
Research Article
Changes in Amino Acid and Acylcarnitine Plasma Profiles for
Distinguishing Patients with Multiple Sclerosis from
Healthy Controls

Marat F. Kasakin ,1 Artem D. Rogachev,2 Elena V. Predtechenskaya,3 Vladimir J. Zaigraev,3

Vladimir V. Koval ,1,3 and Andrey G. Pokrovsky3

1Institute of Chemical Biology and Fundamental Medicine, The Siberian Branch of the Russian Academy of Sciences,
Novosibirsk, Russia
2Novosibirsk Institute of Organic Chemistry, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
3Novosibirsk State University, Novosibirsk, Russia

Correspondence should be addressed to Marat F. Kasakin; kassakinm@gmail.com

Received 17 November 2019; Revised 14 April 2020; Accepted 5 June 2020; Published 15 July 2020

Academic Editor: Sarah Orton

Copyright © 2020 Marat F. Kasakin et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

McDonald criteria and magnetic resonance imaging (MRI) are used for the diagnosis of multiple sclerosis (MS); nevertheless, it
takes a considerable amount of time to make a clinical decision. Amino acid and fatty acid metabolic pathways are disturbed in
MS, and this information could be useful for diagnosis. The aim of our study was to find changes in amino acid and
acylcarnitine plasma profiles for distinguishing patients with multiple sclerosis from healthy controls. We have applied a
targeted metabolomics approach based on tandem mass-spectrometric analysis of amino acids and acylcarnitines in dried
plasma spots followed by multivariate statistical analysis for discovery of differences between MS (n = 16) and control (n = 12)
groups. It was found that partial least square discriminant analysis yielded better group classification as compared to principal
component linear discriminant analysis and the random forest algorithm. All the three models detected noticeable changes in
the amino acid and acylcarnitine profiles in the MS group relative to the control group. Our results hold promise for further
development of the clinical decision support system.

1. Introduction

Multiple sclerosis (MS) is one of the autoimmune disorders
causing demyelination of axons [1, 2]. Modern diagnosis of
MS is based on the revised McDonald criteria including mag-
netic resonance imaging (MRI) to confirm the result [3].
Even though many risk factors for MS have been established
[4], it is unclear whether MS will progress after the first clin-
ical symptoms or will be followed by remission [5]. The
development of newmethods for the diagnosis and prognosis
of MS is a highly relevant research topic.

Metabolomics is a powerful approach for the discovery of
biomarkers and investigation of the pathogenesis of human
diseases [6, 7]. Multivariate statistical analysis is frequently
applied to a whole preprocessed metabolomics dataset in

metabolomics studies of human diseases, particularly MS
[8, 9]. Predictive models involving several statistically signif-
icant markers outperform a single-marker model in terms of
area under the curve (AUC) metrics and distinguish multiple
groups with partially shared markers among them [10]. The
advantage of metabolomic profiling was used to separate
clinical groups into subgroups, particularly to distinguish
the relapsing-remitting type and secondary progressive type
of MS [11].

Amino acid and fatty acid metabolic pathways are known
to be disturbed in MS [12–15]. Thus, glutamate toxicity is
linked with demyelination and other pathophysiological
processes in MS [16, 17]. Several amino acids have been
proposed to be potential biomarkers of MS in different bio-
logical samples: methionine in serum [18]; phenylalanine in
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cerebrospinal fluid (CSF) [10]; leucine, asparagine, ornithine,
glutamine, and glutamate in plasma [19]; and amino acid
derivatives in urine [20]. Glutamate was validated as a
substantial biomarker for classification of MS and other
neurological diseases in a study on amino acid and acyl-
carnitine profiles in CSF [21]. Acylcarnitines also play an
important role in energy metabolism by participating in
the transfer of fatty acids into mitochondria [22]. These
data suggest that acylcarnitines are an interesting object
for research into biomarkers of MS.

