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Previous studies showed that PPAR-gamma (PPARG) ligands might serve as potential therapeutic agents for nonsmall cell lung
cancer (NSCLC). However, a few studies reported the specific relationship between PPARG and lung squamous cell carcinoma
(LSCC). Here, we made an effort to explore the relationship between PPARG and LSCC. First, we used mega-analysis and
partial mega-analysis to analyze the effects of PPARG on LSCC by using 12 independent LSCC expression datasets (285 healthy
controls and 375 LSCC cases). Then, literature-based molecular pathways between PPARG and LSCC were established. After
that, a gene set enrichment analysis (GSEA) was conducted to study the functionalities of PPARG and PPARG-driven triggers
within the molecular pathways. Finally, another mega-analysis was constructed to test the expression changes of PPARG and its
driven targets. The partial mega-analysis showed a significant downregulated expression of PPARG in LSCC (LFC=-1.08,
pvalue =0.00073). Twelve diagnostic markers and four prognostic markers were identified within multiple PPARG-LSCC
regulatory pathways. Our results suggested that the activation of PPARG expression may inhibit the development and
progression of LSCC through the regulation of LSCC upstream regulators and downstream marker genes, which were involved

in tumor cell proliferation and protein polyubiquitination/ubiquitination.

1. Introduction

PPARG is a ligand-activated transcription factor belonging
to the family of peroxisome proliferator-activated receptors
(PPARSs) [1], which is widely expressed in many cells and tis-
sues in the human body [2]. PPARG has recently attracted
interest as the potential therapeutic target for a variety of
malignancies [3]. A number of animal models [4], cell lines
[5, 6], and clinical trials [NCT00923949, NCT01199068,
NCT01199055] demonstrated that activation of PPAR-
gamma impedes lung tumor progression and suggest that
PPARG ligands may serve as potential therapeutic agents
for nonsmall cell lung cancer (NSCLC), with the emphasis
on lung adenocarcinoma [7, 8]. For instance, Ni et al.’s study
showed that the activation of PPARG could inhibit the prolif-

eration of EGFR-TKI-resistant lung adenocarcinoma cells
and lead to a better survival rate [8].

So far, only a few studies explored the relationship
between PPARG and lung squamous cell carcinomas (LSCC)
[9, 10]. Kim et al. pointed out that the truncated splice
variant of human PPAR gammal (hPPARGI(tr)) was
strongly expressed in primary LSCC tumorous tissues, and
the overexpression of hAPPARGI(tr)) could increase the resis-
tance of transfected cells to chemotherapeutic drug- and
chemical-induced cell death [10]. However, to our knowl-
edge, no study has systematically studied the role of PPARG
in the pathology of LSCC.

To address this issue, we first conducted a meta-analysis
to study the gene expression change of PPARG in the case
of LSCC. Then, we integrated literature-based pathways
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and gene set enrichment analysis (GSEA) to study the
potential pathways where PPARG could exert influence
on the pathologic development of LSCC. Our results may
help to understand the potential roles of PPARG in the
case of LSCC.

2. Materials and Methods

2.1. Selection of LSCC Expression Data in Mega-Analysis. For
the initial selection, we searched the LSCC expression data-
sets on gene expression omnibus (GEO; https://www.ncbi
.nlm.nih.gov/geo/) by using the keywords “lung squamous
cell carcinoma.” Then, we applied the following criteria to fil-
ter further: (1) The entry type used in the study was series; (2)
The dataset was array expression data; (3) The studies were
designed as a comparison between LSCC and healthy con-
trols: and (4) The organism of the dataset was Homo sapiens.
Finally, we considered the datasets for which the original data
and the corresponding format files were downloadable. Since
we calculated the expression using the original data as
extracted above, we used the term “mega-analysis” instead
of “meta-analysis.”.

