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Review Article
PPARγ and PPARδ as Modulators of Neoplasia and Cell Fate
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PPARγ and PPARδ agonists represent unique classes of drugs that act through their ability to modulate gene transcription
associated with intermediary metabolism, differentiation, tumor suppression, and in some instances proliferation and cell
adhesion. PPARγ agonists are used by millions of people each year to treat type 2 diabetes but may also find additional utility
as relatively nontoxic potentiators of chemotherapy. PPARδ agonists produce complex actions as shown by their tumor promoting
effects in rodents and their cholesterol-lowering action in dyslipidemias. There is now emerging evidence that PPARs regulate
tumor suppressor genes and developmental pathways associated with transformation and cell fate determination. This review
discusses the role of PPARγ and PPARδ agonists as modulators of these processes.
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1. INTRODUCTION

PPARγ and PPARδ are involved in cell cycle regulation, sur-
vival and angiogenesis [1–3], and in inflammation through
ligand-dependent and independent mechanisms [4]. Several
recent reviews have described the role of PPARs in metabolic
disease [4–6], cancer treatment [3, 7], and chemoprevention
[8]. In addition to their metabolic actions, an emerging
area of investigation for PPARγ and PPARδ agonists is
their ability to modulate mammary cell lineage and genes
associated with tumor suppressor function and cell fate
determination. This suggests that PPAR agonists may play a
role in stem/progenitor cell proliferation and differentiation
to modify tumor response.

2. PPARγ SIGNALING

The PPAR nuclear receptor subfamily consists of the PPARα,
PPARγ, and PPARδ/β isotypes that regulate a number of
metabolic pathways controlling fatty acid β-oxidation, glu-
cose utilization, cholesterol transport, energy balance, and
adipocyte differentiation [4–6]. PPARs function as het-
erodimeric partners with RXR, and require high-affinity
binding of PPAR ligand to engage transcription [7]. PPARs
bind to the DR-1 response element (PPRE) consensus seq-

uence AGG(T/A)CA, which is recognized specifically by
the PPAR partner [9]. Like other nuclear receptors, PPARs
consist of a putative N-terminal transactivation domain (AF-
1), a DNA-binding domain (DBD) containing two zinc
fingers, a ligand-binding domain (LBD) containing a large
hydrophobic pocket, and a C-terminal ligand-dependent
transactivation region (AF-2) [10].

There is >97% homology at the protein level, 99%
homology within the LBD, and minimal functional dif-
ferences after ligand-dependent activation between human
and mouse PPARγ, [11]. PPARγ is expressed predominantly
in white adipose tissue, intestine, endothelial cells, smooth
muscle and macrophages [12], and is the major isotype
expressed in the mammary gland, and in primary and
metastatic breast cancer and breast cancer cell lines [3].

Several mutations and polymorphisms have been identi-
fied in PPARγ, such as Lys319X (truncating) and Gln286Pro,
in sporadic colon cancer, which are associated with loss
of DNA-binding and ligand-dependent transcription by the
PPARγ agonist, troglitazone [13]. Similar results were found
for PPARγ2 polymorphism Pro112Ala [14], but the poly-
morphism Ser114Ala resulted in increased transactivation
by presumably blocking the inhibitory effect of Ser114
phosphorylation by ERK [15, 16]. However, in a sampling of
approximately 400 breast, prostate, colon, and lung tumors
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and leukemia’s, no mutations of the PPARγ gene were found,
suggesting that if indeed this does occur, it is a very rare event
[17].

In follicular thyroid cancer, the t(2;3)(q13;p25) translo-
cation results in formation of the Pax8-PPARγ fusion
protein, which is pathoneumonic for the majority of cases
of this disease [18]. It acts as a dominant-negative receptor
of PPARγ [18, 19], and reduces expression of the Ras tumor
suppressor, NORE1A [20], which inhibits ERK activation
[21]. PPARγ also increases expression of other tumor
suppressor genes, such as PTEN [22] and BRCA1 [23]
through their respective PPRE promoter regions, suggesting
that the antitumor effects of PPARγ agonists may be
related to their ability to downregulate multiple tumorigenic
signaling pathways. This agrees with the reduction of PTEN
and increased nuclear β-catenin and ERK activity in the
mammary gland and tumors of MMTV-Pax8PPARγ mice
[24] (see Figure 1). Since inactivation of BRCA1 [25] and
PTEN [26–28] also increases stem cell proliferation, Pax8-
PPARγ may upregulate specific progenitor cell lineages that
are more susceptible to tumorigenesis.

