications have
produced. However, since there is no crystal structure of chi-
glitazar in complex with any subtype of the PPAR receptor,
the detailed structural and dynamic information needed to
fully understand the mechanism involved remains elusive.
Understanding and further exploiting the mechanism of chi-
glitazar toward the PPAR receptors offer a unique opportu-
nity to further expand this new generation of T2DM
medications. To this end, we modeled the binding of chiglita-
zar in complex with PPARα, PPARβ, and PPARγ using
molecular docking; performed molecular dynamics simula-
tions to analyze the specific binding interactions of each sys-
tem including the major helices and residues involved;
presented the major binding pose as extracted from our mul-
tiple trajectory clustering analysis; quantified the binding
interactions with our MM-GBSA binding energy analysis;
provided dynamic insight into the complexes using a net-
work model; and characterized the global motions of the
receptor complexes using PCA.

Experiments have shown that chiglitazar acts on the
PPARα, PPARβ/δ, and PPARγ subtypes with an EC50 value
of 1.2, 1.7, and 0.08μM, respectively [33, 66, 67]. From our
MM-GBSA binding energy analysis, we determined that the
relative order of binding favorability was to PPARγ
(-144.6 kcal/mol), followed by PPARα (-138.0 kcal/mol) and
PPARβ (-135.9 kcal/mol). Our relative order of stability
matched the EC50 values reported in experiments and vali-
dated the accuracy of our calculations. Additionally, when
compared to our MM-GBSA binding energy calculations of
PPARα, PPARβ/δ, and PPARγ in complex with their crystal
ligands (Table S1), chiglitazar bound more favorably by
-12.2, -12.6, and -43.6 kcal/mol than the PPARα, PPARβ/δ,
and PPARγ crystal complexes, respectively (Table S4).
Clustering of the combined trajectory (Figure S4) revealed
three major clusters for PPARα (48.9%, 31.9%, and 18.1%),
two clusters for PPARβ (98.8% and 1.09%), and one cluster
for PPARγ (100%). From this, we observe that the binding
pose of chiglitazar was fundamentally different in the
PPARβ system, for both the docking and MD simulation,
when compared to PPARα and PPARγ. Specifically, for the
PPARβ system, we observed the 4-flourobenzophenone
side chain of chiglitazar wrapped around the left of helix 3
(respective for the point of view used in this study), rather
than the carbazole side chain as observed in both PPARα
and PPARγ.

Pan and coworkers of Shenzhen Chipscreen Biosciences
Ltd. performed a molecular docking of rosiglitazone, pio-
glitazone, and chiglitazar in complex with PPARγ based
on crystal structure (PDB ID: 2PRG, 2XKW) [33]. Pan
and coworkers’ docking results showed that chiglitazar and
TZD-class compounds differentially bind to PPARγ based
on the fact that chiglitazar did not show hydrogen binding
to Tyr473 or His323, key interactions of PPARγ full agonists.
Instead, Pan and coworkers’ docking identified that chigli-
tazar’s major interactions were with Ser289, Arg288, and
Glu343. Using a transactivity assay, Pan and coworkers
further examined the different binding poses using serial
site-directed mutations of Tyr473, Ser289, and Glu343
replacing these residues with Asp, Ala, and Ala, respectively.
It is unexpected that the transactivity of chiglitazar was com-
parable to rosiglitazone and pioglitazone, with the most nota-
ble difference being the Ser289 mutation. Despite the docking
of chiglitazar to PPARγ not showing a hydrogen bond inter-
action with Tyr473, the transactivity was diminished upon
mutation of Tyr473, showing experimental evidence of full
agonist activity, a result that Pan and coworkers were not
expecting based on the docking pose [33]. We examined
our docking results of chiglitazar into the PPARγ receptor
(Figure S9), which is very similar to the ones obtained by
Pan and coworkers. It also showed the major hydrogen
bond interactions to be with Arg288 and Glu343. However,
when compared to the 2D interaction diagrams generated
based on our MD simulation results, chiglitazar interacted
with each residue Arg288, Tyr473, Ser289, and Glu343,
amongst others (Figure 5 and Figure S5). Thus, we believe
that the lack of interaction between chiglitazar and Tyr473
could be a flaw due to the lack of dynamics in the molecular
docking method, and a more advanced MD simulation was
able to obtain a more complete interaction between the
drug and the protein. Assuming this, the MD-derived
binding pose and major interactions identified in our study
help to explain Pan and coworkers’ unexpected full agonist
transactivation pattern and further support chiglitazar’s full
agonist activity.