2.2. Mega-Analysis and Partial Mega-Analysis Models. In
order to identify the relation between PPARG and LSCC,
we used a mega-analysis to analyze the expression levels of
PPARG in the case of LSCC. In our study, results from using
both the random-effects model and the fixed-effects model
were compared. To determine the heterogeneity of the data-
sets, between- and within-study variance was calculated and
compared. When the total variance Q was no bigger than
the expected value of the between-study variances (df), the
model sets the ISq (percentage of the within- over between-
study variance) to zero. In this case, the fixed-effects model,
instead of the random-effects model, will be selected for the
mega-analysis. All analyses were performed using Matlab
(version R2017a; https://www.mathworks.com/products/
matlab.html).

Moreover, we performed a partial mega-analysis to dis-
cover the significance of a gene presented in part of the stu-
dies/datasets (e.g., 50% of total studies) but not in all
datasets, where 50% top studies/datasets were employed for
the mega-analysis of a gene. Here, we define the “top data-
sets” for a gene as these datasets that demonstrate the bigger
absolute value of effect size than the rest of the datasets. It
should be mentioned that the top datasets for different genes
could be different.

2.3. Analysis of Influential Factors. To estimate the possible
influence of several factors (e.g., study date, country of origin,
and sample size) on the gene expression in the case of MI, we
conducted a multiple linear regression (MLR) analysis and
reported the p values for each of these factors.

2.4. Construct PPARG-Drive Network and Gene Set
Enrichment Analysis. Based on large scale literature data min-
ing, we constructed a diagnostic and a prognostic functional
network connecting PPARG and LSCC. In the diagnostic net-
work, we identified the genes that were contra-directionally
regulated by PPARG and LSCC. To achieve this goal, we used
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Pathway Studio (http://www.pathwaystudio.com/) to identify
PPARG=2gene relationships and LSCC=>gene relationships
with polarity. Each of these relationships has supported by
one or two scientific references. Then we identified the over-
lapped genes within these relationships to construct the
PPARG—LSCC diagnostic network. To increase the reliability
of the identified network, we limited the genes to these that
also demonstrated consistency in terms of their gene expres-
sion alteration in the case of LSCC in the mega-analysis. For
the prognostic pathway, we followed the same pressure but
to identify genes that were downstream targets of PPARG
and upstream regulators of LSCC. The reference information
supporting the relations identified in these networks was pro-
vided in the Supplementary Materials (available here), includ-
ing the type of the relationship, supporting references, and
related sentences from the references where the relationship
has been identified.

For these genes within the diagnostic and prognostic net-
works built above, a gene set enrichment analysis (GSEA)
was conducted using Pathway Studio (version 12.1.0.9;
http://www.pathwaystudio.com/) against Gene Ontology
(GO; http://geneontology.org) and Pathway Studio path-
ways. The purpose of GSEA was to test the functional profile
of the genes involved in the PPARG-driven networks.

3. Results

3.1. Mega-Analysis Based on the Selected LSCC Expression
Datasets. There were 4,643 results shown in the GEO datasets
identified by the keywords “lung squamous cell carcinoma”.
Then, further filters were set as our criteria. A total of 12
datasets satisfied the inclusion criteria for the mega-analy-
sis, which are listed in Table 1. The studies were distrib-
uted in 8 different countries, and the study dates ranged
from 2 to 15 years ago, including 285 healthy controls
and 375 LSCC cases.

The mega-analysis and partial mega-analysis results for
gene PPARG are presented in Table 2. As shown in
Figure 1(a), the total variance (Q) was larger than the
expected between-study variance (df), the within-study var-
iance percentage (ISq%) was 45.10, the between-study vari-
ances were significant, and thus a random-effects model
was selected for PPARG in the mega-analysis. However,
there were no significant between-study variances (Isq =0,
Q test p=0.64), see in Figure 1(b). Thus, the fixed-effects
model was selected for PPARG in partial mega-analysis.
The LFC of the gene was estimated from about half (top
50%) of the selected datasets. PPARG demonstrated signifi-
cantly lower expression in the case of LSCC (LFC =-1.08,
p value = 0.00073).