The main aim of this study was to find possible differ-
ences in amino acid and acylcarnitine profiles in plasma
between healthy controls and an MS group by means of
multivariate analysis algorithms and to compare predictive
effectiveness of the models at classifying the healthy group
and MS group. The second aim was to identify potential
biomarkers of MS among amino acids and acylcarnitines.
The proposed study design may be useful for high-
throughput and robust sample preparation and analysis
and offers an opportunity to scale this analysis up to large
cohorts in future studies.

2. Methods

2.1. Patients and Collection of Plasma Samples. We recruited
16 patients withMS (14 with relapsing-remitting MS and two
with secondary progressive MS, all women) at the Depart-
ment of Neurology of the 2nd Novosibirsk Emergency
Hospital according to the McDonald criteria. The control
group (12 non-MS subjects) was formed from women of
the same age band as the MS group (Table 1). Fasting
blood samples were collected into 4ml BD Vacutainer®
Heparin tubes with 68 IU of lithium heparinate. Plasma
was separated via centrifugation at 2000× g for 15min,
then immediately frozen and stored at -70°С until sample
preparation. The study was conducted according to the
Code of Ethics of the World Medical Association (Decla-
ration of Helsinki).

2.2. Sample Preparation and Analysis. Plasma samples were
thawed at room temperature, and 20μl aliquots of samples
were spotted onto Whatman 903 Protein Saver cards and
air-dried completely. Sample preparation was performed
using the MassChrom® 55000 Kit (Chromsystems, Ger-
many) with a derivatization stage for semiquantitative liquid
chromatography with mass spectrometry analysis of amino
acids and acylcarnitines. Next, 3.2mm dried plasma spot
disks were punched out of the filter paper into 1.5ml plastic
tubes; then, 200μl of an extraction solution containing inter-
nal standards was added for reconstitution of the samples.
After 20min agitation at 25°C and 600 rpm, the supernatants
were transferred into new tubes and evaporated at 60°C and
600 rpm to dryness. After that, 60μl of a derivatization solu-
tion was added into the tubes and incubated for 15min at
60°C and 600 rpm, followed by evaporation at 60°C and
600 rpm to dryness. Then, 100μl of reconstitution buffer
was added to the residue and agitated until a homogeneous
solution was obtained, followed by transfer into vials.

We did use dry spots of blood plasma, not whole plasma.
This was done specifically to be inside the commonly
accepted protocol of using dry spots of plasma.

Ten-microliter aliquots were injected into the liquid
chromatography-mass spectrometry system: analysis was
performed in a multiple-reaction monitoring (MRM) mode
on the mass spectrometer API 3200 QTRAP (AB Sciex,
USA) coupled with a chromatograph (LC-20AD Promi-
nence, Shimadzu Corporation, Japan) without column
separation.

MRM transitions and other mass spectrometry parame-
ters are presented in the Analyst 1.6.2 (AB Sciex, USA)
method acquisition report (Supplementary Data 1). Quality
control samples L1 and L2 from MassCheck Amino acids
and Acylcarnitines DBS control (Chromsystems, Germany)
were used in this analysis.

2.3. Statistical Analysis. MRM data were processed in Mul-
tiQuant 2.1 Software (AB Sciex, USA), and then, the
integration data was exported to a Microsoft Excel spread-
sheet. Actual concentrations of metabolites were calculated
according to their isotope-labeled standards. The list of
metabolites and internal standards used for quantification
and MRM transitions for ion detection is given in Supple-
mentary Table S1. Subsequently, data cleaning, statistical
computation, and exploratory data analysis were performed
in the R software, version 3.4. All the signals above the
signal-to-noise ratio of 2.0 were considered considerable for
data analysis, and all metabolites that achieved signal-to-
noise criteria which were met in 70% of the samples were
included in data analysis. For unsupervised principal
component analysis (PCA), missing data in the dataset
were replaced by a mean value for the corresponding
variable followed by normalizing the data variables. For
supervised data analysis, missing data were replaced by the
mean value for the corresponding variable in each group
separately.