PPARs interact with the coactivators C/EBP, SRC-1,
and DRIP205, and in the unliganded state with the core-
pressor SMRT [19, 29–31], and exhibit similar coactiva-
tor/corepressor dynamics as other nuclear receptors, such as
estrogen receptor-α (ER) [32]. PPARγ can interfere with ER
transactivation through its binding to the ERE [33, 34], and
preferentially partitions with ER for its canonical response
elements [35]; conversely, ER can block PPRE-dependent
transcription [36] (see Figure 1). PPARγ also modifies ER
signaling by promoting its ubiquitination and degradation
[37] as well as by upregulating CYP19A1 (aromatase) activity
[38, 39], which can blunt the activity of aromatase inhibitors
used to treat patients with ER+ breast cancer. PPARγ agonists
block the ER-dependent growth of leiomyoma cells, further
suggesting crosstalk between the ER and PPARγ signaling
pathways. PPARγ and ER pathways have opposite effects
on PI3K/AKT signaling that may also account for the
inhibitory action of PPARγ ligands on ER-dependent breast
cancer cells [36] (see Figure 1). These findings imply that
PPARγ antagonism should upregulate ER expression in
responsive tissues, which is precisely the phenotype observed
in mammary tumors induced in transgenic mice expressing
Pax8PPARγ [24].

Studies using transgenic and knockout mouse models of
PPARγ have led to disparate conclusions regarding the role
of PPARγ in tumorigenesis. Mice expressing constitutively
active VP16-PPARγ in the mammary gland did not exhibit a
tumorigenic phenotype but accelerated tumorigenesis when
crossed with MMTV-polyoma middle-T antigen mice [40],
intimating that the unliganded receptor may have inter-
fered with tumor suppressor transactivation by endogenous
PPARγ through corepressor recruitment. Alternatively, the
VP16 fusion protein is known to induce many genes that
are not indicative of PPARγ activation [41]. In the probasin-
SV40 T-antigen prostate tumor model, tumorigenesis was
unaffected by a PPARγ null background [42], indicating that
oncogenic signaling was already maximally activated. How-
ever, in the ApcMin mouse colon tumor model, “glitazone”
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Figure 1: Pax8PPARγ and mammary cell fate determination.
Pax8PPARγ acts in a dominant-negative fashion to block PPARγ-
dependent transactivation and upregulation of PTEN. MMTV-
Pax8PPARγ mice exhibit reduced PTEN and activation of Ras
and ERK, presumably through activation of PI3K (p85 and p110).
ERK activates ER transcriptionally and posttranslationally, and
Pax8PPARγ may interfere with the ability of PPARγ to inhibit
ER transactivation. Mammary epithelial cells isolated from the
mammary glands of MMTV-Pax8PPARγ mice contain a higher per-
centage of CD24+/CD29hi stem/progenitor cells, and present with
predominantly ER+ ductal carcinomas following carcinogenesis,
suggesting a role of PPARγ in cell fate determination.