MLR analysis showed that sample size and study age were
not significant influential factors for the expression levels of
PPARG among the 11 LSCC datasets (p value > 0.30). How-
ever, the population region (country) was identified as a sig-
nificant factor that influences the LFC of PPARG in the case
of LSCC (p value = 0.0045, Figure 1(c)). This may partially
explain the differential results between the partial mega-
analysis and the mega-analysis.
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TaBLE 1: The 12 qualified LSCC expression datasets for mega-analysis.

GEO ID Control (n) Case (n) Country Study age Sample organism
GSE84784 9 9 Luxembourg 2 Homo sapiens
GSE67061 8 69 China 3 Homo sapiens
GSE30219 14 61 France 5 Homo sapiens
GSE33479 27 14 USA 5 Homo sapiens
GSE32036 59 12 USA 7 Homo sapiens
GSE19188 65 27 Netherlands 9 Homo sapiens
GSE11969 5 35 Japan 10 Homo sapiens
GSE2088 30 48 Japan 10 Homo sapiens
GSE12428 28 34 Netherlands 11 Homo sapiens
GSE6044 14 Germany 13 Homo sapiens
GSE1987 7 17 Israel 15 Homo sapiens
GSE12472 28 35 Netherland 10 Homo sapiens

TABLE 2: Analysis of PPARG expression levels in LSCC datasets.

PPARG Mega-analysis Partial mega-analysis
Models Random effects Fixed effects

# study 11 5

LEC (effect size) -0.22 -1.08

p value 0.094 0.00073

1q (%) 45.10 0.00

p value Q 0.051 0.64

# sample 0.85 0.10
Country 0.0045 2.79e-6

Study age 0.30 0.00034

3.2. The LSCC Diagnostic Network Interfered by PPARG.
Multiple molecules (12 genes) have been identified through
large-scale literature data mining that was contra-
directionally influenced by PPARG and LSCC, as shown in
Figure 2. According to previous literature reports, a total of
8 molecules (XIAP, UBE2DI1, SKP2, ACKR3, MI21,
HOXA10, STAT1, and PDPN) were upregulated in LSCC
(the genes at the bottom of Figure 2; the arrows with &,
Figure 2) but negatively affected by PPARG (the arrows with
-|, Figure 2). These eight genes also presented increased
expression levels in the 12 LSCC RNA expression datasets.
These results support the literature data mining results and
suggest these eight genes as positive markers for LSCC. The
mega-analysis results for these genes were provided in the
Supplementary Materials—Mega-analysis (available here).
The inhibition of these genes by PPARG could exert an anti-
LSCC effect during its pathological development (Figure 2).
On the other hand, four genes (MIR223, ANGPTI,
CYP2A6, and FOXA2) have been suggested to get suppressed
in LSCC (the genes at the top of Figure 2, the arrows with -I )
but were stimulated by PPARG (Figure 2). These four genes
also presented decreased expression levels in the mega-anal-
ysis, supporting the literature data mining results. Activation
of these molecules could be due to other pathways where
PPARG inhibits the progress of LA. Detailed information

regarding the network presented in Figure 2 can be found
in the Supplementary Materials—>LSCC (available here)
diagnostic network, including the type of the relationships
and the supporting references.

3.3. GSEA for the Genes Involved in LSCC Diagnostic
Network. The GSEA was performed using Pathway Studio
with the purpose of investigating the biological functions of
the 12 genes within the LSCC diagnostic network. The GSEA
was also confirmed by the mega-analysis, including eight
upregulated and five suppressed genes. A total of 10 out of
these 12 genes were shared among the top 10 most signifi-
cantly enriched pathways (pvalues<0.012, q=0.05 for
FDR), which are presented in Table 3. The full 21 pathways/-
gene sets enriched with p value < 0.047 were presented in the
Supplementary Materials—GSEA1 (available here). Notably,
enriched pathways highlighted by the GSEA approach are
mainly related to the regulation of protein ubiquitination,
the regulation of cell proliferation, and cytokine stimulus.

