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To solve the localization failure problem of terrain-aided navigation (TAN) system of the autonomous underwater vehicle (AUV)
caused by large area of underwater flat terrain in the Arctic, a navigation system with relocation part is constructed to enhance the
robustness of localization. The system uses particle filter to estimate the AUV’s position and reduce the nonlinear noise dis-
turbance, and the prior motion information is added to avoid the mismatching caused by the similar altitude of low-resolution
map. Based on the estimate data and the measured altitude data, the normalized innovation square (NIS) is used to evaluate the
differentiation of terrain sequence, and the differentiation is used as a judgment of whether the AUV is in the switch location. A
simulation experiment is carried out on the 500 m resolution underwater map of the Arctic. The results show that adding the prior
motion information can restrain the divergence of the estimator; NIS can accurately reflect the sharp change of terrain sequence.
After the relocation process, the AUV can still maintain the positioning accuracy within 2 km after running 50 km in the area
including flat and rough terrain. This research solves the problem of localization errors in the Arctic flat terrain in the system level

and provides a solution for the application of underwater navigation in the Arctic.

1. Introduction

The Arctic region has a vast water area and rich natural
resources. However, the ice and snow covered on the surface
of the water have hindered the application of GPS in the
Arctic underwater navigation, reduced the large-scale
navigation ability of underwater vehicles in Arctic waters,
and increased the difficulty of underwater information
collection [1, 2]. In addition, the limited energy carried by
AUV limits the use of high-power navigation equipment.
Although there are many research on the efficient utilization
of batteries and controllers [3-6], low-power navigation
mode is still needed for AUV continuous operating under a
large area of Arctic ice. TAN uses the real-time altitude
information to match the prior DEM (digital elevation map)
and obtains the optimal calculated position through the
optimization estimation method [7-9]. Since it is not

necessary to deploy external auxiliary sensors to obtain
global positioning reference posture, only a prior DEM and a
low-power sensor which obtaining altitude are needed. With
these advantages, TAN technology has been widely used
[10-12].

TAN was first used in cruise missiles and has been widely
used in underwater navigation [13, 14]. The early TAN
system mainly used terrain contour matching (TERCOM)
technology to obtain positioning information through al-
titude dataset matching. TERCOM technology is relatively
mature, but it cannot effectively deal with process noise and
observation noise [15, 16]. Among the three common re-
gression filtering methods, Kalman filter [17, 18], point mass
filter [19, 20], particle Filter (PF) [21, 22], Kalman filter
requires the observation to be Gaussian distribution; it is not
suitable for the application in non-Gaussian parameter
situation. The point mass filter can solve the expression of
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non-Gaussian observations, but it needs to calculate the
whole posterior distribution space, which requires a large
amount of calculation. Compared with point mass filter, the
PF method has less computation and has a resampling
mechanism to maintain the diversity of sampling and can
deal with the ubiquitous nonlinear noise, which has been
widely used [23-27]. Georgios [28] used the PF method to
build the TAN system and carried out a long-range navi-
gation accuracy test in the Southern Ocean. Based on the
DEM with the resolution of 50 m, the positioning accuracy
of TAN is within 200 m in multiple tests when the average
moving distance of AUV is greater than 100 km, which can
meet the needs of accurate positioning of underwater ve-
hicles in a large-range operation.

The DEM of TAN and the underwater altitude detected
by AUV both have noise disturbance, which will affect the
positioning accuracy [29]. In extreme cases, when the noise
disturbance is very large or when the terrain environment
changes, it will lead to the failure of positioning. The
commonly solutionis is to use the hypothesis-test method to
calculate the confidence level of the state estimate HUGIN
AUV uses the chi-square test method to estimate the con-
fidence degree of the system and then makes a trade-oft for
the TAN estimation value [30].

At present, the resolution of the Arctic underwater DEM
is only 500 m [31], and the low-resolution map has a large
error with large noise, which affects the estimation of the
location of AUV [32]. Salavasidis et al. [33] utilize the bi-
linear interpolation method to improve the resolution of the
map, but it cannot eliminate the map noise. In addition,
there are more flat terrain areas in the Arctic terrain, and the
flat terrain with few features reduces the positioning ability
of TAN, which leads to positioning failure. At present, there
are many methods to improve the accuracy in a flat area;
Aringnonsen and Hagen [34] utilize the pockmarks in the
flat terrain as a sign to improve the positioning accuracy.
Enns and Morrell [35] utilize the Viterbi algorithm to
calculate the Bayesian dataset to obtain the most likely
position of the present motion. Shandor and Stephen [36]
adjusting the measurement variance to eliminate the over
matching position and reducing the mismatching in the flat
area. But more generally, in a large area of flat area, the
deviation and matching value of altitude in all directions are
similar.

