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Adipocytes and fat cells play critical roles in the regulation of energy homeostasis. Adipogenesis (adipocyte differentiation) is
regulated via a complex process including coordinated changes in hormone sensitivity and gene expression. PPARγ is a ligand-
dependent transcription factor and important in adipogenesis, as it enhances the expression of numerous adipogenic and lipogenic
genes in adipocytes. Prostaglandins (PGs), which are lipid mediators, are associated with the regulation of PPARγ function in
adipocytes. Prostacyclin promotes the differentiation of adipocyte-precursor cells to adipose cells via activation of the expression
of C/EBPβ and δ. These proteins are important transcription factors in the activation of the early phase of adipogenesis, and
they activate the expression of PPARγ, which event precedes the maturation of adipocytes. PGE2 and PGF2α strongly suppress the
early phase of adipocyte differentiation by enhancing their own production via receptor-mediated elevation of the expression of
cycloxygenase-2, and they also suppress the function of PPARγ. In contrast, PGD2 and its non-enzymatic metabolite, Δ12-PGJ2,
activate the middle-late phase of adipocyte differentiation through both DP2 receptors and PPARγ. This paper focuses on potential
roles of PGs as PPARγ modulators in adipogenesis and regulators of obesity.

1. Introduction

Obesity is a major health concern worldwide [1] and is
associated with the development of a number of patholog-
ical disorders such as type 2 diabetes, hypertension, and
cardiovascular disease [2–4]. Excess adipose tissue can be
the consequence of both an increased number (hyperplasia)
and an enlarged size (hypertrophy) of adipose cells. A major
role of adipocytes is to store large amounts of triglycerides
during periods of energy excess and to mobilize these depots
during periods of nutritional deprivation [2–4]. Moreover,
adipocytes are highly specialized cells that secrete various
adipocytokines, whose release largely reflects the amounts of
stored triglyceride [2, 5–8].

The regulation of adipocyte differentiation (adipogene-
sis) is complex and this process includes alteration of the sen-
sitivity to hormones and the expression of a number of genes
in response to various stimuli including lipid mediators.
Peroxisome proliferator-activated receptor (PPAR) γ and
CCAAT/enhancer-binding proteins (C/EBPs) are the most
important transcription factors involved in the activation of
adipogenesis, and they induce the expression of a number of

adipogenic and lipogenic genes that participate in the control
of adipogenesis [9, 10].

PPARs are members of the nuclear receptor superfamily
and play critical roles in the regulation of storage and
catabolism of lipids [11, 12]. To date, three types of PPAR
subtypes have been identified, that is, PPARα, PPARβ/δ,
and PPARγ [11, 12]. PPARs increase the expression of a
variety of genes in various cells through heterodimerization
with retinoic acid receptors or retinoid X receptors in a
ligand-dependent manner [12–16]. Among them, PPARγ is
expressed predominantly in adipose tissue and macrophages,
is closely related to the regulation of lipid and glucose
metabolisms, and is associated with the control of obesity
and related diseases [11, 12]. Until now, many natural and
synthetic ligands for PPARγ have been identified [17–19].
15-Deoxy-Δ12,14-prostaglandin (PG) J2 (15d-PGJ2) was the
first identified endogenous ligand for PPARγ, and it activates
adipogenesis in cultured cells [20, 21]. Moreover, fatty acids
such as lauric acid (C12:0) and petroselinic acid (C18:1) of
the saturated fatty acids [22], linolenic acid (C18:3), eicos-
apentaenoic acid (C20:5), and docosahexaenoic acid (C22:6)
of the ω3 (n-3) family [23], arachidonic acid of the ω6 (n-6)
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family [22, 23], and very-long chain fatty acids [24] were later
identified as other endogenous PPARγ ligands that activate
PPARγ functions. In addition, 9-hydroxy and 13-hydroxy
octadecadienoic acids (HODE), the components of oxidized
low-density lipoprotein (ox-LDL), were also identified as
endogenous ligands for PPARγ [25, 26]. However, whether
these natural molecules can function as physiological ligands
of PPARγ in vivo remains unknown. In addition to natural
ligands, many synthetic ligands have been identified. For
example, thiazolidinediones (TZDs) such as Troglitazone,
Rosiglitazone, Ciglitazone, and Pioglitazone are used for the
treatment of type 2 diabetes mellitus; and these ligands affect
insulin resistance and glucose homeostasis by activating
PPARγ functions [12, 18]. However, these TZDs increase
hepatic toxicity and cardiovascular risk. Finally, Troglitazone
was withdrawn from the market [27]. It is still unknown
whether the toxicities associated with TZDs are derived from
the binding with PPARγ.

