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Trajectory tracking control based on waypoint behavior is a promising way for unmanned surface vehicle (USV) to achieve
autonomous navigation. *is study is aimed at the guidance progress in the kinematics; the artificial intelligence method of deep
learning is adopted to improve the trajectory tracking level of USV. First, two deep neural network (DNN)models are constructed
to evaluate navigation effects and to estimate guidance law parameters in real time, respectively.We then pretrain the DNNusing a
Gaussian–Bernoulli restricted Boltzmann machine to further improve the accuracy of predicting navigation effect. Finally, two
DNNs are connected in parallel with the control loop of USV to provide predictive supervision and auxiliary decision making for
traditional control methods.*is kind of parallel way conforms to the ship manipulation of habit. Furthermore, we develop a new
application on the basis of Mission Oriented Operating Suite Interval Programming named “pDeepLearning.” It can predict the
navigation effect online by DNN and adjust the guidance law parameters according to the effect level. *e experimental results
show that, compared with the original waypoint behavior of USV, the prediction model proposed in this study reduces the
trajectory tracking error by 19.0% and increases the waypoint behavior effect level.

1. Introduction

Unmanned surface vehicles (USVs) are mainly preferred by
missions that are characterized as dull, dangerous, or ill-
suited formanned ships. In the future, they will be developed
for ocean mapping, hydrographic and meteorological
monitoring, maritime search and rescue, etc. Autonomous
control is the core technology of USV navigation. It belongs
to motion control technology, which includes set-point
regulation control [1], path following control [2], and tra-
jectory tracking control.

Trajectory tracking is defined as the control for actual
track of vehicle so that the vehicle can track the position of
Cartesian coordinate relative to time [3]. *e optimal time-
varying path for trajectory tracking is derived from the
dynamic model of the vehicle and a predefined target [4].
*e difficulty is the impact of uncertain sea environment.
Trajectory tracking is a fundamental capability for USV to

perform missions such as automatic collision avoidance and
cooperative formation. *erefore, we choose trajectory
tracking control as the research issue.

*is study follows the framework of the Guidance-
Navigation-Control (GNC) system to solve the trajectory
tracking problem of USV. *e GNC system framework is a
two-stage process consisting of guidance and control [4].
*e guidance process refers to the transformation of a ve-
hicle position to its heading and speed in the kinematics
domain bymeans of guidance law.*e control process refers
to the transformation of heading to rudder angle and speed
to throttle in the kinetics domain by means of control law.
*e essence of trajectory tracking control is to minimize the
position error between the actual track and the reference
track. *erefore, the performance of trajectory tracking is
mostly dependent on the guidance process [5].

*e object of this study is the guidance process of tra-
jectory tracking control for USV. *e modeling approach
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and experimental platform are founded onMission Oriented
Operating Suite Interval Programming (MOOS-IvP) [6].
MOOS-IvP is a research platform for autonomous maritime
vehicles, open-sourced by MIT. It conforms to the frame-
work of GNC system and divides guidance and control
processes. *e waypoint behavior in MOOS-IvP models the
process of trajectory tracking, which is a Line-of-Sight (LOS)
guidance method. *e feedback effect generated by control
law, vehicle, and its interaction with the environment is
regarded as a whole. Trajectory tracking control of USV is
accomplished by adjusting the LOS guidance parameters.
MOOS-IvP can be deployed in real ships, so our work also
enables its application to real-world scenarios.

On the other hand, the dramatic technological evolution
of deep learning has delivered new insights and approaches
for the study of USV autonomous navigation. Deep neural
network (DNN) recognizes and extracts the relationship
between the combined features. It is suitable for uncertain
sea environment and complex vehicle motion control
process [7]. In this paper, a dual-DNN model is established,
and back propagation method is used to train the USV by
taking the navigation data samples under different param-
eters such as speed and steering angle in a simulated en-
vironment. *e trained DNN model is capable of predicting
the tracking effect and estimating better guidance law pa-
rameters, so as to improve the trajectory tracking control
process of USV.

During the last decade, a large number of methods for
trajectory tracking control have been developed, but in
practice there are still many difficulties. Velagic et al. pro-
posed an adaptive fuzzy controller [8] and built a ship
dynamics model, a steering equipment model, and a wind-
flow disturbance model. All models have been simplified,
including reducing dimensions, adding constraints, and
removing higher order interference terms. On the other
hand, the model parameters were adjusted according to
predefined 49 fuzzy rules. If the ship encountered conditions
that did not appear in the rules, it would be difficult to
control them precisely. Aguiar et al. presented a nonlinear
control algorithm according to Lyapunov theory and proved
the global convergence of the model without constraints [9].
Lv et al. proposed a hybrid cooperative signal energy control
law, which dealt with the speed and course control of ship.
However, they did not consider the uncertainty of resistance
and disturbance [10]. Xia et al. developed a dynamic model
and an adaptive controller to promote tracking performance
and convergence speed, but they did not consider the
parametric perturbations caused by power devices [11].
Huang et al. decomposed the trajectory tracking problem
into guidance law and control law loops, which are easier to
solve than direct control methods, but they did not take into
account external disturbances from the marine environment
[12]. *e traditional methods adopted in these studies aimed
to build complex models with many parameters, and most of
them did not consider the impact brought by real envi-
ronment and equipment.

In recent years, many studies have used artificial neural
network (ANN) in the control issues of USV, especially in
trajectory tracking control problems. ANN and data-driven

machine learning method have shown success in the analysis
of uncertain and environmentally sensitive ship motion
control problems [13, 14]. Cheng et al. used ANN as a re-
placement model for the traditional model to solve the
problem of ship berthing [15]. Shuai et al. constructed two
ANNs to extract features for controlling the ship propeller
and rudder, respectively, to achieve automatic berthing
under different environmental disturbances [16]. Zhang
et al. proposed an adaptive robust ANN method for mod-
eling uncertain ship dynamics and external influences and
achieved good results in automatic ship berthing [17]. *e
ANN proposed byWang et al. was used to control the course
of USV and solve the problem of uncertainty in ship motion
[18]. In the above literature works, the influence of sea
environment has been considered, and the ANNmethod has
been improved over traditional methods. However, since the
ANN is shallow, it is difficult to learn the characteristic
relationships of the parameters, so they selected a simple
scenario of berthing or simplified the problem.