As compared to the crystal structures of known full and
partial agonists of PPARα, PPARβ, and PPARγ (Figure 8),
the RMSF of chiglitazar from our combined MD simulation
runs showed comparable fluctuations, with some regions
showing slightly higher fluctuations than others. For PPARα,
there were slightly higher fluctuations in the beta region,
where the omega loop, helix 2, and 2′ helix fluctuate slightly
more than the crystal structure. This larger fluctuation could
be due to the less conjugated side chain of chiglitazar in this
pocket, which may undergo slightly weaker van der Waals
stabilization, as compared to the crystal ligand. In addition,
the smaller fluctuations of the crystal system may be because
chiglitazar’s binding pose is positioned slightly closer to helix
12, whereas the crystal ligand is slightly closer to the beta
region and is able to form slightly stronger interactions in
this region. Despite the differences in fluctuations observed
in the omega region, the comparison to the crystal system
supports chiglitazar’s role as a partial agonist to PPARα.
The RMSF of chiglitazar and the crystal system for PPARβ
are very comparable, with chiglitazar showing a slightly

15PPAR Research



higher fluctuation in the 2′ helix as compared to the crystal
system, also supporting chiglitazar’s role as a partial agonist
at PPARβ. For PPARγ, there are slightly higher fluctuations
overall, as compared to the crystal system. Specifically, out
of the three subtypes, PPARγ shows the highest fluctuation
of helix 12 when compared to the crystal systems. Generally,
a weaker binding ligand will show higher fluctuations, but
there have been exceptions to this, as exemplified by Dhankik
et al. [108]. Despite the higher fluctuations of chiglitazar at
PPARγ in our study, it was a much stronger binder to PPARγ
as compared to the crystal ligand which presents another
example of this exception. Overall, the comparison of PPARγ
to the crystal system does support its activity as a full agonist
at PPARγ, where the slightly higher fluctuations may be due
to the differences in binding poses when compared to the
crystal system.

Decomposition of MM-GBSA by residue, based on struc-
ture alignment.

With the relative order of stability validated with experi-
mental findings, we set out to gain insight into the interac-
tions that are involved in chiglitazar’s full activation of
PPARγ but partial activation of PPARα and PPARβ. It is
known that all three hPPAR subtypes have a large Y-
shaped pocket including three subarms (arms I, II, and III)
[106] with approximately 1300-1440Å3 volume to accom-
modate the ligand [58]. Of the three arms, studies have iden-
tified that full agonists of PPARγ primarily occupy arm I
(helices 3, 5, 11, and 12), with key interactions with residues
H323, H449, and Y473 [109, 110] but also including Cys285
[64], Ser289, and Tyr327 [30, 64, 69], whereas partial ago-
nists maintain primary interactions in arm II (helices 2′, 3,
6, and 7) and arm III (2, 3, 5, β-sheet), with low energetic
favorability for any interactions with residues of arm I. In
our study, five of six reported key interacting residues con-
tributed over 1.0 kcal/mol to the final binding energy for
PPARγ (Table 2): Cys285 (-5.6 kcal/mol), Ser289 (-1.9 kcal/-
mol), His323 (-2.6 kcal/mol), Tyr327 (-4.7 kcal/mol), and
Tyr473(-1.1 kcal/mol). Though primary interaction was
between residues Ile 341, Ser342, and Glu343 of the beta
region (total 14.9 kcal/mol), and therefore occupying branch
III of the binding pocket, two of three major interactions con-
sistent with PPARγ full agonists were achieved (His323 and
Tyr473) which has been shown to be important for changing
the protein conformation and recruiting the coactivator
responsible for insulin sensitivity [44, 111]. As for PPARα,
the primary interaction was also between the conserved
residues of the beta region, with an overall energy contribu-
tion of residues Val332, Ala333, and Tyr334 contributing a
total of -16.5 kcal/mol to the total binding energy. Though
this interaction in arm II provides evidence of the partial ago-
nist activity, a weak binding interaction between His440
(analogous to His449 in PPARγ) and chiglitazar was also
achieved in this system. In the PPARα system, chiglitazar
has a similar binding mode as the dual agonist muraglitazar,
forming two polar interactions with residues Gln277 and
Ser280 on helix 3 (Figure 10(a)) in arm I, which are key res-
idues responsible for agonist recognition [112]. Chiglitazar
also formed additional pi-pi staking interactions with
His440 on helix 11, formed hydrogen bonds with residue