When an AUV moves from a flat area to a rough terrain
area, a robot kidnapping problem occurs. In the robot
kidnapping problem, timing of triggering relocation is
important [37]. In terrain aided navigation, it is necessary to
accurately determine the switch location of flat terrain and
rough terrain. Variance analysis can be used to distinguish
the planeness of terrain, and the NIS method can produce
more accurate results [38, 39]. Houts et al. [40] used the NIS
window to estimate the confidence of PF filtering results and
judge the change of terrain according to the confidence. The
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results show that the NIS window filtering method can
effectively reduce the impact of noise disturbance and can
accurately positioning the abnormal. By improving the
weight distribution of PF and optimizing the likelihood
function, the robustness of the system can be enhanced and
the influence of flat terrain can be reduced slightly, but the
positioning error caused by large flat terrain still cannot be
solved [41, 42].

To eliminate positioning errors in the TAN system
caused by the large area of flat terrain in the Arctic, this
paper proposes a TAN positioning framework with the
relocation system. The NIS is used to construct the confi-
dence evaluation item to accurately judge the moment when
AUV enters the rough area. Based on the accumulated
navigation data and the sampled altitude data in the flat area,
the relocation function is constructed, and the relocation
process ensures the convergence of the TAN system when it
leaves the flat area and ensures the accuracy of TAN po-
sitioning in a large scale. In addition, in order to solve the
problem of low-resolution map causing low-terrain differ-
entiation in a large area, a priori motion information en-
hancement method is applied to improve the calculation of
weight to improve the accuracy of positioning estimation.

2. PF Position Estimation System

We use PF to estimate the AUV location; the essence is to use
PF to correct the position on the basis of dead reckoning.
This paper focuses on the positioning ability of TAN system
in the horizontal plane. Therefore, the simplified two-di-
mensional AUV kinematic model is constructed as the basis
of dead reckoning. In this paper, the sequential importance
sampling and resampling (SISR) algorithm is selected as the
filter of the TAN system to estimate the position of AUV.

2.1. AUV Kinematics. As shown in Figure 1, it is a 3-DOF
kinematic coordinate system of AUV in the horizontal plane
[43]. [vand w] are the velocity and angular velocity of AUV
relative to the body coordinate, [x, y, and 0] is the pose of
AUV relative to the global coordinate, and |v/wl| is the radius
of rotation of the AUV around its turning center. The ki-
nematic model is shown in equation (1), in which the lower
subscript t represents the moment of motion estimation, and
At is the step interval time.

v v
——sin 0 + —sin (6 + wAt)
w w
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F1GURE 1: Three degrees of freedom of AUV kinematics.

The movement of AUV is mainly affected by two kinds of
disturbance: one is the fluctuation of control input [v, w]
caused by the noise of airborne sensors such as inertial
navigation and depth gauge; the other is caused by external
factors such as ocean current and water density. Therefore,
process noise can be divided into body noise and envi-
ronmental noise, as equations (2) and (3) show, where Zp is
body noise covariance, Y, is external noise covariance, the
superscript A represents the state with noise, N represents
the normal distribution, a;, (i = 1,2, 3,4) is constant coef-
ficient, 02 is variance in x direction, and oi is variance in y
direction.

z=<v>=<v)+ N(0,a,v + a,w’) o
7 w w N(O, av’ +a4w2) ,
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2.2. Prior Information Enhanced PF(PIEPF) Algorithm

2.2.1. SISR PF Algorithm. In this paper, the widely used SISR
algorithm is used for positioning estimation [44]. There are
many descriptions of SISR algorithm in the research liter-
ature. Here, the logic is briefly summarized. PF uses random
distribution to approximate the probability density function
of the system; by iterative calculation, the minimum variance
estimation of the system state is obtained; PF can solve the
state estimation problem of nonlinear system and is widely
used. The SISR algorithm is shown in Table 1, where x is state
variable, w is particle weights, y is observation measure-
ments, N are the number of particles, the upper subscript i is
the particle index, and the lower subscript k is the time
dimension.where p( y,lxi) is the likelihood function of
observations and can be expressed as

6_1/2 (y};—yk/ay)z,

P(J’k|x§<) = Vs (4)

y

where o, is observation variance.

y

2.2.2. PIEPF. The low-resolution map results in similar
terrain altitude in local area, and only using the observation
value cannot effectively distinguish the difference of parti-
cles, which leads to the divergence of filtering. Combining
the prior information of AUV motion and reasonably
considering the influence of stable Arctic current, the par-
ticle weight including prior motion information is calculated
as formula (4).

0, = W P(yelxg ) p(xelxi ), (5)

where p(x}; | x}'H) is the likelihood function of prior
motion and can be expressed as

i 2
1 e—1/2 (Dlsklox) s

T (©6)
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where Dis}, is the Euclidean distance between each particle
and the prior predicted position.