In recent years, DNN has demonstrated unprecedented
ability in the field of traffic and control [19]. Kim et al.
exploited DNN-based feedback controllers to compensate
for the disturbance of curved road and reduced tracking
error in lane keeping [20]. Xu et al. used DNN to learn the
complex manipulation characteristics of USV based on the
visual system [21]. Chen et al. proposed a DNN-based data-
driven control method that greatly improved the capability
and accuracy of control systems [22]. Deep belief network
was proposed by Tan et al. to address the navigational safety
of unmanned aerial vehicles [23]. It can be seen that DNN
has shown stronger feature learning ability than shallow
ANN [24]. However, it is not widely used in the trajectory
tracking control problem of USV.

DNN has a gradient dispersion problem, which is
generally solved by “pretraining and fine-tuning” method.
Hinton et al. proposed a method of pretraining the restricted
Boltzmann machine (RBM) in each layer, followed by fine-
tuning the DNN [25]. Goudarzi et al. proposed two stacked
RBMs for predicting short-term traffic flow by using the
“pretraining and fine-tuning” method [26]. Zhao et al. de-
veloped a deep belief network consisting of several RBMs
stacked, to reduce the risk of vehicle collision in snow and ice
conditions on highways [27]. Pretraining of DNNs by using
RBM is a common method [25]. However, RBM has been
originally developed for binary vector modeling, where both
visible and hidden layer variables are binary. In this study,
the visible layer variables are types of continuous values, so
binary RBM cannot be sufficiently used. Yamashita [28] gave
a method for continuous value type vectors, i.e., Gaus-
sian–Bernoulli restricted Boltzmannmachine (GB-RBM), so
we use GB-RBM for pretraining DNN to improve the
performance, and make it applicable to our research.

In the implementation of intelligent navigation systems
for USV, MOOS-IvP has been very popular in academic and
industrial research fields nowadays, and it provides good
support for autonomous navigation [29]. Firstly, MOOS-IvP
provides a simulated experimental environment for USV.
For example, Dong et al. used the MOOS-IvP platform to
experiment with different test items for distributed remote
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control of USVs [30]. Secondly, MOOS-IvP provides inte-
grated interfaces for software development and algorithm
implementation. For example, the instruction filter control
module developed by Djapic et al. was integrated into
MOOS-IvP [31]. In addition, a set of algorithms for gen-
erating waypoints developed by Benjamin et al. have been
used for path planning in MOOS-IvP [32]. *is study is
inspired by them. On the one hand, MOOS-IvP is used to
acquire data and perform experiments. On the other hand,
the developed DNN model is integrated into MOOS-IvP.
From the view of artificial intelligence computing, this is also
an upgrade of MOOS-IvP platform.

In this study, a deep learning methodology is utilized to
predict the parameters of the waypoint behavior in MOOS-
IvP, and the DNN prediction model is implemented in
parallel with the control loop to achieve the trajectory
tracking of USV. *e whole project is implemented in two
stages: In the first stage, a classificationmodel based on DNN
was constructed to provide assistance and reference for
maneuvering decisions of USV [7]. In the second stage, we
regard the feedback effect generated by the control law,
vehicle, and its interaction with the environment as a whole
and connect DNN in parallel with the control loop of USV,
so as to predict LOS guidance law parameters in real time
during voyage.

To predict the LOS guidance law parameters accurately
in the second stage, we add a pretraining process by using
GB-RBM, which improves the accuracy of model classifi-
cation to 89.9% with an increase of 5% over the previous
stage.

On the basis of the above works, the “waypoint behavior
effect evaluation model” and the “real-time LOS parameter
valuation model” are constructed based on DNN, denoted as
DNN-1 and DNN-2, respectively. *ey are connected in
parallel with the trajectory tracking control loop of USV. In
the process of voyage, DNN-1 is used to predict the effect of
navigation at first, and then the LOS parameters are given by
DNN-2 when the effect is not good. *e new LOS param-
eters are configured to adjust the waypoint behavior of USV.
In this way, it is not only introducing intelligent computing
to the control loop but also maintaining the reliability of the
traditional control process as far as possible. At the same
time, it also takes into account the traditional habit of
steering infrequently in the ship maneuvering. In addition,
we develop a new MOOS-IvP application to perform the
computing of DNN model, and establish an interface be-
tween the trained DNN and the MOOS-IvP platform.

*e contribution herein mainly includes the following
three aspects:

(1) With the deep learning training method of “pre-
training and fine-tuning” and themodel of GB-RBM,
the prediction accuracy of classification model is
improved. GB-RBM can fit the numerical data to
prevent the model falling into local optimum.

(2) A new predictive-based trajectory tracking control
model has been innovatively constructed. *e model

consists of two DNNs, i.e., “DNN-1: waypoint be-
havior effect evaluation model” and “DNN-2: real-
time LOS parameter valuation model.” We connect
DNNs in parallel with the control loop of USV,
which can obviously improve the trajectory tracking
effect.

(3) Intelligent trajectory tracking of USV is achieved by
dynamically connecting the DNN model to a new
application developed in MOOS-IvP. MOOS-IvP
can be plugged into the real vehicle, so the appli-
cation developed in this study can be employed in
real maritime scenarios as well.