PGs are lipid mediators that play a number of physiolog-
ical roles in a variety of cells. PGs are synthesized through the
following three enzymatic steps (Figure 1). First, arachidonic
acid is liberated from the membrane phospholipids by the
action of cytosolic phospholipase A2 (cPLA2) [28]. Second,
arachidonic acid is converted to PGH2, which is a common
precursor of all prostanoids, by either cyclooxygenase-
(COX-) 1 or COX-2 [29]. The activity of these enzymes
is critical to determine the production rate of PGs. Third,
PGH2 is metabolized to various PGs, that is, PGD2, PGE2,
PGF2α, prostacyclin (PGI2), and thromboxane A2 (TXA2),
by the action of specific PG synthases [29]. PGs exert a
wide range of actions through their binding to specific PG
receptors that belong to the G protein-coupled receptors
(GPCRs) gene family [30]. GPCRs span cell membranes via
seven transmembrane-spanning segments and are the most
important therapeutic targets. In this decade, the functions
of PGs in the regulation of adipogenesis have been exten-
sively investigated. Elucidation of the molecular mechanisms
underlying adipogenesis may provide strategies for reducing
the prevalence of obesity. This paper focuses on the recent
advances in our understanding of the function of PGs as
modulators of PPARγ in the regulation of adipogenesis.

2. Roles of COXs in Adipocytes

COX consists of two isozymes, COX-1 and COX-2, and is
the rate-limiting enzyme in the PG biosynthesis [29]. COX-1
is constitutively expressed in most cells including adipocytes,
whereas COX-2 expression is induced by various stimuli [29]
and transiently activated in the early phase of adipogenesis,
followed by lowered expression during adipogenesis [31].
There have been a number of reports regarding the con-
tribution of COX isozymes to the regulation of adipocyte
differentiation. However, the roles that COX-2 plays during
adipogenesis are still controversial.

In cell-based studies, Yan et al. demonstrated that
inhibition of COX activities by their selective inhibitors, for
example, SC-560 for COX-1, and NS-398 and Celecoxib for
COX-2, enhances adipocyte differentiation via an increase in

the mRNA levels of PPARγ and C/EBPα. Thus, both COX-1
and COX-2 participate in the regulation of adipogenesis [32].
Moreover, in 3T3-L1 cells stably expressing COX-2 in the
antisense direction, lipid accumulation is enhanced during
adipogenesis with elevated expression of adipogenic genes
such as PPARγ and C/EBPα. In addition, this enhancement
of lipid accumulation in antisense COX-2-expressing cells
can be reversed by cotreatment with either antiadipogenic
PGE2 or PGF2α [33].

In contrast, when 3T3-L1 cells are pretreated before the
initiation of adipocyte differentiation or treated during the
clonal expansion phase with SC-58236, a selective COX-2
inhibitor, and then caused to differentiate into adipocytes,
lipid accumulation is reduced along with repressed expres-
sion of the adipogenic fatty acid-binding protein 4 (FABP4,
also called aP2) gene [34]. In contrast, a selective COX-1
inhibitor, SC-58560 does not have any effect on adipogenesis.
Additionally, when 3T3-L1 cells are caused to differentiate
into adipocyte in a medium containing each of two selective
COX-1 and COX-2 inhibitors that are added after the clonal
expansion phase, adipogenesis is not affected. Thus, inhibi-
tion of COX-2 activity suppresses adipocyte differentiation
by repressing the clonal expansion phase [34].

In in vivo studies, overexpression of COX-2 in white
adipose tissue (WAT) increases de novo recruitment of
brown adipose tissue (BAT) and energy expenditure, while
suppressing the high fat diet-induced gain in body weight
[35]. Also, Ghoshal et al. reported that in COX-2 gene-
knock-out mice, their total body weight is significantly lower
than that of wild-type mice, along with reduced expression
of adipogenic genes such as those of PPARγ and lipoprotein
lipase [36]. In addition, PGD2 and 15d-PGJ2 levels in cells
prepared from adipose tissues of COX-2 gene-knock-out
mice and placed in primary culture are reduced as compared
with those in wild-type mice [36]. Thus, further studies are
needed to elucidate the precise functions of COXs in the
regulation of adipogenesis.

3. Repression of the Early Phase of
Adipogenesis by PGF2α

PGF2α and PGE2 suppress the differentiation of adipocytes
and exert their functions as antiadipogenic agents exert by
acting through their specific FP [37–41] and EP4 [42, 43]
receptors, respectively.