3. Relocation System

There are a large number of flat terrain areas without
terrain features of the Arctic, which will lead to the di-
vergence of TAN positioning. Although scholars have
proposed a variety of methods to improve the positioning
accuracy in the flat area, the improvement is limited, and
it is not suitable for the Arctic with large flat terrain. In
this paper, a TAN system with relocation item is
designed. The system structure is shown in Figure 2.
When the AUV moves from the flat area to the rough area
and crosses the terrain junction point, the relocation flag
is triggered.

In the process of relocation detection, the key item is to
accurately determine the running area of AUV. However,
the sensor and the prior DEM have large noise. Although the
direct use of the measured altitude for comparative judg-
ment is simple, it cannot eliminate the influence of noise,
which is easy to cause misjudgment and positioning failure.
NIS can evaluate the credibility of the measured values and
reduce noise disturbance. When AUV operates in rough
areas with rich terrain features or flat areas with less terrain



TaBLE 1: Algorithm of SISR PF.
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F1Gure 2: TAN system.

features, the measured values are close to the predicted
values, and the NIS values are smaller. However, when the
AUV enters the rough area from the flat area, the wrong
estimated position will lead to a large difference between the
measured value and the estimated value, resulting in a larger
NIS value. In this paper, the NIS is used to construct a
filtering window to estimate the confidence of observation;
when NIS is greater than the threshold value, it indicates that
the AUV enters the rough terrain from the flat terrain, which
leads to the relocation process.

3.1. PFNIS. Innovation y represents the difference between
the measurements and the expected value as follows:

Vi =Y~ oo (7)

where y is measurements, y is expected value, low subscript
k is the moment, and the expected value is the weighted
average of altitude.

M
b= ) Wk (8)
m=1
where ¥ is the observations of particles and m is particle
index.
Then, the variance of innovation S is
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where R is observation variance.
The NIS can be expressed as

NIS, = 7; ¢ Fi (10)

Different from variance, NIS is a dimensionless num-
ber, which represents the consistency between the distri-
bution of new observations and the distribution of
observations. The variance of NIS conforms to the chi-
square distribution, so the reliability of the measurements
can be judged. If the NIS value is relatively large, the
measured value does not fall into a reasonable distribution
range, which indicates that there is a big difference between
the measurements and the predicted value. In order to
further reduce the influence of abnormal measurements,
the average value of NIS in a period of time is used as the
evaluation basis,

K
NIS, =— ) NIS, (11)

where L is time length.

3.2. Relocation Range. In order to illustrate the relocation
ability of the TAN system, a simple sampling logic is used to
realize the sampling after relocation. The method is to ac-
cumulate AUV running distance when the NIS value is
credible. When the NIS value exceeds the threshold value, the
accumulated distance is used as the basis of relocation range.
Search for a similar sampling altitude within the relocation
range to realize the sampling in the observation value. The-
logical is as follows:

Step 1: If the NIS value is less than the threshold, the
AUV motion distance Dis is accumulated

Step 2: When the NIS value is abnormal, 1.5-Dis is set as
the resampling radius and the present altitude value
Hmy, is recorded

Step 3: Within the sampling range, num particles are
uniformly distributed

Step 4: Calculating particles altitude Hsi, when the
difference between Hs; and Hmy is within the range of
observation noise, the particle is preserved

After the above steps, resampling particles can be filtered
out. After PF iteration, the particles in the wrong position
will disperse rapidly, and the particles in the correct position
can achieve good tracking.
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4. Simulation

In this paper, simulation is used to verify the effectiveness of
the proposed relocation logic. Based on the Arctic DEM of
500 m resolution, a local area close to Alaska in the United
States is selected for the simulation study. The area contains
rough terrain and flat terrain, which is convenient for
comparative analysis.

4.1. Map Parameters. The map with longitude range (180"
and —168°) and latitude range (75° and 79°) is selected as the
research area, as shown in Figure 3(a). In order to facilitate
the analysis, the latitude and longitude map is transformed
into the Cartesian coordinate system through scale con-
version. The 3D terrain map is shown in Figure 3(b). The
length, width, and height of the converted map are (800, 250,
and —2.1) km, and the origin point of the map corresponds
to longitude -180” and latitude 75°.

In this paper, the bilinear interpolation is used to refine the
map altitude. The bilinear method is shown in the following
equation:

5 =L (- 53+ L) () 00 - )
f(QIZ) f(QZZ)
+ W(x2—x)(y—y1)+W(x—xl)(y—yl),
(12)

where f(-) is the altitude function, [x, y, and Q] is coordinate
points, and the cross combination of [x; and x,] and [y; and
¥,] can form four corner coordinates [Q;1, Q12, Qz1, and Qy,]
around the point to be solved.