*e rest of the paper is organized as follows: Section 2
starts with a description of the general process of trajectory
tracking control based on waypoint behavior. *en, the
method of connecting DNN in parallel with the control loop
of USV is given. Finally, the implementation in the MOOS-
IvP system architecture is illustrated and the waypoint be-
havior dataset is described. Section 3 first presents the overall
implementation framework for training and accessing the
DNN model into the control loop. *en the principle,
construction, and training of the DNNmodel are given, and
the implementationmethod and process of how to access the
trained model into the control loop of USV are explained. In
Section 4, the experimental simulation results are presented
and analyzed in respect of model training, optimization
effect of GB-RBM, and trajectory tracking control effect.
Section 5 summarizes the paper.

2. Problem Formulation and
System Architecture

2.1. General Process of Trajectory Tracking. *e general
process for a USV to perform trajectory tracking is to
generate a set of waypoints based on the mission of the
voyage. *en, the USV sequentially moves towards the
waypoints and follows the planned route sailing. It can be
divided into 5 phases, as shown in Figure 1:

(1) Output speed and steering orders by the guidance
algorithm to guide USV towards the next waypoint

(2) Transform speed and steering orders to throttle and
rudder actions

(3) Under wind, waves and current conditions, the USV
navigates in the sea

(4) Send the feedback of USV speed and heading to the
control module, which outputs new throttle and
rudder angle actions

(5) Send the feedback of actual position of USV to the
guidance module, which outputs new speed and
steering orders

According to the general process above, we consider the
feedback effects produced by phases (2)-(4) as a whole and
model the trajectory tracking control problem of USV as a
waypoint behavior based on guidance algorithm.
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*is study is an optimization of the lookahead-based
guidance algorithm by deep artificial neural networks. As
shown in Figure 2(a), the lookahead-based guidance algo-
rithm can be formulated as a geometric relationship between
the vehicle, the previous waypoint, and the next waypoint
[33].

Primarily, the angle formed by the two waypoints is α, as
in

α � tan− 1
yk+1 − yk, xk+1 − xk( 􏼁. (1)

*en, the lead distance l1 and lead damper l2 can be
derived from α and the position of the vehicle (xt, yt), as
shown in

l1 � xt − xk( 􏼁cos α + yt − yk( 􏼁sin α, (2)

l2 � − xt − xk( 􏼁sin α + yt − yk( 􏼁cos α, (3)

where l1 is the distance between the point of LOS and the
vertical foot of the vehicle to the planned route. Generally, it
takes 1.5–2.5 times the length of the vehicle. l2 is the distance
from the vehicle to the vertical foot. *e trajectory tracking
control is to reduce the track error approaching zero by
regulating the l1 and l2.

In addition, there are two circles associated with tra-
jectory tracking during the planned route involving several
waypoints. *e inner circle is called the capture circle, which
signifies the arrival of the vehicle to a waypoint while sailing
in still water.*e outer circle, known as the slip circle, marks
the arrival when it is affected by wind, waves, and current, as
illustrated in Figure 2(b).

2.2. DNN-Based Parallel Process of Trajectory Tracking.
*eDNNmodel proposed in this paper is in parallel with the
general control process described above, as shown in Fig-
ure 3. We send the data from the navigation system of
vehicle to the LOS guidance module and the DNN pre-
diction model simultaneously and send the steering angle of
the waypoint to the prediction model in advance. *e
prediction model consists of two submodels, where DNN-1
predicts the navigational effect firstly. If it works well, there
will be no adjustment of parameters. Otherwise, DNN-2 is
used to predict the relevant parameters of LOS algorithm,
and the lead distance and the lead damper are adjusted to
indirectly control the ship navigation to achieve better
waypoint behavior effect.

*is dual-DNN predictive model of trajectory tracking
control using a parallel access approach is different from
previous intelligent control models. It is not directly con-
nected to the control loop. *ere are two advantages:

(1) It is based on deep learning methodology for pre-
dictive model, analogous to ship officer which does
not directly change guidance law and control law of
the vehicle. If the original algorithm is good, it will
not affect the ship navigation. Only when the nav-
igation effect is predicted to be bad, the guidance law
parameters are adjusted to improve the navigation
effect of vehicle in the kinematic.

(2) After long-term application and verification, the
traditional control model is relatively reliable in
engineering. *e new model is parallel with the
traditional model, which greatly enhances the
practical value. In particular, when the navigation
effect is good, DNN-2 is not involved in the control.
It can also prevent frequent rudder manipulation,
which is more in line with the regular mode of ship
maneuvering.

2.3. System Architecture Based on MOOS-IvP. *e autono-
mous navigation system of USV in this study adopts the
system architecture of MOOS-IvP. MOOS-IvP was initially
used on the Bluefin Odyssey III vehicle of MIT. *e main
motivation is to build high-performance autonomous sys-
tems [29]. MissionOriented Operating Suite (MOOS) is a set
of software components that provide a framework for the
coordinated operation of multiple individual processes.
Interval Programming (IvP) is a solution to the problems of
multiobjective optimization, which is used for organizing
various behaviors to achieve autonomous navigation of
USV.

*e system architecture of MOOS incorporates publish-
subscribe middleware. Each MOOS application (MOOS
app) interacts with information by connecting to a MOOS
database (MOOSDB), and they form a star topology. As
shown in Figure 4, the general process for trajectory tracking
control of USV is implemented by a set of MOOS apps. *e
“pHelmIvP” app is a guidance module, “pMarinePID” app is
a control module, “pNodeReport” app is a navigation
module, and “uSimMarine” app is a simulation module of
wind, waves, currents, and hull effects. All of them are
connected to MOOSDB, constituting the autonomous

As a whole

Guidance

Waypoints

Control Navigation(1) (2)

(4)
(5)

(3)

Waves, wind, and 
current

USV

Figure 1: *e trajectory tracking control scheme for USV.
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navigation simulation system of USV. *e DNN-based
parallel control process is realized by adding a MOOS app
called “pDeepLearning.” “pDeepLearning” is a new MOOS
app developed in this study, which subscribes to the vehicle
speed and course and publishes the predicted values given by
DNN model.

