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,e gear fault signal has some defects such as nonstationary nonlinearity. In order to increase the operating life of the gear, the
gear operation is monitored. A gear fault diagnosis method based on variational mode decomposition (VMD) sample entropy and
discrete Hopfield neural network (DHNN) is proposed. Firstly, the optimal VMD decomposition number is selected by the
instantaneous frequency mean value. ,en, the sample entropy value of each intrinsic mode function (IMF) is extracted to form
the gear feature vectors. ,e gear feature vectors are coded and used as the memory prototype and memory starting point of
DHNN, respectively. Finally, the coding vector is input into DHNN to realize fault pattern recognition. ,e newly defined coding
rules have a significant impact on the accuracy of gear fault diagnosis. Driven by self-associativememory, the coding of gear fault is
accurately classified by DHNN.,e superiority of the VMD-DHNNmethod in gear fault diagnosis is verified by comparing with
an advanced signal processing algorithm.,e results show that the accuracy based on VMD sample entropy and DHNN is 91.67%
of the gear fault diagnosis method. ,e experimental results show that the VMD method is better than the complete ensemble
empirical mode decomposition with adaptive noise (CEEMDAN) and empirical mode decomposition (EMD), and the effect of it
in the diagnosis of gear fault diagnosis is emphasized.

1. Introduction

Gears are widely used in modern industrial machines and
play a key role. When the gear is damaged, the transmission
machinery will cause huge economic losses. ,e corre-
sponding vibration signal will be generated when the gear
runs under normal, wear, cracked, and broken teeth, which
contains abundant fault information [1]. ,erefore, it plays
an important role to monitor the running state of the gear,
which can be detected and replaced when the early weak
fault occurs.

,emost mature gear monitoring technology is based on
the vibration signal. When the gear is damaged, the cor-
responding vibration signal will change. ,erefore, it is only
necessary to collect the vibration signal of gear under the
corresponding fault state and extract the corresponding
feature, and then, the fault diagnosis of gear can be carried

out. ,e innovation of gear fault diagnosis technology is
based on the signal method. Traditional gear fault diagnosis
methods include time-frequency domain analysis. Classical
signal processing methods such as wavelet packet transform
(WPT), Hilbert–Huang transform (HHT), and short-time
Fourier transform (STFT) have been widely used in the field
of fault diagnosis [2]. Mohammed et al. [3] utilized the
vibration signal for gear fault diagnosis. Rafiee [4] utilized
autocorrelation of continuous wavelet coefficients (CWCs)
for gear fault diagnosis. ,ese traditional time-frequency
transforms are still insufficient in time-frequency resolution.
Empirical mode decomposition (EMD), local mode de-
composition (LMD), and other modern signal processing
methods have also been applied [5–7]. Rafiee et al. [8] in-
troduced an automatic feature extraction system for gear
and bearing fault diagnosis using wavelet-based signal
processing. However, EMD and LMD methods have
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problems such as mode-mixing and endpoint effect [9, 10]. In
order to effectively solve the mode-mixing and endpoint effect
of the EMD and the LMD, variational mode decomposition
(VMD) came into being [11]. VMD overcomes the short-
comings of the traditional signal adaptive decomposition
methods of EMD and LMD, which converts the signal de-
composition into a variational problem and solves the signal
adaptive decomposition by seeking the optimal solution of the
problem. However, the parameter combination of the penalty
factors and the number of decomposition should be determined
before VMD decomposition, which brings great difficulties to
the accurate decomposition of signals. Some researchers used an
optimization algorithm to optimize the parameter combination
of the penalty factors and the number of decomposition in the
VMD decomposition process. ,e genetic mutation particle
swarm optimization (GMPSO) algorithm to optimize the VMD
algorithm parameters is utilized by Ding [12, 13]. Experimental
results show that he GMPSO-VMD algorithm has a good
decomposition effect on the gear fault signal. ,e optimal
adaptive VMD decomposition algorithm can adaptively de-
termine the penalty factor and decomposition number in the
VMDalgorithm according to the time-frequency characteristics
of different fault signals [14]. A variationalmode decomposition
method based on a cuckoo search algorithm to adjust the
changes in internal parameters in VMD decomposition is
utilized by Yan and Jia [15], and the multicomponent signal
could be adaptively decomposed into a subsignal superposition
of inherent mode function. ,e VMD adaptive decomposition
algorithm [16] can be realized by adaptively adjusting the pa-
rameters of vibration signals of rotatingmachinery under VMD
decomposition, such as the optimal number of mode decom-
position and frequency bandwidth control.