PPARγ agonists increased the number of colon, but not
small intestine polyps [43, 44], as well as colon adenomas
[45]. Since the small intestine, and not the colon, is the
predominant site of neoplasia in this mouse model, the
significance of this observation is unclear. It should also
be stressed that PPARγ agonists did not induce malignant
changes in wild type mice, indicating their lack of carcino-
genicity. Contrary to these results, PPARγ haploinsufficiency
produced a greater rate and number of colon tumors fol-
lowing azoxymethane-induced carcinogenesis [46], implying
that PPARγ acts as a tumor suppressor rather than as an
oncogene. APC+/1638N mice heterozygous for PPARγ did not
exhibit changes in polyp formation [46]. This result indicates
that the induction of β-catenin in the colonic crypt cells of
PPARγ haplosufficient mice, a protumorigenic factor that is
constitutively activated in APC mice, is the target of tumor
suppression in wild-type mice [47]. A tumor suppressor role
for PPARγ is also supported by the inhibitory effect of PPARγ
agonists on colon tumor growth [48, 49], and mammary
carcinogenesis [50–52]. This effect may be mediated in breast
tumors through induction of apoptosis due to reduction of
Bcl-2 [53], and in pancreatic and liver tumors through a
reduction of cyclin D1 and HB-EGF [54] and an increase
of p27Kip1 [55–57]. PPARγ agonists may also find utility
as modifiers of the response to chemotherapy. CS-7017, a
potent thiazolidinedione agonist, synergized with paclitaxel
to inhibit the growth of anaplastic thyroid tumors through
induction of p21Cip1 [58]. Notwithstanding possible “off-
target” effects [59, 60], most studies indicate that PPARγ
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agonists as a class have antitumor activity, and thus may have
efficacy as a relatively nontoxic adjunct to chemotherapy and
possibly to radiation therapy through their ability to act as
“tumor suppressor enhancers.”

3. PPARδ SIGNALING

As with PPARγ, PPARδ is involved in adipocyte differ-
entiation by promoting clonal expansion of preadipocyte
progenitor cells [61], possibly through activation of PPARγ
expression [62]. The PPARδ agonist GW501516 has been
tested clinically as a cholesterol lowering drug in dyslipi-
demic patients, but the results have been mixed [63]. In
animal models, homozygous disruption of PPARδ resulted
in a runted phenotype [64] and in 90% embryonic lethality
with runted survivors [65], indicating its importance in
embryonic development. PPARδ null macrophages exhibited
loss of the dominant inhibitory effect by unliganded PPARδ
[60], which was previously identified by its ability to block
PPARα and PPARγ transactivation through corepressor
recruitment [60, 66, 67]. In breast cancer cells, PPARδ
expression was greater in ER− MDA-MB-231 breast cancer
cells than in ER+ MCF-7 cells [68], also suggesting a
correlation with a more aggressive form of this disease.
Indeed, tissue microarray analysis of invasive breast cancers
indicated that PPARδ is strongly expressed (see Figure 2,
“+3”) in 52% of 164 samples, and thus may have value
as a prognostic marker and therapeutic target. There are
no examples of the development of PPARδ antagonists as
anticancer therapeutics.

GW501516 accelerated the onset of tumor formation
during mammary carcinogenesis, in contrast to the delay
of tumor formation by PPARγ agonist GW7845 [52].
PPARδ expression increased in K-Ras-transformed intestinal
epithelial cells [69] and PDGF-stimulated vascular smooth
muscle cells [70]. Similar findings were reported for con-
ditional expression of PPARδ, where GW501516 increased
proliferation of hormone-dependent breast and prostate
cancer cells and endothelial cells, and increased expression
of genes associated with proliferation and angiogenesis [71].
PPARδ can suppress the antiproliferative effects of PPARα
and PPARγ [7] and directly associate with PDK1 [52] to
affect its localization and activation [72, 73], which implicate
it as a protumorigenic factor, and therefore raise a caution
for the general use of this class of agonists [74].

Colon cancer presents an interesting model to exam
the role of PPARδ in tumorigenesis since ApcMin mice
exhibit constitutive activation of β-catenin/TCF signaling,
the pathway believed to activate PPARδ [75]. PPARδ is highly
expressed in colorectal cancer cells [75], and somatic cell
knockout of PPARδ reduced tumorigenicity in nude mice
[76]. Crossing PPARδ null or heterozygous mice with ApcMin

mice showed a gene dosage dependent reduction in large
intestinal polyps [65], and treatment of ApcMin mice with
GW501516 produced an increase in both polyp number
and size [77], all suggesting that PPARδ is protumorigenic.
However, a study using a different targeting scheme to
delete PPARδ reported no change in polyp number or
size in the small intestine of ApcMin mice, and a greater