*e guidance algorithm of USV is implemented by the
instance of waypoint behavior contained in “pHelmIvP.” *e
configuration parameters of behavior instance correspond to
the variables of guidance algorithm.*ese parameters are stored
in a “.bhv” file and invoked during the initialization of the
mission. Once the mission is launched, the “.bhv” file can no
longer be modified.

In this study, it is necessary to dynamically configure USV
waypoint behavior with the predictions given by DNN model.
*is allows the USV to adjust the guidance parameters
according to the navigation state. We use the “updates” pa-
rameters to publish the variables to theMOOSDB. To do this, it
is necessary to configure a WPT_UPDATE variable in the
“.bhv” file, as shown in Table 1.

In the process of voyage, the WPT_UPDATE variable is
used to publish specific content for changing parameters in
the configuration file. For example, if
WPT_UPDATE� “lead_distance� 6.90,” it would imme-
diately change the lead distance value of the USV from 8.0 to
6.9 in the original configuration file.

2.4. Dataset and Statistical Analysis. In previous work, we
have made the waypoint behavior dataset [7]. *e training
samples comprise six features that are speed and steering
angle, lead distance, lead damper, capture radius, and slip
radius. *ese features can be classified into 3 categories,
which are related to the definition of waypoint, guidance
algorithm, and navigation process, respectively, as shown in
Table 2.*e training labels are different effect levels for USV,
belonging to levels I∼III; therein, corresponding times ve-
hicle lengths are as shown in Figure 5.

In this study, a preliminary statistical analysis of the
dataset is conducted. From the statistical analysis in Figure 6,

Guidance
(LOS) Control

(PID)

Waypoints

DNN for prediction

Predict
LOS parameters

DNN-1:
Waypoint behavior 

effect evaluation 
model

Actual speed

Planned
route

Waypoint 
behavior 

effect?

Good

Bad

DNN-2:
Real-time 

LOS parameters 
valuation model

Waypoint
parameters

No changes

Actual steering angle

USV Navigation

Waypoint 
parameters

LOS 
parameters

Figure 3: *e relationship between DNN prediction model and trajectory tracking control process of USV.

Next
waypoint

Previous 
waypoint

USV’s position

Lead distance
LOS point

Lead damper

(a)

Waypoint 1

Waypoint 2

Slip 
circleCapture

circle

Waypoint 3

(b)

Figure 2: Waypoint behavior of USV: (a) lookahead-based guidance law; (b) capture circle and slip circle.
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the categorical items are evenly distributed, and no special
statistical patterns can be seen. However, these parameters
do affect the effectiveness of USV. It is necessary to mine
them with deep learning methods.

3. Methods

3.1. Dual-DNN Prediction Model. A predictive DNN model
for trajectory tracking control is established. It consists of
two submodels. *e first submodel is DNN-1, which is used
to predict the influence of waypoint behavior parameters on
the drift effect. It is a “6-input-5-output” classification
model, using waypoint behavior dataset for training. *e
second submodel is DNN-2, which is used to estimate the
values of two guidance parameters: lead distance and lead
damper. It is a “4-input-2-output” regression model, using
the part of waypoint behavior dataset with better navigation
performance for training.

*e DNN model is designed to identify the complex
effects of various factors and their combinations in the
waypoint behavior of USV on high-dimensional spatial
planes. In addition, the nonlinear effects are caused by the
power unit installed in the vehicle and the effect of wind and

waves on the vehicle. *ey have been involved in the ac-
quisition of the data of waypoint behavior.

3.1.1. DNN-1:Waypoint Behavior Effect Evaluation Model.
DNN-1 is a feedforward network with N6-6-7-7-8-7-6-5, as
shown in Figure 7. *e input layer corresponds to six fea-
tures of waypoint behavior. *e activation function in
hidden layer is ReLU function.*e output layer corresponds
to five levels of effect. *e loss function is cross-entropy.

3.1.2. DNN-2:Real-Time LOS Parameter Valuation Model.
DNN-2 is a four-layer feedforward network N4-4-3-2, as
shown in Figure 8. *e hidden layer also uses the ReLU
function, and the output layer uses softmax function, so that
the model can predict lead distance and lead damper value.
As a regression model, the “mean square” is used as a loss
function to determine the deviation between the predicted
value and the desired value.

3.1.3. Model Training and Saving. *e two models are built
and trained separately in Keras, and we train the DNNs
using a gradient descent optimization algorithm with
learning rate of 0.001 and batch size of 100. All experiments
are performed on a 2.5GHz Xeon 4215 CPU and two
NVIDIA TITAN RTX GPUs.

*e two submodels are trained by using the waypoint
behavior dataset and its subsets, respectively. *ere are
16200 samples in the dataset.We perform 12000 iterations to
train the classification model.*e training set, validation set,
and test set are randomly picked as 9720, 3420, and 3420,
respectively. After training, in the validation set, the DNN
model with the highest accuracy is stored.

For the regressionmodel, 8000 iterations are trained.*e
dataset is divided into three parts randomly. 3927 samples
are used as the training set. *e validation set has 1309
samples, and the remainder are the test set. *e DNNmodel
with the lowest mean square error is saved.

In respect of the number of training parameters, the two
submodels have 330 and 63 parameters to be trained, re-
spectively. From the training results, the network size is well
suited to the extraction of the waypoint behavior features,
and the generalization capability satisfies practical
applications.

Behavior_...
Behavior_3

MOOSDB

pHelmIvP

MOOS app MOOS app

MOOS app

MOOS app

Behavior_2
Behavior_1

Figure 4: *e topology structure of MOOSDB for trajectory tracking of USV.

Table 1: Waypoint behavior configuration file.