,e intrinsic mode functions (IMFs) of the original fault
signal were decomposed by the VMD algorithm, the IMFs
contain abundant characteristic parameters, and different
characteristic parameters represent different physical mean-
ings.,erefore, selecting more effective feature parameters can
increase the recognition accuracy for subsequent fault diag-
noses. ,e vibration signal of rotating machinery is usually
nonlinear and nonstationary, which makes it very difficult to
extract fault features. Entropy value can be used as a very
effective parameter to extract fault features [17]. In order to
improve the fault identification accuracy of rolling bearing,
Chen applied the rapid sample entropy [18] and the improved
multiscale amplitude-aware permutation entropy (IMAAPE)
[19] to the feature extraction of rolling bearing diagnosis signal
and achieved good results. A milling flutter detection method
based on VMD and energy entropy is proposed by Liu et al.
[20]. In order to automatically detect the flutter frequency band
better, a flutter detection method based on energy entropy was
proposed.,e energy entropy value is taken as the fault feature
parameter to extract, and it is verified that the energy entropy
value can effectively express the flutter characteristics. ,ere-
fore, according to the advantages of simple sample entropy
calculation and fast calculation speed, this paper selects it to
extract the vibration signal feature of gear fault.

,e feature vectors after feature extraction can be used as
the input vectors in the fault diagnosis model. As a classifier,
support vector machine (SVM) has been studied by

researchers for a long time. VMD is used to extract features
from signals, and SVM is used for fault diagnosis.,e results
show that, under complex conditions, the proposed method
can also perform fault diagnosis more accurately [21, 22].
However, in the process of SVM classification, kernel
functions need to be solved according to specific problems
and are not self-adaptive. In addition, there are many deep
learning algorithms for fault diagnosis research, such as deep
belief network (DBN) [23], long short-term memory
(LSTM), deep self-encoder (DSE), deep convolution neural
network (DCNN), and other deep learning algorithms
[24–28] in recent years. However, the training time of the
deep learning algorithm is too long to make fault diagnosis
in time. ,e discrete Hopfield neural network (DHNN) is a
recursive neural network, which was first proposed by JJ
Hopfield [29]. Its operating mode is a binary system, and the
value of the network node is only 1 or −1. It is a neural
network model that can simulate human memory. In the
field of mechanical fault diagnosis, DHNN has not been
applied to gear fault diagnosis. So it is a new attempt to apply
DHNN to gear fault diagnosis.

Based on the shortcomings of the EMD and the LMD,
the optimized VMD is utilized to decompose the gear fault
vibration signal. ,e sample entropy value is extracted as the
characteristic parameter. Because the sample entropy is
sensitive to the change of signal chaos, the sample entropy as
the signal feature parameter is extracted by this paper. Based
on the above literature on deep neural network algorithms, it
is concluded that the deep neural network algorithm has too
long training time in fault diagnosis and cannot quickly
make fault diagnosis. ,erefore, this paper synthesizes the
shortcomings of the above literature. In order to quickly and
accurately diagnose faults, a gear fault diagnosis based on
VMD sample entropy and DHNN is proposed.

2. Experimental System and Methods

2.1. Experimental System. ,is section verifies the gear fault
diagnosis capability of the VMD-DHNN method under
different working conditions. ,is method mainly analyzes
the fault signals collected from the gear experimental test rig.
,e gear experimental test rig is shown in Figure 1. ,e
active and slave gears are all bevel gears, and the vibration
acceleration signals from the gearbox are collected by using
B&K data collector. Meanwhile, the sampling frequency and
sampling time of the experiment were 8192Hz and 0.25 s,
respectively. ,e test rig includes an electromagnetic speed
control motor controller, a three-phase asynchronous mo-
tor, two couplings, a reducer, an acceleration sensor, a B&K
data acquisition analyzer, and a laptop. ,e gear fault parts
are shown in Figure 2.