++++

(a)

80

70

60

50

40

30

20

10

0

Po
si

ti
ve

(%
)

0 +1 +2 +3

Staining intensity

Normal
DCIS
Node (−)

Node (+)
Node distant
All tumors

(b)

Figure 2: PPARδ expression in invasive breast cancer. Repre-
sentative samples from a tissue microarray analysis of invasive
breast cancers are shown. PPARδ staining intensity is indicated
as low (+1), medium (+2) or high (+3). The magnified image
shows examples of +1 and +3 staining. The bar graph depicts the
percentage of samples expressing PPARδ in DCIS, node (+), node
(−) and node distant tumors.

number but not size of carcinogen-induced colon tumors in
mice with this background [78]. Since the PPARδ knockout
mice generated by Barak contained a deletion of exon 4
encoding the hinge region [65], whereas, that generated
by Peters et al. [64] contained a deletion of the last exon
encoding the AF2 domain, it is possible that the truncated
PPARδ may not be as susceptible to corepression as the
wild-type receptor. This would explain why their results
[79, 80] differ from studies showing that keratinocytes
from mice heterozygous or null for PPARδ exhibit less
proliferation [81] and those in ApcMin mice in a PPAR null
background exhibit increased tumorigenesis [65]. From a
mechanistic standpoint, PPARδ is activated in colon cancer
cells by prostacyclin (PGI2) [82] and inhibited by the NSAID
indomethacin [75], suggesting that its tumor promoting
action is related to inflammation, a condition that increases
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Figure 3: PDK1 and PPARδ autoregulatory cascade. Growth factor
receptor (GFR) activation activates PDK1 leading to PKCα and β-
catenin/TCF activation [88]. TCF target genes include cyclin D1,
c-Myc, and PPARδ [75]. PPARδ transactivates PDK1 [72], which
in turn perpetuates the oncogenic signaling cascade. Preliminary
data suggests that PDK1 maintains the expression of the murine
stem/progenitor cell marker, stem cell antigen-1 (Sca-1), which is
under the control of AP1 and Stat1 [92].

the risk of colon cancer [83]. NSAIDs downregulate PPARδ
and reduce eicosanoid-mediated inflammation [84], and
induce apoptosis in colon cancer cells [85], in contradis-
tinction to the anti-inflammatory effects elicited by PPARγ
agonists in colitis [86]. Increased expression of PPARδ in
tumors may also inhibit PPARγ transcription [60, 66, 67],
and reduce its tumor suppressor activity, as mentioned above
in colon tumorigenesis. In addition, the tumor promoting
effects of PPARδ in the mammary gland relate to activation
of β-catenin/TCF signaling [76, 87] (see Figure 3), which
is increased in cells transformed by PDK1 [88, 89]. PDK1
is a key regulator downstream of PI3K that is increased by
PPARδ in keratinocytes [72, 73]. Mammary tumors formed
after administration of GW501516 exhibit an association
between PDK1 and PPARδ [52], which further suggests that
PPARδ may function as an integrator of proliferative and
prosurvival pathways downstream of oncogenic signaling
and inflammation [90, 91], which are likely to account for
its tumor promoting effects.

PPARs and stem cells

There is evidence that PPARs can modulate stem and
progenitor cell expansion and the differentiated or malignant
phenotype. PPARγ agonists enhance adipocyte differentia-
tion [5, 6], and its ability to upregulate this process has a
negative effect on osteoblast proliferation and bone devel-
opment from mesenchymal stem cells [93]. To counteract
this inhibitory effect in bone stem cells, PPARγ must be
transrepressed through corepressor recruitment by the NFκB
and Wnt-5a pathways [94]. It is therefore likely that PPARs
influence the fate of other stem and progenitor cell popula-
tions in normal and malignant tissues. PPARγ agonists have
been used as chemopreventive agents [8] to delay mammary
carcinogenesis [51, 52]. One aspect to their chemopreventive