3.4. LSCC Prognostic Network Interfered by PPARG. As
shown in Figure 3, a regulatory pathway connecting PPARG
and LSCC was identified, heavily involved in the pathological
development of LSCC. Based on the literature reports, three
genes, TNF, NOS2, and ACE, could promote the pathological
development of LSCC (highlighted in red, the arrows with &,
Figure 3). These three genes were deactivated by PPARG.
However, according to the mega-analysis results, these genes
were downregulated together with PPARG in the case of
LSCC. Therefore, PPARG may not necessarily be needed
for the deactivation of these genes to inhibit the progress of
LSCC. The supporting references for each relation presented
in Figure 3 were provided in the Supplementary Materi-
als—>LSCC_ (available here)prognostic network, which also
include the type of the relationships.

In addition, an LSCC-inhibitor, STK11, has been shown
to be activated by PPARG (highlighted in blue, the arrows
with -| , see Figure 3(a)). Mega-analysis showed that this gene
showed slightly increased expression in the case of LSCC.
Therefore, activation of PPARG may further promote the
activation of STKI11, which could be a blocker for the
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FIGURE 1: Mega-analysis results of PPARG using 11 LSCC RNA expression datasets. (a) Mega-analysis results from the random-effects model.
(b) Partial mega-analysis results from the fixed-effects model. (c) The influence of population region (country) on the PPARG expression
levels. The bar plot on the right of each figure represents the normalized weights for each dataset/study, range (0, 1); the brighter (green)
the color, the bigger the weight (labeled right next to the bar). The star (in red) and lines (in blue) on the left are the mean of effect size
(log fold change) and 95% confidence interval (CI) of each dataset/study, respectively.

pathologic development of LSCC. The mega-analysis results
of these four genes in Figure 3 were provided in the Supple-
mentary Materials—Mega-analysis (available here).

3.5. GSEA for the Genes Involved in LSCC Prognostic Network.
GSEA results showed that the five genes (PPARG, STK11,
NOS2, and TNF) were significantly enriched within 59
pathways/gene sets (p value <0.044; q=0.05 for FDR; see
Supplementary Materials—GSEA2 (available here)). We pre-
sented the top 10 pathways (4 genes were enriched; p < 0.0077)
in Table 4. The pathways were mainly related to cell metabo-
lism and hormone level regulation, which was largely different
from that of the LSCC diagnostic network. Also, notably, these
five genes enrich more pathways than that of the 12 genes
within the LSCC diagnostic network, indicating that these five
genes were more functionally linked to each other.

4. Discussion

Previous studies suggested that the activation of PPARG
might be associated with the inhibition of NSCLC [4-6].
However, most studies were focused on the cases of lung ade-
nocarcinoma [4-6]. In this study, we aim to explore the pos-
sible linkage between PPARG and LSCC. First, we utilized a
mega-analysis and a partial mega-analysis to analyze the
potential relationship between PPARG and LSCC. Subse-
quently, we integrated knowledge from large-scale literature
data mining and existing LSCC expression data to construct
molecular networks connecting PPARG and LSCC, followed
by a GAEA analysis to study the functional profile of the mol-
ecules involved in the PPARG-drive network. Our results
showed that PPARG was significantly downregulated in
about half of the LSCC cases, with multiple pathways
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FiGure 2: LSCC diagnostic network interfered with PPARG. Genes highlighted in blue (genes at the top of the figure) were literature-
implicated with a downregulation in the case of LSCC, and those highlighted in red (genes at the bottom of the figure) were upregulated
according to literature reports. Genes in blue represent a decreased expression level from the mega-analysis using 12 LSCC datasets, while

those in red represent an increased expression level.

TaBLE 3: The top 10 genetic pathways enriched by the 12 genes within LSCC_diagnostic network.