2.2. VMD Sample Entropy and DHNN Fault Diagnosis
Method. As mentioned in Introduction, the VMD is se-
lected in this paper to avoid the endpoint effect and mode
confusion of the EMD and the LMD. ,e VMD has the
advantage of high accuracy of the center frequency of each
IMF and fast calculation speed, while DHNN has the

2 Mathematical Problems in Engineering



advantage of associative memory to speed up the calculation
speed and improve the accuracy. ,e effectiveness of the
method is verified by the measured gear fault diagnosis
experiment. ,e implementation steps of the VMD-DHNN
method are shown in Figure 3.

,e detailed steps of the VMD-DHNN method are as
follows:

(i) Step 1. ,e optimal number of the VMD decom-
position algorithm is selected.

(ii) Step 2. ,e optimized VMD algorithm is utilized to
decompose the gear fault signal.

(iii) Step 3. ,e sample entropy value is extracted from
each IMF, which form the feature vector of gear fault.

(iv) Step 4. ,e gear fault feature vectors are encoded.
(v) Step 5.,e encoded fault feature vectors are input to

DHNN for gear fault diagnosis.
(vi) Step 6. Output results.

3. Gear Fault Feature Extraction of VMD
Sample Entropy

3.1. VMDMethod. Dragomiretskiy and Zosso proposed the
VMD algorithm [11] in 2014.,e original gear signal f(t) is
decomposed into k IMFs xk(t) by the VMD algorithm. ,e
core of VMD is to construct an L2 norm equation, whose
formula is expressed as
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where ωk is the center frequency of the IMFs and zt is the
differential symbol.

,e alternate direction method of multipliers (ADMM) is
used to calculate equation (2), and the optimal solution is
expressed as
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Figure 2: Gear fault parts: (a) normal gear; (b) gear with tooth crack; (c) gear with tooth wear; (d) gear with tooth break.

(1) (2) (3) (4) (5) (6)

(7)(8)

Figure 1: Gear experimental test rig: (1) three-phase induction motor; (2) electromagnetic speed control motor controller; (3) laptop; (4)
B&K data acquisition analyzer; (5) coupling; (6) acceleration sensor; (7) reducer; (8) coupling.
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where 􏽢f(ω), 􏽢xi(ω), and 􏽢λ(ω) represent the Fourier trans-
form of f(ω), xi(ω), and λ(ω), respectively, and ε repre-
sents the discriminant accuracy.

According to reference [30], the optimal decomposition
number of the VMD is selected through the change in in-
stantaneous frequency mean value. ,is paper also selects
the optimal decomposition number of the VMD by the same
method. According to literature [11], the penalty factor α
and discriminant accuracy ε of the VMD algorithm are 2000

and 10-7, respectively. After repeated experimental analysis,
the optimal decomposition number k � 4.

3.2. Sample EntropyMethod. Sample entropy is an indicator
to measure the complexity of time series signals. ,e higher
the sample entropy value of the signal, the more complex the
signal. ,e sample entropy is calculated as follows:

(i) Step 1. A vector sequence with dimension m by
ordinal number is formed, Xm(1), . . . , Xm(N −

m + 1), wherexm(i) � (xm(i), xm(i + 1), . . . , xm(i +

m − 1)). ,ese vectors represent m consecutive
values of x starting at the point i.

(ii) Step 2. ,e distance between vector Xm(i) and
Xm(j) is defined, and d[Xm(i), Xm(j)] is the ab-
solute value of the maximum difference between the
corresponding elements, that is,

d Xm(i), Xm(j)􏼂 􏼃 � max
k�0,1,...,m−1

(|x(i + k) − x(j + k)|). (4)

(iii) Step 3. For a given Xm(i), the number of
j(1≤ j≤N − m, j≠ i) is counted whose distance
between Xm(i) and Xm(j) is less than or equal to
threshold r, and it is called Bi. For 1≤ i≤N − m,
Bm

i (r) is defined as

B
m
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(iv) Step 4. ,e average value of the Bm
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(v) Step 5. ,e dimension to m + 1 is increased, the
number of j(1≤ j≤N − m, j≠ i) is counted whose
distance between Xm+1(i) and Xm+1(j) is less than or
equal to threshold r, and it is called as Ai. Am

i (r) and
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A
m
i (r) �

Ai

N − m + 1
. (7)