Configured variable Configured value
Behavior name BHV_Waypoint
Behavior instance name waypt_survey
Lead distance 8.0
Lead damper 5.0
Capture circle radius 7.0
Slip circle radius 14.0
Updates parameter WPT_UPDATE

Table 2: Categories and features of waypoint behavior for USV in
dataset.

Number Categories Features
1 Related to the definition of waypoint Capture radius
2 Slip radius
3 Related to guidance algorithm Lead distance
4 Lead damper
5 Related to navigation Speed
6 Steering angle

6 Mathematical Problems in Engineering



3.2. Optimization by Using GB-RBM. *e trained fully
connected network model achieves an accuracy of 84.9% in
the classification effect of waypoint behavior, which is the
result of previous stage [7]. We find that setting different
initialization parameters in the first layer of DNN has greatly
affected the accuracy.*is is due to the fact that DNN is easy
to fall into local optimization. *erefore, we hope to further
optimize DNN by tuning the initialization parameters.

3.2.1. 6e Training Method of DNN with GB-RBM. *e
method of “pretraining and fine-tuning” can effectively solve
the difficult problem of neural network training [25]. *is is
considered both a training method for deep learning and a
method for tuning initialization parameters. *erefore, the
training is separated into two steps: “pretraining for first layer”
and “fine-tuning.” *e first step is the pretraining step, using
GB-RBM for reconstruction training of the first layer by
contrast divergence (CD) algorithm. *is step trains 42 and 20
parameters as fixed values for two submodels, respectively. It
reduces the calculation complexity, simultaneously ensuring

that the mapping of the feature vector to the feature space is
optimal.

*e second step is to implement the fine-tuning of the
whole network. *is is done by taking the pretrained pa-
rameters as initial values and applying a back propagation
(BP) algorithm in the DNN to learn further on the training
set. *en the trained well dual-DNN is used for prediction.
Figure 9 summarizes the proposed method.

3.2.2. 6e Construction of GB-RBM. *e RBM is a neural
network based on energy. It consists of two layers that are the
visible layer and the hidden layer. *e visible layer is generally
used to describe the observation data, while the hidden layer can
be regarded as the feature extraction layer. A six-dimension
feature vector as visible layer neurons is utilized to build GB-
RBM. *rough reconstruction training, the RBM can learn the
inner relationship between the 6-dimensional features. How-
ever, the RBMwas originally developed for binary vector coding
and decoding, so both the visible and the hidden layer variables
are binary. In this study, the type of visible layer vector is
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Level I
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20.5%

24.6%
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21.3%
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Figure 6: *e statistical analysis of waypoint behavior dataset: (a) percentage of quantity distribution at five levels; (b) quantity distribution
at five levels.

1 I II III IV V

(a)

I II III IV V

(b)

I II III IV V

(c)

Figure 5: Effect of waypoint behavior. (a)*e drift range of USV belongs to level I. (b)*e drift range of USV belongs to level II. (c)*e drift
range of USV belongs to level III.

Mathematical Problems in Engineering 7



numerical, soRBMcannot be used. According to the paper [28],
the Gaussian–Bernoulli restricted Boltzmann machine (GB-
RBM) can solve this problem. As shown in Figure 10, the GB-
RBM constructed is of numerical type for its visible layer vector
and Boolean type for its hidden layer variable, which conforms
to the requirements of numerical type feature vectors.

*e GB-RBM is a neural network based on energy. *e
combined energy functions of the visible and hidden vari-
ables are

E(x, h) � − h
T

W
x

σ
−

x − c
T

􏼐 􏼑
2

2σ2
− b

T
h, (4)

where the visible layer randomvectorx � [x1, x2, x3, . . . , x6]
T;

the hidden layer random vector h � [h1, h2, h3, h4, h5, h6]
T; the

weight matrix W ∈ R6×6, and each element wjk is the weight of
connections between the visible layer variablexk and the hidden
layer variable hj; the bias c ∈ R6 and b ∈ R6; and σ is the
standard deviation associated with Gaussian visible vector x.

After defining the joint energy function ofx and h, it can get
the joint probability of x and h, as shown in (5).Z in (6) is the
normalized factor also known as the partition function, which is
the sum numbers α of all the states of the system.

P(x, h) �
e

− E(x,h)

Z
, (5)

where

Z � 􏽘
α

e
− Eα/KT( ). (6)

3.2.3. 6e Training Process of GB-RBM. *e training of GB-
RBM is divided into two processes: (1) the coding process,

also known as forward propagation; (2) the decoding pro-
cess, also called back propagation or reconstruction process.

In the coding process, given the features in the visible
layer, calculate the probability that a neuron in the hidden
layer will be activated by sigmoid function, as shown in

P hj � 1 | x􏼐 􏼑 � sigmoid wj

x

σ2
+ bj􏼠 􏼡. (7)

*en, the randomizer generates a number from 0 to 1. If the
number is less than the calculated hj, then the hidden layer
node takes 1; otherwise, it takes 0.

In the decoding process, given the current state of all
neurons in the hidden layer, we calculate the probability that
a neuron in the visible layer will be activated, as shown in (8).
Other than RBM, the mean μ and variance σ2 that conform
to the Gaussian distribution should be added for GB-RBM.

P xk � 1|h( 􏼁 � N ckwk + x, σ2􏼐 􏼑, (8)

where N(μ, σ2) denotes the Gaussian probability density
function with mean μ and standard deviation σ.

*en, the randomizer generates a number from 0 to 1. If
the number is less than the calculated xk, then the visible
layer node is xk; otherwise, it takes that random number.

After training by performing coding process and
decoding process alternately, the reconstruction error of x

and P(xk � 1|h) is very small, which indicates that the GB-
RBM tends to stabilize.