Name

GOID Overlap p value Jaccard similarity

GO: positive regulation of protein polyubiquitination
GO: regulation of smooth muscle cell proliferation
GO: regulation of protein polyubiquitination

GO: positive regulation of protein ubiquitination

GO: positive regulation of protein modification by small protein conjugation or removal 1903322;

GO: regulation of response to cytokine stimulus

GO: regulation of cytokine-mediated signaling pathway
GO: regulation of endothelial cell proliferation

GO: regulation of protein ubiquitination

GO: regulation of response to external stimulus

1902916; 3 0.00085 0.14
0048660; 5 0.0012 0.022
1902914; 3 0.0015 0.097
0031398; 4 0.0036 0.029
4 0.0050 0.025
0060759; 4 0.0052 0.022
0001959; 4 0.0052 0.023
0001936; 4 0.0080 0.019
0031396; 4 0.010 0.017
0032101; 6 0.011 0.0060

suggesting an inhibition role of PPARG in the pathologic
development and progress of LSCC.

Notably, PPARG did not show a significant decrease in
the 11 studies overall (LFC = -0.22; p value = 0.094), while
it demonstrated significant decreased expression in 5 out of
the 11 studies (LFC=-1.08; pvalue=0.00073). These
results indicate that there are influential factors that lead to
different expression levels of PPARG among different
studies. MLR analysis showed that the population region
was a significant factor that influenced the PPARG levels
(Figure 1(c)). Specifically, PPARG demonstrated low expres-
sion of LFC = —1.60 in the dataset from France (GSE30219),
while relatively high expression in the dataset from Germany

(LFC=0.27; GSE6044). Notably, one of the highest
(GSE12428; LFC = 0.26) and the lowest (GSE19188; LFC =
—1.91) expression levels were from the Netherlands, indicat-
ing that, besides population region, there could be other fac-
tors that influence the PPARG expression levels in LSCC
patients. Further investigation showed that the GSE12428
dataset was especially studying LSCC patients who smoke,
while the dataset of GSE19188 contained all patients in gen-
eral. It has been shown that smoking is one of the major risk
factors for the development of LSCC [11], and smokers tend
to have low PPARG expression levels [12]. These studies may
explain the different PPARG levels in these two Netherlands
datasets. Moreover, MLR results also suggest that sample size
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FiGure 3: LSCC prognostic network interfered with PPARG. Genes in blue represent a decreased expression level from the mega-analysis
using 12 LSCC datasets; entities in red represent an increased expression level. Entities highlighted in blue were literature implicated as the
LSCC-inhibitors, while those highlighted in red were LSCC-promoters.

TaBLE 4: The top 10 genetic pathways enriched by the 12 genes within LSCC_diagnostic network.

Name GO ID Overlap p value Jaccard similarity
GO: positive regulation of small molecule metabolic process 0062013 4 0.00054 0.023
GO: regulation of small molecule metabolic process 0062012 4 0.0036 0.0095
GO: fatty acid transport 0015908 3 0.0036 0.037
GO: receptor biosynthetic process 0032800 2 0.0036 0.22
GO: response to oxygen levels 0070482 4 0.0049 0.0073
GO: regulation of inflammatory response 0050727 4 0.0049 0.0079
GO: cellular response to organic cyclic compound 0071407 4 0.0076 0.0063
GO: regulation of hormone levels 0010817 4 0.0077 0.0060
GO: monocarboxylic acid transport 0015718 3 0.0077 0.019
CSF2 -> STAT expression targets NONE 4 0.0077 0.055

and study date were not significant factors for the PPARG
levels. Due to lack of data, we only studied the influence of
three factors on the expression levels of PPARG. Further
study is needed to test the expression level of PPARG in
LSCC patients and the possible influential factors such as
age, gender, and complication.