Unsupervised PCA was performed in R to reduce dimen-
sionality for subsequent model building and to determine the
number of principal components making the main contribu-
tion to variance.

Supervised linear discriminant analysis (LDA) was
performed on principal components determined in PCA.
Supervised PLS-DA was also performed for comparison as
a popular alternative approach in chemometrics. The ran-
dom forest (RF) algorithm was applied to scaled data without
a preliminary dimension reduction to implement supervised
analysis. Predictive models based on the three approaches
were evaluated by the “leave one out sample” cross-
validation method by means of the “caret” package. Receiver
operating characteristic (ROC) curves were plotted to visual-
ize the predictive models.

Table 1: Age distribution in control and MS groups.

Group Min 1st Qu. Median Mean 3rd Qu. Max

Control 23.00 24.00 29.50 29.83 35.25 38.00

MS 22.00 22.00 31.50 30.12 36.25 37.00

2 Multiple Sclerosis International



34%

22.7%

9.4%

6.4%
5.2% 4.6%

3.4%

0

10

20

30

1 2 3 4 5 6 7
Dimention

Pe
rc

en
ta

ge
 o

f e
xp

la
in

ed
 v

ar
ia

nc
es

Eigenvalue distribution

(a)

1

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1

Phe
Met
Val
Tyr
C5
ile

Pro
C.0
C3

Orn

C4OH
C18.1

Arginine
Alanine

C2
Glu
Cit
C4

Gly
Asp

C3DC
C8.1

C14.1
C10

C8
C6

C10.1
C5OH

Variable correlation

Ph
e

M
et

V
al

Ty
r

C5 ile Pr
o

C.
0

C3 O
rn

C4
O

H
C1

8.
1

A
rg

in
in

e
A

la
ni

ne
C2 G

lu
Ci

t
C4 G

ly
A

sp
C3

D
C

C8
.1

C1
4.

1
C1

0
C8 C6 C1

0.
1

C5
O

H

(b)

Figure 1: Continued.
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Metabolite levels were compared between the groups
according to the nonparametric Mann–Whitney–Wilcoxon
criteria for comparison of medians between independent
groups.

2.4. Compliance with Ethical Standards. The ethics com-
mittee of the Institute of Chemical Biology Fundamental
Medicine SB RAS (session 1-12/17) reviewed the study,
and all experimental protocols were approved. Informed
written consent was obtained from all recruited subjects.
All procedures involving human participants were in accor-
dance with the ethical standards of the institutional research
committee and with the 1964 Helsinki Declaration and its
later amendments or comparable ethical standards.

3. Results

3.1. Data Acquisition and Cleaning. Twelve plasma samples
in the control group and 16 in the MS group were employed
in our study. All participants were females whose age distri-
bution between groups was controlled according to the non-
parametric Mann–Whitney U test. A summary of the age
statistics is given in Table 1.

Quantification of 43 metabolites, 13 amino acids, and 30
acylcarnitines was performed by a targeted quantitative
approach with isotope-labeled internal standards. The
MRM mode of data acquisition was chosen for convenient
peak integration in the MultiQuant software (Supplementary

Data 1). Concentrations of metabolites were calculated from
the ratio of the peak area of a metabolite to its internal stan-
dard and a known concentration of the internal standard.
The dataset generated and analyzed during the current study
is available in the Figshare repository [23].

Injecting samples into the mass spectrometer without a
prior chromatographic separation may be a big problem for
acylcarnitine quantitation [24]. Some acylcarnitines are
present in plasma at very low concentrations, and column
separation might yield better results. In this work, we did
not use chromatographic separation because we created a fast
screening method for metabolite determination.