Thr279 on helix 3, and formed hydrophobic interactions
with residue Leu460 and Tyr464 on helix 12 in arm I, which
are important for stabilizing the AF-2 helix and maintaining
the protein active conformation for recruiting the coactiva-
tor. In the PPARβ system, the most favorable binding inter-
action was with Lys331 of helix 7 followed by interaction with
the beta region through residues Val305 and Ala306 contrib-
uting a total of -10.1 kcal/mol to the final binding energy.
The PPARβ complex did not achieve any characteristic full
agonist interactions, explaining the lower binding energy
observed for this system. With all of this in mind, the ability
of chiglitazar to activate PPARγ was slightly different from
other known PPARγ agonists while still maintaining several
key interactions that may be responsible for the decrease in
the negative side effects observed in clinical trials.

Table 2: Key residues of each receptor interaction with chiglitazar.

PPARα (kcal/mol) PPARβ (kcal/mol) PPARγ (kcal/mol)

ILE_241 -1.2

LEU_254 -1.5 ILE_262 -2.7

VAL_255 -2.9

LEU_258 -2.9

VAL_245 -1.0 ILE_281 -1.1

PHE_273 -1.0 PHE_246 -2.4 PHE_282 -1.2

CYS_275 -2.6 ARG_248 -5.3 GLY_284 -2.6

CYS_276 -6.7 CYS_249 -4.9 CYS_285 -5.6

GLN_277 -1.4 GLN_250 -1.9 GLN_286 -3.8

PHE_287 -3.2

THR_279 -4.7 THR_252 -4.2 ARG_288 -5.1

SER_280 -3.2 SER_289 -1.9

THR_283 -3.0

HIS_323 -2.6

ILE_317 -2.9 ILE_290 -1.6 ILE_326 -4.3

PHE_318 -1.8 PHE_291 -1.9 TYR_327 -4.7

MET_329 -1.1

LEU_321 -5.0 LEU_294 -4.7 LEU_330 -4.3

ILE_297 -2.6 LEU_333 -2.4

VAL_298 -1.4

MET_330 -1.8 LEU_303 -4.2

VAL_332 -8.7 VAL_305 -7.8 ILE_341 -9.6

ALA_333 -4.2 ALA_306 -2.3 SER_342 -4.3

TYR_334 -3.6 GLU_343 -1.0

ILE_339 -1.2 MET_348 -1.9

ILE_354 -1.5 ILE_327 -1.6 PHE_363 -1.0

MET_355 -1.8

LYS_358 -3.6 LYS_331 -9.3 LYS_367 -1.2

HIS_440 -1.6

MET_416 -3.1

VAL_444 -1.0

ILE_420 -1.2

LEU_429 -1.2 LEU_465 -1.7

LEU_469 -2.1

TYR_473 -1.1
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Desmond’s simulation interaction diagrams provided
insight into the structural similarities and differences between
systems. From the two-dimensional interaction diagrams, it
was clear that the carbazole side chain of chiglitazar main-
tained hydrophobic interactions in each system. Specific
attention is given to conserved residues Lys358, Lys331, and
Lys367 for PPARα, PPARβ, and PPARγ, respectively. In
both PPARα and PPARγ, this Lys residue contributes to
the hydrophobic interactions surrounding the carbazole side
chain. However, because of the difference in binding pose,
the PPARβ complex shows Lys331 interacting with the oxy-
gen at position 3 on chiglitazar. Comparing the interaction of
Lys331 to the decomposition of MM-GBSA by residue, this
interaction contributed the most to the overall energy
(-9.3 kcal/mol) and may be the key residue involved in the
binding of chiglitazar in the PPARβ complex system. From
a visual inspection of the most abundant binding poses and
by comparing the secondary structure elements, the 2′ helix
was fundamentally different from both PPARα and PPARγ
leaving free space around the binding pocket which appeared
to limit the interactions of chiglitazar in the PPARβ complex
system, which may explain the lower binding energy. The sec-
ondary structure elements of each trajectory is provided in
Figure S10 which shows PPARγ having the greatest loss of
helical structure at helix 12 over the course of the trajectory,
followed by PPARα and PPARβ. This we attribute to the
increased fluctuations of helix 12 of PPARγ when compared
to PPARα and PPARβ.