4.2. TAN Parameters. The parameter setting of the TAN
system is shown in Table 2. In order to eliminate the distur-
bance of vertical motion, the AUV is set to run at a depth of 0 m,
and in this situation, the observation noise is not a function of
altitude but noise with a standard deviation of 5m. The
numerical value conforms to the characteristics of the
acoustic altimeter. In order to fully explore the perfor-
mance of the system, a current disturbance in Y direction of
0.1 m/s is added.

4.3. Results and Analyses. Figure 4 shows the positioning
results of the TAN system in rough and flat terrain areas,
respectively. The running time of each movement segment is
set as 28 h, the running distance is 50 km, and the movement
direction is 180°. It can be seen that although there is the
current disturbance in Y direction, due to the rich terrain
features, it has a good positioning results in the rough area.
The estimated position calculated by TAN is very close to the
reference path, and the average positioning error is within

1 km. In the flat terrain area, because of the lack of features,
the TAN system cannot be accurately positioning, the
movement path is random, and the positioning error is also
divergent.

Figure 5 shows the comparison of path tracking error
between PIEPF and ordinary PF. It can be seen that the overall
tracking error of PIEPF is small and can effectively track the
path. The PF method accurately tracks a certain distance and
then diverges, which is caused by the similarity altitude of the
low-resolution terrain. PIEPF method can track in the right
direction with the aid of prior motion information.

Figure 6 shows the NIS values of TAN in different
regions. It can be seen that the NIS values in the rough
terrain area and flat terrain area are both within a 98%
confidence interval. In the rough area, because of the ac-
curate positioning, the observed altitude value is close to
the predicted one, so the NIS value is small. In the flat
terrain area, although it cannot be accurately located,
because the altitude of the flat terrain area is close to the
observation value, the difference is small, so the NIS value is
small.

Figure 7 shows the positioning situation of AUV when
moving from the flat area to rough area. When AUV is
running in the flat area, due to lack of recognizable features,
positioning fails, but the NIS value is kept within the credible
range. When the AUV crosses the critical area and moves
into the rough terrain area, there is a big deviation between
the current measured altitude and the prior estimated one,
which causes NIS anomaly. As can be seen from Figure 7(b),
the NIS value increases rapidly and exceeds the trusted
range.

Figure 8 shows the distribution of resampled particles
and subsequent tracking and positioning. As shown in
Figure 8(a), when the NIS value is abnormal, the cumulative
distance of AUV is about 41 km, and the sampling radius is
1.5x41=62km. Within the sampling radius of 62km,
10,000 points are evenly sampled and 369 sampling points
are finally accepted. Among them, 3 points are near the
correct position and converge to the correct trajectory after
PF iteration. Particles in other places diverge rapidly.
Figure 8(b) shows the complete path, AUV loss in flat area,
and when it reaches the rough area, it triggers relocation.
After resampling, the AUV can return to the correct
position.

5. Results

In this paper, we consider the characteristics of flat terrain
and rough terrain in the Arctic region and use the NIS to
trigger relocation, and the positioning failure caused by flat
terrain is solved by relocation. The results show that the
NIS value is sensitive to the area switching, which can
accurately reflect the sharp change of terrain and can be
used as a reliable judgment of the terrain area switching. In
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TaBLE 2: Simulation parameters.
Parameters Value
AUV velocity 0.5m/s
Map resolution 500 m
Running depth 0Om
PF update frequency 1Hz
Current disturbance (0,0.1 m/s)
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TaBLE 2: Continued.

Parameters Value
Body noise (a,,a,,as,a,) (0.1,0.1,0.001,0.1)
Process noise 6m
Measurement noise 5m
Particle numbers 1000
Initial attitude (200 km, 100 km, 180°)(rough area), (500 km, 100 k;r;,ei)SO )(flat area), and (290 km, 85 km, 180°)(flat-rough
NIS threshold THD, 5.41 (98% confidence)
NIS time window L 20
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(©)
F1GURE 4: The localization results of TAN system in different terrain area. (a) TAN positioning path (the white path is the reference path, the

red path is the positioning value in the rough area, and the pink path is the positioning value in the flat area). (b) Positioning error in rough
area. (c) Positioning error in flat area.
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FIGURE 6: NIS values in different terrain area. (a) In rough area. (b) In flat area.

The following research will further explore the NIS value
characteristics under the condition of large map interfer-
ence, improve the resampling distribution function, and
improve the performance of the TAN system.

addition, on the basis of the PF framework, adding prior
motion information can effectively avoid the divergence of
filter, and the proposed method can be applied to un-
derwater terrain aided navigation in the Arctic with a
resolution of 500 m.
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F1GURE 8: The tracking path of TAN system. (a) Resampling particles. (b) Tracking path.
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