Data cleaning criteria such as the signal-to-noise ratio,
threshold for complete cases, and replacement of missing
values of the “NA” type were determined during exploratory
data analysis in R. Our objective at this stage was to save as
many variables as possible for further data analysis and at
the same time to preserve the number of observations in
small groups. Consequently, all the variables involving more
than 30% of the missing values were removed from the data-
set. The remaining missing values under the threshold were
replaced by the mean of the variable of all observations
followed by unsupervised PCA. In the case of supervised
analysis, all the variables in each group of observations
containing more than 30% of the missing values were
removed, and the remaining missing values in each group
were replaced by the mean value of the variable in this group.
After cleaning of the data and preliminary normalization on
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the scale of 0 to 1 across variables, 29 metabolites were
included in the unsupervised and supervised data analyses.

3.2. Multivariate Statistical Analysis. Unsupervised PCA
was performed for reducing dimensionality of the data
and for determining the number of components making
the main contribution to the data variance (Figure 1(a)).
The first eight principal components were found to explain
88.8% of variance in the data. Among the variables, methionine
was found to make the greatest contribution to variance
followed by amino acids Phe, Pro, and Arg and acylcarnitines
octadecenoyl-carnitine C18:1, acetyl-carnitine C2, decanoyl-
carnitine C10, decenoyl-carnitine C10:1, tetradecenoyl-
carnitine C14:1, and octanoyl-carnitine C8.

To carry out supervised LDA, the first eight principal
components were chosen. It is remarkable that only the
LD1 component was available, and the visualization is
depicted in the density plot (Figure 2(a)).

As expected, two groups of observations were well but
not perfectly separated by LDA with preprocessing by PCA.
Therefore, alternative algorithms were applied to the super-
vised analysis. Hence, the PLS-DA method (widely used in
metabolomics studies) was utilized for data processing [25]

(Figure 2(b)). Values for R2 and Q2 were 0.79 and 0.60,
respectively. We achieved much better separation of individ-
uals between the two groups in comparison with PCA-LDA.
The third algorithm for supervised analysis and predictive
model building was RF from the general “caret” package
[26]. Optimal tuning parameters (the number of trees equal
to 50 and the number of variables in a tree equal to 17) were
determined according to the following criterion: a maximum
of the sum of three parameters: AUC, sensitivity, and
specificity (Figure 2(c)). Predictive models based on the
three algorithms were compared by the leave-one-out
cross-validation method on a training dataset (Figure 2(d)).
The PLS-DA–based model produced the best result on MS
prediction with AUC, sensitivity, and specificity of 0.98, 0.81,
and 1.0, respectively. PCA-LDA– and RF-based models
showed similar predictive effectiveness, with 0.79, 0.67, and
0.75 for the PCA-LDA model and 0.80, 0.64, and 0.80 for
the RF model, respectively.

3.3. Univariate Statistical Analysis. The concentrations
measured in dried plasma spots in the control and MS
groups are presented in Table 2. According to the
Mann–Whitney–Wilcoxon test (Table 2), only aspartic
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Figure 2: Supervised multivariate analysis of groups “MS” and “control”; ROC of predictive models. (a) LDA with preprocessing by PCA and
eight selected principal components. (b) PLS-DA (components 1 and 2). The final model has R2 = 0:79 andQ2 = 0:60. (c) Dependence of the
RF ROC value on the number of selected predictors for the 50-tree case model. (d) ROC plots of three predictive models based on multivariate
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acid levels were significantly different between the two
groups (P = 0:0097; Figure 3). Mean concentrations and
standard deviations of aspartic acid in the plasma samples
of the MS group and control group were calculated:
30:65 ± 15:87 and 15:67 ± 5:27 μmol/ml, respectively.

4. Discussion

The newly created predictive models are related to the type of
classification in machine learning. The goal of this study was
to solve two-class classification (MS or control) on the basis
of data on the concentrations of amino acids and acylcarni-
tines in plasma.