Functional network analysis showed that PPARG could
play roles both in the development and progression of
LSCC. Specifically, PPARG counter-regulated 12 molecules
that were upregulated or downregulated by LSCC
(Figure 2). The expression levels of eight LSCC markers
(XIAP, UBE2D1, SKP2, ACKR3, MI21, HOXA10, STATI,
and PDPN) were significantly upregulated in LSCC
patients [13-20] and were downregulated by PPARG
[21-28]. On the other hand, PPARG could activate multi-
ple genes [29-33] inhibited by LSCC [34-38], including
MIR 223, PTEN, ANGPTI1, CYP2A6, and FOXA2. It
should also be noted that the relations between LSCC
and the molecules in the network are supported by both
the literature data mining and mega-analysis using 12
LSCC expression datasets, which strengthens the reliability
of the PPARG-driven network.

GSEA analysis suggested that PPARG may influence the
development of LSCC through multiple pathways (Table 3
and Table 4). Besides the regulation of cell proliferation asso-
ciated with the procession of LSCC, PPARG could also regu-
late protein polyubiquitination and ubiquitination, which
has become increasingly recognized as a controller to regu-
late the function and signaling of a profusion of proteins.
Ubiquitination affects proteins in various cellular processes,
including signal transduction, DNA repair, chromosome
maintenance, transcriptional activation, cell cycle progres-
sion, cell survival, and certain immune cell functions [39].
Thus, it is not surprising that ubiquitin metabolism enzymes
prominently feature either oncogenes or tumor suppressors
in a variety of cancers and many pathways relevant to cancer.
A previous study suggested that targeting those physiological
processes may effectively abate the proliferation and facilitate
the treatment of lung cancer cells [40]. In the LSCC diagnos-
tic network (Figure 2), E2 ubiquitin-conjugating enzymes
(UBE2D1), E3 ubiquitin ligases (XIAP), and SKP2 were
involved in the regulation of protein ubiquitination. The
expression of XIAP, UBE2D1, and SKP2 downregulated by
PPARG at the transcriptional level [21, 22, 41] were
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overexpressed in LSCC tissues with robust proliferation abil-
ity [13-15].

PPARG may also play a role in the progression of LSCC by
interfering upstream regulators of LSCC, as shown in Figure 3.
For instance, the knock-down of PPARG has been shown to
deactivate STK11 [42], while the loss of STK11 could lead to
the formation of LSCC [43]. Furthermore, the activation of
PPARG could inhibit three promoters of LSCC, including
NOS2 [44], ACE [45], and TNF [46]. Thus, increased expres-
sion of PPARG may inhibit the formation of LSCC.

The most significant contribution of this study was the
identification of the two PPARG-driven networks
(Figures 2 and 3) that partially explain the mechanism of
the roles of PPARG in the etiology and development of
LSCC. However, the integration of literature data-mine and
mega-analysis may exclude potential genes/molecules con-
nection PPARG and LSCC. Further study is needed to vali-
date and consummate the networks identified here.

5. Conclusion

Results from this study indicated that the expression of
PPARG might be suppressed in LSCC patients. Activation
of PPARG expression may inhibit the development and
progress of LSCC through the regulation of LSCC upstream
regulators and downstream marker genes. Our results indi-
cate the need for further study of the relationship between
PPARG and LSCC.

Data Availability

The data of this study are available from the corresponding
author upon reasonable request.

Conflicts of Interest

All the authors declare no conflict of interest.

Authors’ Contributions

Shunbin Shi and Guiping Yu have contributed equally to this
work.

Supplementary Materials

(1) GSEA1 and GAEA?2 present GSEA results for the genes
within Figure 2 and Figure 3, respectively. (2) Mega-
analysis presents the mega-analysis results for PPARG gene
and its driven genes within the Figure 2 and Figure 3.
(3) Partial_Mega-analysis presents the partial mega-
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presents the reference information for the network pre-
sented in Figure 2. (4) LSCC_prognostic network presents
the reference information for the network presented in
Figure 3. (Supplementary Materials)
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