PGF2α is synthesized by a variety of PGF synthase (PGFS)
activity-carrying enzymes [44], for example, aldoketo reduc-
tase (AKR) 1B3 [45], AKR1B7 [46], and prostamide/PGFS
[47] in mice. In humans, AKR1C3 acts as a PGFS in
adipocytes and is associated with the suppression of adipo-
genesis through inhibition of PPARγ function [48]. Although
PGFS has never been identified in adipocytes, we and another
group identified AKR1B3 [31] and AKR1B7 [49] as being
PGFSs in adipocytes.

AKR1B3-produced PGF2α is detected in preadipocytes
and its level is enhanced with a peak at 3 h after the
initiation of adipogenesis and then decreases [50], indicating
that PGF2α suppresses an early phase of adipogenesis.
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Figure 1: Biosynthetic pathway of prostaglandins. PGJ2, Δ12-PGJ2, and 15d-PGJ2 are converted from PGD2 by nonenzymatic dehydrations.

Fluprostenol, an FP receptor agonist, clearly reduces the
expression of PPARγ and its target genes [31, 50]. More-
over, this Fluprostenol-mediated suppression of the gene
expression is cleared by cotreatment with AL8810, an FP
receptor antagonist, indicating that PGF2α inhibits adipocyte
differentiation of 3T3-L1 cells by acting through an FP
receptor.

AKR1B7 gene-knock-out mice display excessive adipos-
ity resulting from adipocyte hyperplasia/hypertrophy and
exhibit high sensitivity to diet-induced obesity. Treatment
of 3T3-L1 cells or AKR1B7 gene-knock-out mice with
Cloprostenol, an FP receptor agonist, decreases adipocyte
size and inhibits the expression of lipogenic genes [49].

The precise molecular mechanism of PGF2α-mediated
suppression of adipogenesis has been investigated. PGF2α

represses the function of PPARγ by causing its phospho-
rylation via FP receptors [50]. In addition, Fluprostenol
enhances the expression of COX-2 via activation of

the mitogen-activated protein kinase (MEK)/extracellular
signal-regulated kinase (ERK) 1/2 pathway. Moreover,
promoter-luciferase and chromatin immunoprecipitation
assays demonstrated that PGF2α-derived COX-2 expression
is activated by the binding of cAMP-responsive element
binding protein (CREB) to the promoter region of the COX-
2 gene in 3T3-L1 cells [50]. Thus, the MEK/ERK-CREB
cascade forms a positive feedback loop, one that probably
plays a critical role in the suppression of the early phase
of adipogenesis by elevating the de novo production of
antiadipogenic PGF2α.

4. Suppression of the Early Phase of
Adipogenesis by PGE2

PGE2 is also known to suppress adipogenesis through
suppression of PPARγ function. PGE2 and an EP4 ago-
nist, AE1-329, increase the intracellular cAMP levels in
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preadipocytes in a dose-dependent manner [42]. Moreover,
AE1-329 decreases the expression of adipogenic genes such
as PPARγ and C/EBPα [51]. The inhibitory effect of PGE2,
but not that of Fluprostenol, is reversed by the addition
of an EP4 antagonist, AE3-208 [42], indicating that PGE2

suppresses adipogenesis through the EP4 receptor. Although
the functions of PGE2 and the expression of the functions
of PGE2 and the expression of PGESs have been investigated
in adipocytes [27, 52, 53], the PGE2-producing enzyme in
adipocytes has never been identified. To date, three major
PGESs have been identified [54, 55]. Microsomal PGES-1
(mPGES-1) is a member of the membrane-associated pro-
teins in eicosanoid and glutathione metabolism (MAPEG)
protein family [56] and produces PGE2 in response to
various stimuli [57]. Microsomal PGES-2 (mPGES-2) has
also been identified and its expression is high in the heart
and brain [58]. Cytosolic PGES (cPGES) is constitutively and
ubiquitously expressed in various cells [59].

PGE2 production is detected in preadipocytes and
increases during the early phase of adipogenesis with a peak
at 3 h after the initiation of adipogenesis; and mPGES-1 is
expressed in these cells, with its mRNA and protein levels
being consistently detected during adipogenesis. Finally,
we found that mPGES-1 is responsible for the produc-
tion of PGE2 in adipocytes [60]. This result is consistent
with results showing that treatment of mouse embryonic
fibroblast (MEF) cells with PGE2 for the first two days of
adipocyte differentiation is enough to suppress adipocyte
differentiation, with reduced expression of the PPARγ2 gene
and reduced accumulation of intracellular lipids [43].