(vi) Step 6. ,e average value of the Am
i (r) is defined as
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So the sample entropy is defined as

SampEn(m, r, N) � −ln
A

m
(r)

B
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,e 16 sets of data in the four states were separately
decomposed by VMD. ,rough the previous analysis, the
original gear fault signal is decomposed into 4 IMFs, and
then, the sample entropy value of each IMF is extracted to
form the gear fault feature vector. G1 represents the normal
gear, G2 represents the gear with tooth wear, G3 represents
the gear with tooth crack, and G4 represents the gear with
tooth break. SampEn1 represents the sample entropy value
of the component IMF1, SampEn2 represents the sample
entropy value of the component IMF2, SampEn3 represents
the sample entropy value of the component IMF3, and
SampEn4 represents the sample entropy value of the
component IMF4. Table 1 shows the sample entropy values
of the IMFs.

In order to obtain a better classification effect, it is
preliminarily classified from the size range of the overall
sample entropy. ,e distribution of the size range of the
overall sample entropy is shown in Table 2.

,en, the entropy value range of the samples of normal
gear, gear with tooth wear, gear with tooth crack, and gear
with tooth break is divided from SE1–SE4 (see Table 3 for
details).

4. DHNN Fault Diagnosis Model

4.1. DHNN Method. ,is paper attempts to find a new
method of gear fault diagnosis and establishes a new di-
agnosis model for gear fault diagnosis. ,erefore, a new
method of discrete Hopfield neural network (DHNN) was
proposed to diagnose the entropy characteristics of gear fault
samples, so as to solve the problems of low fault diagnosis
accuracy and slow diagnosis speed of traditional methods.
,rough testing the established model, the results showed
that the algorithm had better detection and diagnosis results.

Due to its network structure and activation function set-
tings, DHNN has the functions of associative memory and
nonlinear mapping of information, classification, and recog-
nition. It has been widely used in the field of fault diagnosis.

After the VMD decomposition of the gear vibration
signal, the sample entropy value is extracted from each IMF
to form the feature vectors. ,en, it encodes the feature
vectors as the memory prototype and memory starting point
of the associative memory, respectively. ,en, the coding
vectors are input to DHNN for fault diagnosis.

,e design steps of this fault diagnosis model mainly
include the following eight steps, as shown in Figure 4.

4.2. Structure of DHNN. ,e DHNN is a binary input and
output binary neural network. Taking the DHNN network
structuremodel composed of 3 neurons as an example, as shown
in Figure 5, two layers of neurons are set, but only the first layer
of neurons is the actual neurons.,e first layer of neurons reads
the input signal of layer 0, and after weighted cumulative
summation, and then activates the sgn function to discriminate
and outputs the signal to the next step until the network reaches
steady state. ,e structure of DHNN is shown in Figure 6

Layer 0 is only the input layer of the DHNN, and it is not
the actual neuron, so layer 0 has no computing power. ,e

layer 1 is the actual neuron, whose function is to sum the
product of the input information and the weight coefficient
and produces the output information after the processing of
the nonlinear function sgn, where the original information
SEi is input from layer 1 to layer 0 for operation.

,e entropy value of the gear fault sample
SE � (SE1, SE2, . . . , SEi) and the neuron node state of
DHNN are 1 or −1; 1 means that the neuron is activated, and
−1 means that the neuron is inhibited. hi(t) is the weighted
cumulant input by the neuron at the moment. As calculated
by the following equation,

hi(t) � 􏽘
n

i�1
ωij − qi, j � 1, 2, 3, (10)

where ωij is the connection weight between neuron i and
neuron j, qi is the threshold of neuron i, and then, the next
state yi(t + 1) of neuron i is calculated as shown in the
following equation:

yi(t + 1) � sgn hi(t)( 􏼁 �
1, hi(t)≥ 0,

−1, hi(t)< 0.
􏼨 (11)

Let yi(t) be the output value of neuron i at time t, and the
network feeds yi(t) back to the input terminal to become the
input value of neuron i at the next moment, thus obtaining
the output value of the network at the next moment
yi(t + 1), as shown in equation (12). After a certain number
of iterations of the network according to the calculation
method shown in equation (12), the network will converge to
a steady state. In this case, the output value of the network
should be the same as the output value at the previous
moment, as shown in equation (13):

yi(t + 1) � sgn hi(t)( 􏼁, (12)

yi(t + 1) � yi(t). (13)

As it can be seen from the above equation, the output
value of DHNN is only 1 or −1, where 1 represents that the
neural network node is activated, and −1 represents that the
neural network node is suppressed.