In the training process of GB-RBM, an efficient CD
algorithm which is common in deep learning has been
applied, and it is illustrated in Algorithm 1. In this way, GB-
RBM can be trained in the same way as a normal RBM. In

Level I

Level II

Level III

Level IV

Level V

Speed

Lead damper

Capture radius

Lead distance

Steering angle

Slip radius

Figure 7: *e structure of DNN-1.

Speed Lead distance

Lead damper

Steering angle

Capture radius

Slip radius

Figure 8: *e structure of DNN-2.
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Section 4.1, the experimental results show the improvement
of classification accuracy after using GB-RBM.

3.3. Model Prediction and Invocation

3.3.1. Development of Prediction Scripts. *e two DNNs are
optimized by GB-RBM, followed by fine-tuning. After

training, the saved model structure and parameters are used
to regenerate the prediction script. *e essence of the
prediction script is a function that calls the neural network
model and gives the prediction results according to the input
variables.

LevelPredictor.py is a python script used to evaluate the
effects of waypoint behavior, whose main function is to call the
saved .h5 classificationmodel file to predict. LDPredictor.py is a
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DNN-2

Waypoint 
behavior 

dataset

Desired 
outputComputed 

output by 
models

Weights adjusted by BP algorithm

Weights adjusted by CD algorithm

Well trained DNN-1
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behavior effect
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Sample X
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Predicting process

Fine-tuning process
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error

Error

Computed 
output by 
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Figure 9: *e process of DNN training with GB-RBM.
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python script used to predict the waypoint behavior parameters,
and its main function is to estimate the LOS parameters.

3.3.2. Invocation of DNN Model by Using “pDeepLearning”.
A new MOOS app is developed to perform the computing
of the trajectory tracking control prediction model, so as
to establish the interface between the trained deep neural
network and the MOOS-IvP platform. “pDeepLearning”
is the key module for all types of information interaction.
It is a C++ program inherited from the CMOOSApp class
in MOOS. On the one hand, pDeepLearning is used to
publish and subscribe the data in MOOS. On the other
hand, DNN implemented as python scripts is called by
pDeepLearning.

We deployed a set of MOOS apps andMOOSDB, for the
USV, that perform waypoint behavior. *e DNN is then
integrated into the MOOS-IvP by loading “pDeepLearning.”
Figure 11 shows the system structure of USV with DNN
model.

During the voyage, “pDeepLearning” first receives the
speed and planned steering angle of USV from MOOS-IvP.
*en, “pDeepLearning” calls the LevelPredictor.py and
LDPredictor.py scripts that are used in predicting the
waypoint behavior effect and LOS parameters. Finally, the
WPT_UPDATE variable described in Section 2.3 is used to
publish the parameters lead distance and lead damper into
MOOS-IvP. Section 4.3 reveals the performance of
pDeepLearning.

4. Results and Discussion

*e experimental results are carried out in two aspects:
Firstly, we take the previous research as the benchmark. *e
classification accuracy is improved after the DNN model
adopts the “pretraining and fine-tuning” method by GB-
RBM. Secondly, an experimental platform is constructed
based onMOOS-IvP, and the effect of running deep learning
application pDeepLearning in MOOS-IvP for trajectory
tracking control can be seen.

4.1. 6e Effect of Training GB-RBM. Figure 12 shows that
the first layer of the classification model and regression
model used GB-RBM matter to carry on the pretraining
process, respectively, in which the horizontal axis shows
the epoch times, and the vertical axis represents the
reconstruction error between the visible layer and the
hidden layer. Besides, we choose that mean square error
which is commonly used in deep learning training. *e

experimental results show that the reconstruction error
of the two GB-RBM are smaller through training; the
reconstruction error of the classification model tends to
be 0.09, as shown in Figure 12(a)), and that of the re-
gression model tends to be 0.03, as shown in Figure 12(b),
which suggests that the artificial neural network has the
ability to restore the original data after transformation
between the visible layer and the hidden layer. *e GB-
RBM proposed has learned the features of the waypoint
behavior.

4.2.6e Effect of ClassificationAccuracy. *e accuracy varies
for different depths and widths of the DNN structure. We
compare the accuracy between initialization parameters
using GB-RBM pretraining and no pretraining phase. *e
results are shown in Tables 3 and 4, respectively.

Experiments show that the structure of DNN, which is 6-
6-7-7-8-7-6-5 nodes in each layer, has a maximum accuracy
of 91.3% and 88.9% on the verification set and test set
separately after pretraining.

*en, we employ the well-trained DNN to predict the
effect of USV waypoint behavior at different speeds and
steering angles. *e results of the experiments are presented
below.

Figures 13 and 14 show the prediction of the DNN for
different steering angles and speeds, respectively, without
any changes in other parameters. Figures 13(a) and 14(a)
present reference values, Figure 13(b) show the predicted
values without pretraining, and Figures 13(c) and 14(c)
display the predicted values with pretraining.

It can be seen that the same trends are present in the
predictions and the ground truth, and the unsupervised
learning process using GB-RBM can improve the predicted
accuracy.

4.3. 6e Effect of Trajectory Tracking

4.3.1. Simulation Preparation. As mentioned above, the goal
of this study is to predict the waypoint behavior of USV through
DNN to optimize its trajectory tracking effect. A comparative
navigation simulation experiment based on MOOS-IvP plat-
form is conducted. Two USVs with the same type and length
(7m) are deployed. *e first USV named alpha does not use
DNN, and the second one named Alder uses dual-DNN
predictionmodel.Other than that, the configuration parameters
of the two USVs are identical. *e two USVs start from the

Capture 
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Slip 
radius

Lead 
distance

Lead 
damper

Steering 
angle Speed

h:hidden layer

x:visible layer

wij

h6h5h4h3h2h1
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Figure 10: *e structure of GB-RBM for feature mining in waypoint behavior.
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same initial point and track a planned route consisting of five
waypoints.