In wild-type mouse MEF cells, inhibition of endogenous
PG synthesis by indomethacin enhances adipocyte differen-
tiation, and this enhancement is reversed by the addition
of PGE2. In MEF cells prepared from EP4 receptor gene-
knock-out mice, adipocyte differentiation is elevated, and no
more enhancement of adipocyte differentiation is observed
following treatment with indomethacin. Thus, PGE2-EP4
receptor signaling suppresses the early phase of adipocyte
differentiation in MEF cells [43].

5. Synergistic Suppression of Early Phase of
Adipogenesis by PGF2α and PGE2

Both PGF2α and PGE2 suppress the early phase of adipo-
genesis, and so we investigated the synergistic regulation
of these PGs in 3T3-L1 cells. The increased production of
PGF2α and PGE2 in the early phase of adipogenesis is a
consequence of the elevated expression of the COX-2 gene
[61]. PGF2α forms a positive feedback loop that coordinately
suppresses the early phase of adipogenesis through the
increased production of antiadipogenic PGF2α and PGE2,
both of which inhibit PPARγ function. In addition, PGE2

also enhances the production of PGF2α and itself through
the elevation of the expression of the COX-2 gene in an
EP4 receptor-mediated fashion. Moreover, when the cells are
caused to differentiate into adipocytes in medium containing
both PGF2α and PGE2, the expression of the adipogenic
genes is decreased to a greater extent than when the cells

are cultured in a medium containing either of them. Thus,
PGE2 and PGF2α synergistically suppress the early phase of
adipogenesis through a self-amplifying loop, triggered by
PGF2α-FP receptor and PGE2-EP4 receptor couplings and
activation of the COX-2 gene expression in 3T3-L1 cells [61].

However, Inazumi et al. demonstrated that the differen-
tiation of MEF cells prepared from FP receptor gene-knock-
out mice is almost the same as that in these cells from wild-
type mice and still shows sensitivity to indomethacin, indi-
cating that FP receptor-mediated suppression is not directly
associated with the regulation of adipocyte differentiation in
MEF cells [43]. Therefore, the regulation of suppression of
adipogenesis by PGE2 and PGF2α might occur in a cell-type-
dependent manner.

6. Acceleration of Adipocyte Differentiation by
PGD2 and Its Metabolites

PGD2 acts as an allergic and inflammatory mediators and is
produced in a variety of cells such as mast cells, macrophages,
and adipose cells [62, 63]. PGD2 is produced from PGH2 by
the action of PGD synthases (PGDSs), enzymes that catalyze
the isomerization of the 9,11-endoperoxide group of PGH2

to PGD2. Two distinct types of PGDSs have been identified.
One is hematopoietic PGDS (H-PGDS), which is abundantly
expressed in mast cells and Th2 cells [64]. The other is
L-PGDS, which is detected abundantly in the brain, male
genital organs, and heart [62, 63].

PGD2 has been considered a candidate for a molecule
that acts as an endogenous inducer of adipogenesis, basically
because 15d-PGJ2, one of its metabolites, has been identified
as a ligand for PPARγ and activates adipogenesis in vitro
[20, 21]. PGD2 is nonenzymatically metabolized to PGs
of the J series, that is, PGJ2, Δ12-PGJ2, and 15d-PGJ2.
However, the concentrations of 15d-PGJ2 required for the
activation of PPARγ reported in most of the literature are
much higher (2.5–100 μmol/L) than those of conventional
PGs (pmol/L range); and 15d-PGJ2 is present in vivo at
a low level that is insufficient for activation of adipocyte
differentiation [65], whose finding is consistent with our
current results indicating that 15d-PGJ2 is not detectable in
adipocytes [60]. Recently, we identified Δ12-PGJ2 as being
the dominant PGD2 metabolite in differentiated adipocytes
[60], in good agreement with recent results showing thatΔ12-
PGJ2 is produced in adipocytes and activates the expression
of adipogenic genes in 3T3-L1 cells [66].