4.3.DHNNEncodingRules. Firstly, the standard data set was
input into the DHNN for binary coding, and then, the
coding vectors were input into the DHNN for training. ,e
state of neurons in DHNN neural network is only 1 and −1,
and the coding of DHNN neural network needs to change
the state of neurons. So, it is necessary to code the evaluation
index when mapping to the state of the neuron. Coding rule:
when greater than or equal to the index value of a certain
level, the corresponding neuron state is set to “1;” otherwise,
it is set to “−1.” ,e four-grade evaluation indexes of gear
fault state are encoded as shown in the following table: •

represents the neuron state as “1,” which means greater than
or equal to the ideal evaluation index value of the corre-
sponding grade; otherwise, it is denoted by ∘ .

,e standard vector value of normal gear is defined here
as 1, the standard vector value of gear with tooth wear is 2,
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the standard vector value of gear with tooth crack is 3, and
the standard vector value of gear broken tooth is 4. ,e
standard vector value represents the position of the number
of columns where the state of the DHNN neuron is 1 in the
following binarization matrix: 1 represents the number of 1
in the first column and 2 represents the number of 1 in the
second column.,e data of normal, wear, crack, and broken
teeth of four groups of standard gears are selected for
encoding vectors, and the coding vectors is as follows:

Normal gear: sim 1 � 1 1 1 1􏼂 􏼃.

Table 1: Sample entropy values of each IMF.

State of the gear Signal sequence SampEn1 SampEn2 SampEn3 SampEn4

G1

1 0.6542 0.7433 0.8416 0.8176
2 0.7151 0.7666 0.8174 0.7689
3 0.7224 0.7483 0.7932 0.8600
4 0.7105 0.7698 1.1610 0.8194

G2

1 0.6871 0.7919 0.9700 1.0353
2 0.6903 0.7964 0.9545 0.9600
3 0.6847 0.8094 0.9436 0.9389
4 0.7001 0.7999 0.8822 0.9433

G3

1 0.7307 0.8161 0.9177 0.8973
2 0.7500 0.7711 0.8560 0.8839
3 0.7377 0.8300 0.8618 0.8748
4 0.7186 0.8232 0.8580 0.8604

G4

1 0.6514 0.8357 0.9759 0.7661
2 0.6679 0.8478 1.0348 0.8100
3 0.6622 0.8590 1.1180 0.7844
4 0.6198 0.7533 0.9809 0.8218

Table 2: Distribution of the size range and the mean value of the overall sample entropy value.

Sample entropy SampEn1 SampEn2 SampEn3 SampEn4
Numerical range 0.65–0.75 0.74–0.86 0.79–1.03 0.76–0.96
Mean value of the sample entropy 0.7 0.8 0.91 0.86

Table 3: Numerical range and the mean value of SE1, SE2, SE3, and
SE4 sample entropy values in various gear states.

State of the gear G1 G2 G3 G4
Numerical range of
SampEn1 0.70–0.72 0.67–0.70 0.72–0.75 0.65–0.67

Mean value of
SampEn1 0.71 0.685 0.735 0.66

Numerical range of
SampEn2 0.74–0.77 0.77–0.8 0.8–0.83 0.83–0.86

Mean value of
SampEn2 0.755 0.785 0.815 0.845

Numerical range of
SampEn3 0.79–0.85 0.97–0.97 0.85–0.91 0.97–1.03

Mean value of
SampEn3 0.82 0.97 0.88 1

Numerical range of
SampEn4 0.81–0.86 0.91–0.96 0.86–0.91 0.76–0.81

Mean value of
SampEn4 0.835 0.935 0.885 0.785

Entropy of component samples after VMD 
decomposition was extracted

Whole sample entropy value range was 
classified

Numerical range classification of sample 
entropy category was carried out

Classification is completed

Classified data are encoded

Training data were input to discrete hopfield 
neural network for training

Test data were input to discrete hopfield neural 
network for classification test