Other conserved residues involved in hydrophobic
interactions were Val332, Val305, and Ile341 for the PPARα,
PPARβ, and PPARγ receptors, respectively. The MM-GBSA
binding energy decomposition by residue showed that the
interactions of Val332 and Ile341 were the highest contribut-
ing residue for both the PPARα (-8.7 kcal/mol) and PPARγ
(-9.6 kcal/mol) receptors, respectively, and the interaction
of Val305 was the second highest contributor for the PPARβ
system (-7.8 kcal/mol). This indicates the importance of this
binding interaction for the activation of each PPARα,
PPARβ, and PPARγ.

Further exploring the dynamics of each PPAR receptor,
we used the combined trajectories of each system to calcu-
late protein network models which identified connections
between residues in the system (Figure 11(a)), generated a
weighted representation of each connection (Figure 11(b)),
and grouped each connection into communities based on
stronger and more frequent connections to other nodes
within those communities (Figure 12). From the weighted
and unweighted network models, it was clear that the con-
nections between the nodes of each system had distinct dif-
ferences in both the connections to the node selected from
the ligand as well as for helix 12. Furthermore, the commu-
nity models showed entirely different communities for helix
12. In PPARα, helix 12 has its own community with several
critical edges linked to helix 3 and helix 11; in PPARβ, helix
12 is grouped in a community with the lower portion of helix
3; and in the PPARγ, the model helix 12 is grouped with helix
11. The observed differences in connection between receptor
subtypes could be linked to the reported activity of the recep-
tor, where full agonists may activate the receptor through a

direct interaction with helices 11 and 12, whereas the partial
activation may be more linked to interactions with helices 3
and 4. For our PPARγ system, our critical node analysis
was consistent with the reported key residues for the full ago-
nist’s activation [109, 110]: H449, Cys285, Ser289, and
Tyr327 [30, 69]. As for PPARα, the critical node analysis
accurately predicted the following known primary residues
involved in partial activation: His440 (analogous to His449
in PPARγ), Thr279 on helix 3, and Leu460 which is impor-
tant for stabilizing the AF-2 helix and maintaining the pro-
tein active conformation for recruiting the coactivator.

To further probe the overall motion of the receptors, we
performed a principal component analysis based on the com-
bined trajectories. Through analysis of the PCA (Figure S7)
and the RMSF (Figure S8) of each system, the top five
modes provided insight that is consistent with an ongoing
hypothesis into the activity of the PPAR receptors. In short,
it is hypothesized that the conformation of helix 12 is
determined by the activity of the ligand (i.e., agonist and
antagonist) [106]. Building from that, our observations
have led us to speculate that rather than being bent fully in
the direction of the agonist versus antagonist conformation,
a partial agonist can adopt a more linear conformation; we
present a visual example of this in Figure 14. In addition to
the overall conformation of helix 12, we also speculate that
the degree of flexibility plays a role in activity.

Full agonist
(2PRG)

Antagonist
(6C5T)

Partial agonist
(3TKM)

Partial agonist
(3VI8)

H12

H12

H12

H12

Figure 14: Proposed helix 12 conformations of the PPAR full
agonist, partial agonists, and antagonist. Helices 10-11 are used as a
references. Full and partial agonist conformations are derived from
our simulations and antagonist conformation from the crystal
structure. Coloring of helices 10-12 is based on secondary structure.
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To gain more insight into the activation mechanism,
we used a coarse-grained anisotropic network model to
calculate the normal modes on PPARγ with the nuclear
receptor coactivator 2 (NCOA2) peptide docked. NCOA2 is
a key part of the full structure of the PPARγ-retinoid X recep-
tor (RXR) alpha complex on DNA (Figure S1), so we found it
important to understand its role by exploring the top
vibrational mode (Figure 15). From our analysis, it is clear
that the directionality of H12 is switched in the presence
of NCOA2 which we speculate may play a role in the
complex that each PPAR subtype forms with both the DNA
binding domain (DBD) and the retinoid X receptor (RXR)
at that site. In mode 1 of PPARγ, we observed that H12 was
extremely flexible, folding left of the front view point into a
conformation that opens up the coactivator binding site
between helix 12 and helix 4/5. Although PPARα is also in
a left bent conformation, the flexibility of helix 12 itself is
minimal. In this case, helix 12 remains stable and the C-
terminal region is more flexible in a stretching manner.
Evident from the RMSF (Figure 15(d)) of the lowest energy
mode of the PPARγ-NCOA2 complex derived from
docking NCOA2 into our most abundant cluster of PPARγ
and the complex of the original crystal structure of the
PPARγ-NCOA2, our MD-derived system produces nearly
identical RMSF when compared to the crystal structure.

The closely comparable RMSF results not only suggest the
accuracy of this prediction but reinforce the accuracy of the
computational methods used for our simulations.