*e dual-DNNpredictionmodel adopted by theUSVAlder
is implemented by running pDeepLearning application to
predict the behavior of the waypoint in real time. *e exper-
imental results are recorded by pLogger application in MOOS
and extracted and analyzed by alogview toolbox.

*e MOOS-IvP simulation platform is shown in Figure 15,
in which the small window shows the situation of USV Alder
running pDeepLearning for prediction.*emain configuration
parameters of two USVs and their waypoint behavior config-
urations are given in Table 5.

After experiment, we compare the tracking effect and
performance index of alpha and Alder, to give the overall
evaluation and analysis of the behavior effect of waypoint,

and then we analyze the prediction effect by using DNN
model and the influence of the model on the speed and
course stability.

4.3.2. Trajectory Tracking. Figures 16 and 17 show the
trajectory of USV sailing towards five waypoints from the
initial position. Figure 16 is the overall picture and Figure 17
is a larger version of each waypoint.

As shown in Figure 16, the center of five red circles is the
five waypoints in the planned route, among which the
waypoint behavior effect evaluation circle is drawn from the
inside to the outside with the radius of 1 to 5 times length of
USV. *e black dashed line is a planned route connected by
five waypoints. *e green line is the trajectory of USV Alder

pDeepLearning

LevelPredictor.py

LDPredictor.py

DNN-1: Waypoint 
behavior effect evaluation 

model

DNN-2: Real-time 
LOS parameters valuation 

model

Waypoint behavior
config parameters
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Lead damper

Waypoint behavior level

WPT_UPDATE:
New lead distance
New lead damper

MOOSDB

pHelmIvPpMarinePID
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Speed
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current

Figure 11: *e information interaction process between pDeepLearning, environment, and neural network model.
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Figure 12: *e pretraining process by using GB-RBM: (a) training GB-RBM for the 1st layer of classification model; (b) training GB-RBM
for the 1st layer of regression model.
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which uses DNN to predict. *e blue line is the trajectory of
USV alpha without using the prediction model. It can be
seen that after using the model prediction, the USV deviated
from the waypoint by a smaller distance with each turn.

Figure 17 is an enlarged picture of USV sailing to each
waypoint. It can be seen that, in every waypoint, the green
track line is closer to the waypoint than the blue track line,
which meets the standard of waypoint behavior effect,
sometimes by up to one level. *is indicates that the USV
with prediction model has learned the relationship between
the parameters and effect level in waypoint behavior.
However, in Figure 17(d), the effects of two USVs are not
good, because the steering angle of the waypoint is an acute
angle, which falls outside of the dataset, so the overall de-
viation is large for both.

4.3.3. 6e Analysis of Trajectory Tracking Error. *e error
between the actual track and the planned track of two
USVs is depicted in Figure 18, where the horizontal axis
represents the time in seconds, and the vertical axis
represents the tracking error in meters. *e green line
signifies the trajectory tracking error of USV Alder with
using DNN for prediction. *e blue line signifies the
trajectory tracking error of USV alpha without using the

model prediction. *e black dashed line signifies the
course of advance. It can be observed that the tracking
error is smaller after adjusting by the prediction model.
In particular, the error is smaller when the course
changes.

Table 6 shows the performance quantitative indica-
tors. From the perspective of mean error and variance,
the values of USV by using the prediction model are
smaller. From the view of the integrated absolute error
(IAE) and the time integrated absolute error (ITAE), the
USV with prediction model has better transient and
steady-state performance.

4.3.4. 6e Effect of Waypoint Behavior. Figure 19 shows a
comparison of waypoint behavior effect after modifying
parameters by the prediction model. Among them, the
green line is the waypoint behavior effect after optimi-
zation of LOS parameters by the prediction model, and
the blue line is the waypoint behavior effect without
modification of the prediction model. It is clear that the
waypoint behavior effect is better after optimization. *e
black line shows the changes of steering angle, which
serves as a reference, indicating that once the steering

Input: Dataset x (n), n� 1,. . ., N;
Output: W, c, b
(1) Set learning rate：α � 0.001, epoch:T � 150;
(2) Initial：W⟵ 0, c⟵ 0, b⟵ 0;
(3) Calculate mean value and variance σ of vectors in dataset;
(4) for t� 1 . . .T do
(5) for n� 1. . .N do
(6) choose an input vector x，calculate p(hj � 1|x) by using Equation (4)，and randomly choose a hidden vector h

according the distribution;
(7) calculate positive gradient xh/σ2
(8) according to h, calculate p(xk � 1|h) by using Equation (5), obtain x′
(9) according to x′, calculate p(hj � 1|x′) by using Equation (4), obtain h′;
(10) calculate reverse gradientx′h′/σ2
(11) W ← W+ α((xh/σ2) − (x′h′/σ2))
(12) c ← c+ α((x/σ2) − (x′/σ2))
(13) b ← b+ α(h − h′)
(14) end
(15) end

ALGORITHM 1: CD for training GB-RBM in the waypoint behavior dataset.

Table 3: Training effect by using different depth structures.

Depth
Accuracy on validation set Accuracy on test set

No pretraining Pretraining No pretraining Pretraining
5 80.1 84.8 72.3 77.8
7 81.4 85.1 73.5 75.2
8 88.2 91.3 84.9 88.9
9 78.2 82.5 73.5 75.9
11 76.7 80.8 67.4 70.1
12 52.1 55.7 40.8 42.2
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angle changes, the model will predict a new waypoint
behavior effect level value.

*e effect of waypoint behavior is shown in Table 7; the
effect was improved by 1 level after LOS parameters were
adjusted by the prediction model.

4.3.5. 6e Effect of Prediction for LOS Parameters.
Figure 20 shows the lead distance and lead damper values
which are related to the guidance law predicted by DNN-
2. *e green line and blue line signify the predicted value
of lead distance and lead damper, respectively. *e black
line signifies the change of steering angle and speed,

respectively. *e black line and the red line are used as the
reference, indicating that when the steering angle
changes, the model will predict new lead distance and
lead damper. In addition, during the voyage, predicted
lead damper values have been affected by the change of
speed.