action may relate to their influence on specific cell lineages,
as in mesenchymal stem cells. Carcinogens target stem
cells rather than terminally differentiated cells [95, 96] as
well as hormone-responsive lineages [97] during mammary
carcinogenesis. Carcinogenesis is markedly attenuated in PR-
null mice[98], and is accelerated by progestin treatment of
wild-type mice [52, 99–101], where progestins are believed
to stimulate the proliferation of stem or early progenitor cells
that are intrinsically more susceptible to tumor initiation
[102]. The ability of PPARγ and PPARδ agonists to modulate
distinct cell lineages during mammary tumorigenesis [52]
also suggests that they modulate a complex transcriptional
network linked to cell fate [3, 5]. PPARδ agonist GW501516
promoted the development of adenosquamous carcinomas
with high expression of the stem cell markers CK19 and
Notch1, as well as Proliferin, a growth factor that mediates
many of the effects of the stem cell marker, Musashi1, in
mammary cells [103]. PPARδ is expressed in the crypt cells
of the small intestine and negatively regulates Hedgehog
signaling to block differentiation [104], a process that would
be expected to promote transformation. PPARδ expression
lies downstream of β-catenin/TCF [75], and activation of
this pathway increases expression of luminal epithelial and
myoepithelial cells [102] as well as mammary tumor cells
expressing the stem cell marker Sca-1 [105]. Thus, PPARδ
activation may promote expansion of a less differentiated
lineage or stem cells that is intrinsically more susceptible
to tumorigenesis. The association of Wnt activation with
stem cell expansion, activation of β-catenin/TCF signaling
by PDK1, the identification of PPARδ as a β-catenin/TCF
target gene and PDK1 as a PPARδ responsive gene, as well
as the modulation of Sca-1+ stem/progenitor cells by the
Wnt pathway, all suggest a common mechanism for the
tumor promoting action of PPARδ agonists that may involve
stem and progenitor cell proliferation (see Figure 3). This
mechanism also suggests that the development of PPARδ
antagonists may have utility as cancer therapeutics

PPARγ increases expression of the PPRE-dependent
tumor suppressor genes PTEN [22] and BRCA1 [23],
suggesting that their chemopreventive effects may be related
to the ability of these suppressor genes to promote a
more differentiated lineage. On the contrary, inactivation of
BRCA1 [25] and PTEN [26–28] should increase stem cell
proliferation, which is precisely the case. This effect is similar
to what has been described for PPARδ agonists in preventing
differentiation and increasing stem cell abundance, and
would be expected to complement their tumor promoting
activity. Although studies examining the influence of PPARs
on cell fate determination are just in their infancy, many
of the studies cited imply that their opposing roles in
tumorigenesis may be related to their ability to control the
programming of specific cell lineages.

4. CONCLUSIONS

The ability of PPAR agonists to modulate the transcriptional
activity of this class of nuclear receptors has generated
an enormous interest in being able to pharmacologi-
cally manipulate entire sets of genes that can modulate
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metabolism, inflammation, transformation, differentiation
and thus, tumorigenesis. Both genetic and pharmacological
approaches to determining the function of PPARγ and
PPARδ have yielded some inconsistencies, but that may be
explained by the inherent deficiency of either approach.
Gene targeting resulting in a truncated gene product may
not necessarily recapitulate gene inactivation, and homozy-
gous loss of gene expression can affect the developmental
programming of various tissues that can impact directly or
indirectly on the outcome of tumorigenesis in a particular
organ. By the same token, pharmacological approaches are
fraught with the structure-specific and class-specific side
effects inherent in most drugs, which may be unrelated to
their specific actions on the drug target. Nevertheless, the
majority of studies in this field implicate PPARγ activation as
an antitumorigenic and prodifferentiation factor, in contrast
to the protumorigenic and less differentiated phenotype
resulting from PPARδ activation. Although the latter char-
acteristic will likely preclude the clinical development of
PPARδ agonists, it will be interesting to see the outcome of
current clinical trials utilizing PPARγ agonists as antitumor
and chemotherapy modulating therapy.
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