PGD2 is synthesized by the action of L-PGDS in
adipocytes [67]. However, another PGDS, H-PGDS may
not be involved in the production of PGD2 in adipocytes,
because the expression level of H-PGDS is very low during
adipogenesis. Although the function of PGD2 or L-PGDS in
vitro has been extensively investigated, the in vivo function
is still controversial. Ragolia et al. reported that adipose size
is increased in L-PGDS gene-knock-out mice under normal
and high-fat diet feeding. Moreover, L-PGDS gene-knock-
out mice become glucose intolerant and insulinresistant.
Also the serum adiponectin level is decreased in such
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Figure 2: Regulation of adipogenesis by prostaglandins. “Pre” indicates adipocyte precursor cells. “Early,” “Middle,” and “Late” mean early,
middle, and late phases of adipogenesis, respectively.

mice [68]. Adipocytes isolated from L-PGDS gene-knock-
out mice are significantly less sensitive to insulin-stimulated
glucose transport. Thus, L-PGDS is an important mediator
of muscle and adipose glucose transport which is modulated
by glycemic conditions and plays a significant role in the
glucose intolerance associated with type 2 diabetes [69].
Furthermore, Tanaka et al. showed that L-PGDS gene-
knock-out mice have a significantly increased body weight
when fed high-fat diet and the size of adipocytes in the
subcutaneous and visceral fat tissues is significantly enlarged
[70].

In contrast, Fujitani et al. demonstrated that trans-
genic mice overexpressing human H-PGDS, which produce
plenty of PGD2 in every tissue including adipose, become
obese under high-fat diet feeding but that obesity is not
observed under normal diet feeding [71]. Serum leptin,
insulin, and adiponectin levels are increased in these PGD2-
overproducing mice. Moreover, their triglyceride level is
decreased by about 50% as compared with that in WT mice.
Moreover, the PGD2-overproducing mice show increased
insulin sensitivity [71]. Furthermore, the epididymal adipose
tissue mass of COX-2 gene-knock-out mice is decreased.
PGD2 and the levels of PGD2 metabolites are also decreased
in the adipose tissue of these mice. Thus, reduced adiposity
in COX-2 gene-knock-out mice results from the inhibition
of the production of PGD2 and its metabolites required for
PPARγ activation [36]. This discrepancy may be derived
from a variety of physiological functions of PGD2 in the
body. Therefore, the adipocyte-specific function of PGD2

and/or L-PGDS in the regulation of obesity should be further
clarified.

7. Activation of Adipogenesis in
Adipose-Precursor Cells by PGI2

PGI2 activates the protein kinase A (PKA) pathway by
binding to its IP receptor and enhances the differentiation
of adipose precursor cells [72, 73]. The activation of IP
receptors upregulates the expression of C/EBPβ and C/EBPδ,

both of which are critical for the progression of the early
phase of adipogenesis and directly activate the expression of
the PPARγ and C/EBPα genes for maturation of adipocytes
[9, 10]. Moreover, IP receptor gene-knock-out mice fed a
high-fat diet do not show any changes in body weight, fat
mass, or adipose size [74, 75]. Therefore, PGI2 activates the
progression of adipogenesis in the adipose precursor cells
through the enhancement of the expression C/EBPβ and
C/EBPδ via the cAMP-PKA pathway.

8. Conclusion

PGs are involved in the regulation of adipogenesis and
act as modulators of PPARγ functions. The regulation
of adipogenesis by PGs is very complex, because PGs
regulate adipogenesis both positively and negatively. In the
early phase of adipogenesis, PGF2α and PGE2 suppress the
progression of adipogenesis, and their receptor-mediated
mechanisms leading to suppressed PPARγ function have
been well elucidated. In contrast, PGD2 and its metabolites
activate the middle-late phase of adipogenesis (Figure 2). In
addition, recently we found that PGD2 and its metabolite
Δ12-PGJ2 accelerate adipogenesis by acting through DP2
(CRTH2; chemoattractant receptor homologous molecule of
Th2 cells) receptors and PPARγ, thus, indicating that when
elucidating the function of a given PG, the roles of not only
it but also those of its metabolites should be considered.

All PGs function through their specific G protein-
coupled receptors and PPARγ. Although their receptor
agonists and antagonists are functional in the cultured
adipocytes (in vitro), in vivo studies do not show clear effects
of PGs in the regulation of obesity. Moreover, PG receptor
gene-knock-out mice are not affected like the cells observed
in in vitro studies. The explanation of the problems is quite
difficult. As PGs have a variety of physiological functions,
studies using gene-knock-out mice might not be appropriate
to elucidate the functions of PGs in obesity. The precise in
vivo functions of PGs especially those of 15d-PGJ2 required
further clarification. Tissue- (cell-)specific gene-knock-out
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mice might be a powerful tool to identify the in vivo function
of PGs. Understanding of the mechanisms of PG-mediated
regulation of adipogenesis may lead to a novel therapeutic
strategy for the treatment of obesity.
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