Multivariate statistical analysis is ubiquitously used in
metabolomics studies and takes advantage of the cumulative
power of numerous metabolites for grouping individuals into
categories. Predictive models based on the multimarker
approach perform well in situations when a single marker
is not obvious, but there are many slightly different levels
of metabolites between the groups [27]. LDA applied to all
variables without a data dimension reduction was not
acceptable for our dataset because many variables were
collinear (Figure 1(b)). This problem could be overcome
by a dimensionality reduction technique, such as PCA or
PLS followed by discriminant analysis. In our study, two
groups of observations were not separated by components
PC1 and PC2 in unsupervised PCA (Figure 1(c)), but they

Table 2: Measured concentrations of metabolites in control and multiple sclerosis groups andMann–WhitneyU test comparison for median.

Metabolites
Control group MS group

M.-W. U test
P value

Median conc.
(μmol/ml)

Mean conc.
(μmol/ml)

s.d.
Median conc.
(μmol/ml)

Mean conc.
(μmol/ml)

s.d.

Asp 15.0507 15.6657 5.2672 32.1554 30.6449 15.8740 0.0097

C8:1-carnitine 0.0472 0.0494 0.0121 0.0393 0.0407 0.0076 0.0530

C5OH-
carnitine

0.0125 0.0125 0.0025 0.0141 0.0154 0.0066 0.0993

Glu 63.2383 62.1980 12.4526 80.8461 89.0735 41.6262 0.1457

C5-carnitine 0.0391 0.0499 0.0353 0.0337 0.0372 0.0226 0.1736

Tyr 44.6430 53.7064 25.8724 37.7501 41.5309 12.5512 0.1736

Val 78.0683 84.5595 30.3860 68.6876 74.3788 18.9949 0.2053

C3-carnitine 0.1186 0.1470 0.0707 0.1117 0.1166 0.0658 0.2226

Cit 18.9037 18.3220 4.0953 16.2658 16.6069 3.5469 0.2601

C8-carnitine 0.0251 0.0404 0.0346 0.0433 0.0416 0.0157 0.2750

Arg 45.6852 45.5796 9.9030 40.7909 41.8867 13.8405 0.3015

Pro 136.2588 160.0983 66.9696 117.1770 138.5637 66.4677 0.3470

C3DC-
carnitine

0.0462 0.0449 0.0104 0.0484 0.0498 0.0102 0.3713

Met 4.2999 5.0050 1.9571 3.7745 4.7199 1.9774 0.4228

Phe 27.6062 28.6280 8.4151 22.7213 26.5824 9.0137 0.4228

Leu+Ile 75.4267 82.0059 30.8033 70.1791 75.0415 21.4271 0.5070

Orn 38.8374 39.2365 6.9759 35.1740 38.7100 14.2728 0.5369

C18:1-
carnitine

0.1713 0.1752 0.0713 0.1843 0.1804 0.0523 0.5369

C10:1-
carnitine

0.0498 0.0710 0.0446 0.0646 0.0610 0.0320 0.6642

Ala 122.9021 113.9486 35.2646 118.6330 124.2386 64.5191 0.8017

C2-carnitine 1.9548 2.3722 0.8908 2.2165 2.3927 0.8565 0.8017

C10-carnitine 0.0442 0.0669 0.0535 0.0543 0.0509 0.0248 0.8017

C4OH-
carnitine

0.0128 0.0130 0.0057 0.0127 0.0127 0.0047 0.8344

Carnitine 15.0021 15.3318 4.0812 14.1629 15.7528 7.6604 0.8372

C4-carnitine 0.0572 0.1013 0.0848 0.0634 0.0694 0.0274 0.8731

C14:1-
carnitine

0.0165 0.0183 0.0103 0.0176 0.0176 0.0058 0.9445

Gly 98.6914 103.7987 30.5344 101.8677 104.9996 30.7912 0.9454

C6-carnitine 0.0163 0.0278 0.0229 0.0208 0.0208 0.0076 0.9815

s.d.: standard deviation.
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were almost separated by the supervised PLS-DA method
(Figure 2(b)). Although we achieved quite good separation
by PLS-DA, some scientists believe that the results
obtained by the PLS-DA technique tend to be overesti-
mated in some situations [28]. The result obtained by
leave-one-out cross-validation via PLS-DA (AUC ≈ 0:98)
may not be so optimistic for an independent dataset. The
alternative technique we tested was RF, which is widely
employed in different areas of machine learning wherever
prediction problems need to be solved. Given that this
algorithm is quite stable for work with collinear variables,
tidy data have been used without preliminary dimension
reduction methods such as PCA or PLS [29]. It is note-
worthy that the RF model—despite our expectations—was
not the most effective (AUC ≈ 0:8), and the result obtained