Classification result

Figure 4: DHNN step diagram.
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Gear with tooth wear: sim 2 � 2 2 2 2􏼂 􏼃.
Gear with tooth crack: sim 3 � 3 3 3 3􏼂 􏼃.
Gear with tooth break: sim 4 � 4 4 4 4􏼂 􏼃.
Next, binarization of the coding vectors:

Normal gear:sim 1 �

1 −1 −1 −1
1 −1 −1 −1
1 −1 −1 −1
1 −1 −1 −1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Gear with tooth wear:sim 2 �

−1 1 −1 −1
−1 1 −1 −1
−1 1 −1 −1
−1 1 −1 −1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Gear with tooth crack:sim 3 �

−1 −1 1 −1
−1 −1 1 −1
−1 −1 1 −1
−1 −1 1 −1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Gear with tooth break:sim 4 �

−1 −1 −1 1
−1 −1 −1 1
−1 −1 −1 1
−1 −1 −1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,e remaining 16 groups of data were randomly divided
into three groups for gear fault status identification. Each
group of data contained 4 sample entropy vectors. ,e
following is the result of binarization of the remaining data:

Class 1 Class 2 Class 3 Class 4

Pre-sim 1 Pre-sim 2 Pre-sim 3 Pre-sim 4

Sim 1 Sim 2 Sim 3 Sim 4

(a)

Class 1 Class 2 Class 3 Class 4

Pre-sim 1 Pre-sim 2 Pre-sim 3 Pre-sim 4

Sim 1 Sim 2 Sim 3 Sim 4

(b)

Class 1 Class 2 Class 3 Class 4

Pre-sim 1 Pre-sim 2 Pre-sim 3 Pre-sim 4

Sim 1 Sim 2 Sim 3 Sim 4

(c)

Figure 5: CEEMDAN-DHNN gear fault diagnosis and identification results.
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Selection standard of training samples of each com-
ponent of the entropy, which were selected from Table 1, is

. . .

. . .

Layer 0

Layer 1

ω11
ω12

ω13 ω21

ω22
ω23

ωi1

ωi2
ωi3

SE1 SE2 SEi

y1 (t) y2 (t) yi (t)

h1 (t) h2 (t) hi (t)

Figure 6: DHNN structure.
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the sample entropy of the signal sequence SampEn3 normal
gear, the gear with tooth wear and tear of sample entropy
SampEn2 signal sequence, the gear with tooth crack sample
entropy SampEn3 signal sequence, and the gear tooth
broken sample entropy SampEn1 input signal sequence to
the DHNN training, after waiting for neural network
training, and then, the remaining 12 group gears as the
unknown state data were input into the trained neural
network to identify the state. Before the sample entropy
value is input to the DHNN, the standard data group is
firstly binary coded, and then, the coding vectors are input
to the DHNN for training.

5. Gear Fault Diagnosis Based on the VMD
Sample Entropy and DHNN

,e 16 sets of sample entropy value data were binarized and
input to DHNN for network training as a standard sample.
,en, the remaining 12 sets of sample entropy values were

tested as the test data group. ,e above binarization matrix
was input into DHNN for classification and identification,
and the VMD-DHNN recognition results are shown in
Figures 7(a)–7(c).

Among them, class1 represents normal gear standard
data, class2 represents gear with tooth wear standard data,
class3 represents gear with tooth crack standard data, and
class4 represents gear with tooth break standard data. Pre-
sim1 represents the first test data, pre-sim2 represents the
second test data, pre-sim3 represents the third test data, and
pre-sim4 represents the fourth test data. Sim1 represents the
first test data classification result, sim2 represents the second
test data classification result, sim3 represents the third test
data classification result, and sim4 represents the fourth test
data classification result.

As shown in Figures 7(a)–7(c), 11 of the 12 test samples
of the DHNN model classifier correspond to the fault fea-
tures, and one of them is not recognized due to the unclear
features but is not recognized incorrectly.