Extrapolating this data with comparison to our principal
component analysis, the position of helix 12 in the PPARα
system may help to explain PPARα’s increased binding
energy over PPARβ, whereas the lack of flexibility may
explain PPARα’s lower binding energy when compared to
PPARγ. PPARβ, on the other hand, is somewhere between
the two extremes, the difference being the direction which
helix 12 is moving. Rather than folding to the left, helix
12 adopts a more linear conformation, significantly reduc-
ing the area of the coactivator binding pocket when com-
pared to PPARγ. These observations are supported by the
RMSF of both the original trajectory (Figure 7) as well as
the RMSF of mode 1 from the normal mode analysis
(Figure 13), where the fluctuations are largest in PPARγ
followed by PPARβ and PPARα.

Further support of our helix 12 hypothesis is provided
through a deeper evaluation of the RMSD of helix 12 in each
system (Figures S11–S12). We measured the RMSD of helix
12 in each system using the initial crystal structure as a
reference and defined helix 12 residues for PPARα (448-
468), PPARβ (421-441), and PPARγ (457-477) using the
flexible portion of this region (Figure S11). From this, we

Most abundant cluster
of PPAR𝛾 w/o NCOA2

(a)

Most abundant cluster
of PPAR𝛾 w/ NCOA2

(b)

Crystal structure of
PPAR𝛾 w/ NCOA2

(c)
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Figure 15: Anisotropic network models of our most abundant cluster of PPARγ (a), our most abundant cluster of PPARγ with nuclear
receptor coactivator 2 (NCOA2) peptide docked (b), and the PPARγ-NCOA2 complex from the original crystal structure (PDB ID:
3DZY) (c), plus an RMSF plot (d) comparing the fluctuations of the PPARγ-NCOA2 complex derived from docking NCOA2 into our
most abundant cluster of PPARγ (b; blue) to the original crystal structure of the PPARγ-NCOA2 complex (c; red).

18 PPAR Research



observed a wide range of RMSD’s for PPARγ when compared
to PPARα and PPARβ. Specifically, we saw that PPARγ had
two major RMSD’s of 2.5Å and 4.5Å where PPARα was
primarily 1.5Å and PPARβ was primarily 2.5Å. We have
also included a time series of each of the three trajectories
of RMSD per system and structural representation of the
conformation of H12 in the two most abundant RMSDs
(2.5 and 4.5Å) for PPARγ (Figure S12). The difference in
the helix 12 RMSD for PPARγ when compared to PPARα
and PPARβ further supports our hypothesis that the degree
of flexibility at helix 12 plays a role in an activity.

Although the omega loop between helix 2′ and 3 is also
hypothesized to be involved in the allosteric activation of
the receptor, the receptor structures used in our study have
small breaks in the omega loop sequence, as a result of a
structural alignment. Therefore, we are unable to provide
insight into how this portion of the receptor is linked to its
biological activity. In order to do this, a homology model of
the receptors would need to be built to fill in the gaps in
sequence and then used in a new set of simulations, which
is a direction we are likely to pursue in a future study.

With the detailed interaction profile provided in this
study, the key residues as well as their major poses were iden-
tified and may be useful in designing other partial or selective
PPAR agonists with an enhanced binding profile by activat-
ing only the key portion of the receptors, or by using the
key interacting residue information to modulate the interac-
tions with each receptor subtype. This may ultimately help to
identify a new medication which completely eliminates neg-
ative side effects associated with current T2DM medications
and provide a higher quality of life from those being treated
for T2DM.

5. Conclusions

With type 2 diabetes mellitus (T2DM) affecting such a broad
range of the population, there is a dire need for effective treat-
ment with minimal side effects. Previous T2DM medications
like rosiglitazone (Avandia) and pioglitazone (Actos) are
thiazolidinediones (TZDs) that are insulin sensitizers acting
as full agonists to the PPARγ receptor. TZDs worked effi-
ciently to reduce antihyperlipidemic and antihypertensive
effects; however, with higher chances of myocardial infarc-
tion and weight gain, amongst other negative side effects,
use has been significantly restricted to a last line of defense
against diabetes. Chiglitazar is a new generation of non-
TZD T2DM medications able to regulate gene expression
due to its configuration-restricted binding as well as the
phosphorylation inhibition of hPPARγ with a significantly
lower chance of cardiac toxicity when compared to TZDs.
Though initially thought to be a dual agonist of PPARα
and PPARγ, research over the past decade has provided
evidence of chiglitazar’s pan-agonist activity toward each
of the PPAR receptor subtypes. In this study, we used
molecular dynamics (MD) simulation and a MM-GBSA
binding energy analysis to elucidate the mechanism driving
the interaction of chiglitazar and the PPAR receptor subtypes
PPARα, PPARβ, and PPARγ. Our MM-GBSA binding
energy calculation revealed that chiglitazar most favorably