was close to that of the PCA-LDA model (Figure 2(d)).

In our experiment, we used the dried plasma spot method
for sample preparation. Some minor acylcarnitines in plasma
turned out to be under the threshold (signal/noise < 2);
this situation resulted in a reduced number of metabolites
available for subsequent statistical analysis and increased
the number of missing values in the dataset. It is known
that levels of acylcarnitines in plasma and blood are different
[30]; consequently, the application of dried blood spots may
give a different set of metabolites suitable for statistical
analysis.

Glutamic acid and N-acetyl-aspartate (NAA) levels both
in CSF and serum are known to be higher in MS [31, 32].
Moreover, NAA is reported to be a specific marker distin-
guishing MS from neuromyelitis optica [32]. We uncovered
only one metabolite (aspartic acid, P = 0:0097) whose

concentration was substantially different between the groups
according to the Mann–Whitney–Wilcoxon test. It was
previously determined that the levels of asparagine and
glutamate are higher in plasma samples from patients with
MS because of activation of the asparagine biosynthesis
pathway [19]. In our study, we also observed an increase
in the glutamate concentration in the MS group although
without significance (P = 0:1457; Table 2). Aspartic acid,
glutamic acid, and other amino acids are related to the
amino acid superpathway, and their metabolism is linked
to the tricarboxylic acid cycle and oxaloacetate and α-keto-
glutarate intermediates; furthermore, aspartic acid is a
precursor of NAA [33, 34].

Acylcarnitines are less studied in the field of MS research
than amino acids or phospholipids; nevertheless, one study
revealed decreasing levels of acylcarnitines in MS without
detailed information on individual metabolites [35].
Although we did not find any acylcarnitine whose level
was substantially different between the two groups, overall,
the concentrations of most acylcarnitines were lower in
the MS group (Table 2). Nevertheless, we believe that a
change in the acylcarnitine profile is important for the
classification of MS and healthy controls because even
small changes in levels of individual metabolites (which
are under the threshold of significance individually, P >
0:05) may result in a high overall score in the whole pro-
file difference between groups. This principle may improve
overall results of the classification models that we exam-
ined by means of different multivariate algorithms via a
cross-validation procedure even in studies with a small
sample size.
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Figure 3: Boxplot interpretation of aspartic acid concentration distribution in the control group and MS group; the bold line indicates a
median value, rectangle borders denote an interquartile range, and whiskers represent the minimum and maximum values.
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5. Conclusion

By applying different algorithms of multivariate statistics to
the same metabolomics dataset, we successfully distinguished
MS samples from healthy controls. This result means that
amino acid and acylcarnitine profiles are different between
the two groups and could serve as a source of data for the
development of diagnostic decision support systems. The
PLS-DA technique yielded the best classification solution in
our study as compared to RF and PCA-LDA algorithms
when applied to the same cleaned and scaled data. Aspartic
acid levels in plasma were found to be considerably different
between MS patients and healthy controls; this preliminary
result obtained by comparison of small groups needs further
verification.
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