4.3.6. 6e Influence on Speed and Course. Figure 21 shows
the changes of speed and course during the voyage. *e
scale of Figure 21(a) is the entire navigation process, and
Figure 21(b) is the amplification of the second steering
process. *e green line is the speed and course of USV
Alder by using the prediction model, the blue line is the
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Figure 13: Effect level at different steering angles: (a) reference level from test set; (b) predicted level from model without GB-RBM
pretraining; (c) predicted level from model with GB-RBM pretraining.

Mathematical Problems in Engineering 13



15 20 25 3010
Speed (knot)

5

4

3

2

1

Re
fe

re
nc

e r
es

ul
t (

le
ve

l)

Reference result

(a)

15 20 25 3010
Speed (knot)

5

4

3

2

1

Pr
ed

ic
te

d 
re

su
lt 

(le
ve

l)

Predicted result 

(b)

15 20 25 3010
Speed (knot)

5

4

3

2

1

Pr
ed

ic
te

d 
re

su
lt 

(le
ve

l)

Predicted result

(c)

Figure 14: Effect level at different speeds: (a) reference level from test set; (b) predicted level from model without GB-RBM pretraining; (c)
predicted level from model with GB-RBM pretraining.

Figure 15: *e USV simulation environment based on MOOS-IvP.
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Table 4: Training effect by using different width structures.

Width
Accuracy on validation set Accuracy on test set

No pretraining Pretraining No pretraining (%) Pretraining (%)
6-6-6-6-6-6-6-5 82.8 83.2 81.0 84.5
6-7-7-7-7-7-7-5 82.8 87.3 76.2 80.3
6-6-7-7-8-7-6-5 88.2 91.3 84.9 88.9
6-8-8-8-8-8-8-5 63.9 66.2 61.9 71.8
6-10-10-10-10-10-10-5 9.7 71.4 66.7 70.2
6-6-6-6-6-6-6-5 82.8 82.9 81.0 82.6
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Figure 16: *e trajectory of USV Alder and alpha in simulation environment.
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Figure 17: Continued.
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Figure 17: *e trajectory of USV Alder and alpha in each waypoint: (a) the enlarged picture of waypoint when steering angle is 90°; (b) the
enlarged picture of waypoint when steering angle is 135°; (c) the enlarged picture of waypoint when steering angle is 113°; (d) the enlarged
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Figure 18: *e trajectory tracking error of USV Alder and alpha.

Table 5: *e configuration parameters of USVs.

USV Length (m) Capture radius (m) Slip radius (m) Lead distance (m) Lead damper (m) Speed (m/s)
Parameters 7 35 70 8 1 5
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speed and course of USV alpha without prediction model,
and the black dashed line is the course of advance. It can
be seen that there is little difference between the changes
of the two vehicles’ speed and course, which indicates that
the intervention of waypoint behavior by using DNN
does not cause rapid increase or decrease for speed and
course. *e method does not have too much influence on
the control loop. It is reliable.

From the above results in Section 4, we can make a
summary:

(1) *e ability of DNN model for trajectory tracking
control based on GB-RBM optimization to evaluate
the waypoint behavior effects has been greatly im-
proved compared with the previous model. *e
accuracy of the test set has been improved by 5%,
reaching 88.9%.

(2) After correction, the average trajectory tracking
error of USV is reduced by 19.0%, and the waypoint
behavior effect level has been raised by one level.

Table 6: Performance index in trajectory tracking.

Vehicle name Alder (with DNN model) Alpha (without DNN model)
*e average of tracking error 1.75 2.16
*e variance of tracking error 12.70 16.43
IAE (103) (􏽒t

0 |e(t)|dτ) 0.685 0.825
ITAE (104) (􏽒t

0 t|e(t)|dτ) 4.691 5.499

Table 7: Performance indices in waypoint behavior effect evaluation.

Vehicle name Adjusted by DNN model Not adjusted
*e average of level 1.8 2.8
*e variance of level 1.36 1.36
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Figure 20: *e prediction of LOS parameters.
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(3) *e DNN prediction model which is applied to the
trajectory tracking control of USV can evaluate the
waypoint behavior effect before steering and adjust
the parameters of guidance law in real time.

5. Conclusions

In this study, two prediction models based on DNN have been
constructed, i.e., “DNN-1: waypoint behavior effect evaluation
model” and “DNN-2: real-time LOS parameter valuation
model.” *e models are connected in parallel with the LOS
guidance process for trajectory tracking of USV, which im-
proves the effect of trajectory tracking obviously. *e experi-
mental results have demonstrated the positive effect of deep
learning method on autonomous navigation of USV.*eDNN
has learned the mapping relationship between different features
and effect levels in the waypoint behavior through the training
of dataset.*rough the real-time prediction of LOS parameters,

the trajectory tracking error is reduced by about 1 times length
of the vehicle.

We have developed a new MOOS application. To our
knowledge, this is the first time that DNN is integrated dy-
namically into MOOS-IvP, a well-known marine autonomous
platform. Although it only predicts the guidance process of
USV, the enhancement is significant. In the future, it can further
improve the overall capability of USV’s self-driving.

In addition, a dual-DNN model has been in collab-
oration with the prediction of trajectory tracking control
process, which is also our first attempt. *e experimental
results have proved its feasibility, and we believe that the
way of evaluating the waypoint behavior effect firstly and
then executing the maneuvering according to the pre-
diction is more in line with the regular mode of ship
maneuvering and control in marine domain. It will be
beneficial to improve the reliability of real-world
scenarios.
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Figure 21: *e changes of speed and course: (a) the changes in entire route; (b) the changes in the process of the second steering.
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