bound to hPPARγ (-144.6 kcal/mol) followed by hPPARα
(-138.0 kcal/mol) and hPPARβ (-131.2 kcal/mol). Through
visual inspection of the structural clustering analysis,
decomposition of the MM-GBSA binding energy by residue,
and by the use of two-dimensional interaction diagrams, key
residues involved in the binding of chiglitazar were identi-
fied and characterized for each complex system. Our detailed
analysis supports chiglitazar’s activity as a pan-agonist and
provides dynamic details to describe the underlying mecha-
nism used to fully activate PPARγ and partially activate
PPARα and PPARβ, which may aid in further development
of this new generation of medication. Our detailed analyses
support that the conformation and dynamics of helix 12 play
a critical role in determining the different activities of the
different types of ligands (e.g., full agonist vs. partial ago-
nist). Rather than being bent fully in the direction of the ago-
nist versus antagonist conformation, a partial agonist can
induce a more linear conformation and have a lower degree
of flexibility.
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Supplementary Materials

Table S1: PDB IDs of known crystal ligands and activity
toward each of the PPARα, PPARβ, and PPARγ receptors.
Table S2: root mean square fluctuations of each helix of the
PPAR subtypes. Table S3: list of critical residues identified
from the network analysis. Table S4: comparison of the
MM-GBSA binding energies of our MD-simulated crystal
complexes to the MD-simulated PPARα, PPARβ, and
PPARγ receptors in complex with chiglitazar. Figure S1: full
structure of the PPARγ- (silver) retinoid X receptor (RXR)
alpha (blue) complex on DNA (black) with rosiglitazone
(yellow) and nuclear receptor coactivator 2 (NCOA2) (green)
(PDB ID: 3DZY). Figure S2: protein and ligand RMSD for the
simulated crystal structure systems for PPARα (PDB ID:
3VI8), PPARβ (PDB ID: 3TKM), and PPARγ (PDB ID:
2PRG). Figure S3: comparison of the induced fit docking,
MD-derived complexes, and the superimposed complexes
PPARα (PDB ID: 3VI8), PPARβ (PDB ID: 3TKM), and
PPARγ (PDB ID: 2PRG). Figure S4: representative structures
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and abundance of the top structural families from the cluster-
ing analysis of the combined trajectories. Figure S5: average
2D interaction profile of chiglitazar in complex with PPARα,
PPARβ, and PPARγ of the multiple trajectory runs: a histo-
gram of protein-ligand interactions. Figure S6: average ligand
torsion (dihedral angle) profile of chiglitazar in complex with
PPARα, PPARβ, and PPARγ from the combined trajectory
runs. Figure S7: the top five modes (1-5) of the trajectory-
based principal component analysis performed using VMD’s
Normal Mode Wizard for the combined blocks of the trajec-
tories for PPARα (A), PPARβ (B), and PPARγ (C). The color
scheme is as follows: blue—low movement; grey—moderate
movement; red—maximum movement. Vectors of 3.5Å or
greater are shown and represent the directionality of move-
ment where larger vectors represent greater fluctuations. Fig-
ure S8: RMSF of the top 5 normal modes of the trajectories,
derived from VMD’s Normal ModeWizard. Figure S9: dock-
ing pose (A) and 2D interaction diagram (B) of chiglitazar in
complex with PPARγ (from PDB ID: 2PRG). Figure S10: sec-
ondary structure element timelines for each of the three tra-
jectories of PPARα (A), PPARβ (B), and PPARγ (C). Figure
S11: position of helix 12 (red) over the course of the com-
bined trajectory including a histogram showing the RMSD
distribution of helix 12 as well as the time series of the helix
12 RMSD for each trajectory (trajectory 1—blue; trajectory
2—red; trajectory 3—green) for PPARα (A), PPARβ (B),
and PPARγ (C). C-terminal is represented as a blue ball. Fig-
ure S12: two most abundant conformations of helix 12 based
on RMSD. Superimposition shows the conformation of helix
12 at 2.5Å RMSD in blue and at 4.5Å RMSD in red.
(Supplementary Materials)
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