Class 1 Class 2 Class 3 Class 4

Pre-sim 1 Pre-sim 2 Pre-sim 3 Pre-sim 4

Sim 1 Sim 2 Sim 3 Sim 4

(a)

Class 1 Class 2 Class 3 Class 4

Pre-sim 1 Pre-sim 2 Pre-sim 3 Pre-sim 4

Sim 1 Sim 2 Sim 3 Sim 4

(b)

Class 1 Class 2 Class 3 Class 4

Pre-sim 1 Pre-sim 2 Pre-sim 3 Pre-sim 4

Sim 1 Sim 2 Sim 3 Sim 4

(c)

Figure 7: VMD-DHNN gear fault diagnosis and identification results.
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In order to get the accuracy of gear fault identification
more clearly, the confusion matrix of VMD-DHNN clas-
sification results is made below. According to Figure 8,
normal gear, gear with tooth wear, and gear with tooth crack
faults are correctly classified, and there is a classification
error in the gear with tooth break fault. However, the failure
classification of gear with tooth break fault is not identified
as other gear fault types.

In order to verify the superiority of the VMD-DHNN
algorithm, the VMD-DHNN algorithm is compared with
complete ensemble empirical mode decomposition
adaptive noise (CEEMDAN)-DHNN algorithm and
empirical mode decomposition (EMD)-DHNN algo-
rithm in the accuracy of gear fault diagnosis. Firstly, the
training gear fault feature vectors are input into
CEEMDAN-DHNN and EMD-DHNN to obtain the gear
fault identification result. ,en, the test gear fault feature
vectors are input into the trained CEEMDAN-DHNN
and EMD-DHNN, and the classification result of gear
fault is obtained.

,e CEEMDAN-DHNN recognition results are shown
in Figures 5(a)–5(c).

As shown in Figure 5(c), the gear with tooth break fault is
identified as gear with tooth crack fault. ,e best recognition
rate of 91.67% was obtained using CEEMDAN-DHNN.

In order to get the accuracy of gear fault identification
more clearly, the confusion matrix of CEEMDAN-DHNN
classification results is made below. According to Figure 9,
normal gear, gear with tooth wear, and gear with tooth crack
faults are correctly classified, and there is a classification
error in the gear with tooth break fault.

,e EMD-DHNN recognition results are shown in
Figures 10(a)–10(c). It can be seen from Figure 10(c) that the
gear with tooth break fault is identified as gear with tooth
crack fault, the gear with tooth wear fault is identified as
normal gear, and the gear with tooth crack fault is identified
as the gear with tooth wear fault. ,e best recognition rate of
75% was obtained using EMD-DHNN.

In order to get the accuracy of gear fault identification
more clearly, the confusion matrix of EMD-DHNN classi-
fication results is given in Figure 11.

Table 4 shows the gear fault diagnosis accuracy of dif-
ferent signal decomposition algorithms combined with
DHNN and SVM.
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Figure 8: Confusion matrix of the VMD-DHNN classification results.
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Figure 10: EMD-DHNN gear fault diagnosis and identification results.
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Figure 9: Confusion matrix of the CEEMDAN-DHNN classification results.
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6. Conclusions

In this paper, a VMD-DHNN method is proposed and
applied to nonstationary signal decomposition. Firstly, the
vibration signals of nonstationary gear fault are decomposed
by the VMD, and their center frequencies are accurately
separated. ,en, each decomposed IMF is an extracted
sample entropy value, and the extracted feature value is
formed into the feature vector. Finally, the gear fault feature
vector is input to DHNN for fault diagnosis.

,e optimized VMD algorithm can avoid the disad-
vantages of the EMD algorithm, and VMDhas the advantages
of fast operation speed and high-frequency accuracy of
separated IMFs center. ,e DHNN has the advantage of
associative memory and can further shorten the operation
time. ,e combination of VMD-DHNN can improve the
fault diagnosis time of gear and reduce the damage.

,e VMD-DHNN is more accurate in identifying faults
such as normal gear, gear with tooth wear, and gear with
tooth crack. ,is method can be further applied to defect
detection in additive manufacturing and welding. Moreover,
the intelligent optimization algorithm can be utilized to
optimize the parameters of VMD so that it can be adaptive to
decompose the signal.

,e limitation of this article is that we need to encode the
signal in advance and then diagnose the fault in the input to
DHNN, which may increase the complexity of the method.
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