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From the point of view of the failure mechanism of the disturbed zone, this paper uses the limit analysis upper-bound theory to
analyze the calculation formula of the loosening pressure, distinguish the difference between the vertical pressure and the
horizontal pressure in the underground cavern, combine the loosening characteristics of the disturbed zone with the open-type
disturbed zone and the annular disturbed zone, and construct the multirigidity slider translation and rotation failure mode to
discuss the calculation method of surrounding rock loosening pressure of underground caverns in upper soft and hard rock
stratum. +e relevant calculation examples are given, and the application of the upper-bound theory of limit analysis is
demonstrated in detail. Based on the actual engineering background, the calculation results of the calculation method of the
loosening pressure of the cavity based on the upper-bound theory of the limit analysis are analyzed and compared for the different
depths and different types of caverns. +e difference, rationality, and applicability of the calculation results of this method are
analyzed and discussed.

1. Introduction

When calculating the loose surrounding rock pressure of an
underground cavern in a rock mass with joints, the influence
of the distribution characteristics and mechanical properties
of various structural surfaces in the rock mass on the shape
and size of the loose zone around the underground cavern
will be ignored, which will make the calculation result
produce a large deviation. +erefore, for underground
caverns in jointed rock masses, it has become an urgent
problem to study the surrounding rock deformation and
failure mechanisms that can reflect the actual characteristics
of the rock mass and to develop a more reasonable method
for calculating the loosening pressure of surrounding rock
masses.

Using reasonable mechanical models, using analytical
methods to solve the surrounding rock pressure of

underground caverns has always been the focus of the re-
searcher’s research. Up to now, the commonly used ana-
lytical calculation formulas are mostly based on the circular
underground cavern model. +ese formulas include Fen-
ner’s formula, modified Fenner’s formula, Casaer’s formula,
and Caquot’s formula. +e objects of calculation are mostly
deep underground caverns. In the actual geotechnical en-
gineering, when calculating the problems such as the sur-
rounding rock pressure of the underground cavern, the most
concern is not the specific size and distribution of the in-
ternal stress field and displacement field of the surrounding
rock; usually, only the failure load or stability degree cor-
responding to the final plastic flow state can be calculated.

Fenner’s formula, modified Fenner’s formula, and
Casaer’s formula all assume that the cavern is circular and in
infinite homogeneous stratum and that rock and soil mass
are regarded as an ideal elastic-plastic medium [1]. Since the
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above assumptions are inconsistent with the stress-strain
characteristics of actual geomaterials, some scholars have
deduced a computational model that can consider the strain
softening of surrounding rock [2]. +e Caquot formula is
based on Mohr-Coulomb strength theory. For circular
tunnels with uniform plasticity surrounding medium, the
weight of rock and soil mass in the plastic zone is derived
from the pressure of surrounding rock based on the theory
of secondary stress elasticity analysis.

+e limit analysis method was first created in the 1920s.
In 1975, Chen [3] published the book Limiting Analysis and
Soil Plasticity. +e book systematically clarified the appli-
cation of limit analysis theory in geotechnical engineering
problems. Sloan et al. [4] combined the finite element
method of numerical analysis algorithm with the limit
analysis theory for the first time and effectively solved the
optimization problem in the process of Solving Limit
Analysis theory. Sloan et al.’s research on limit analysis
upper-bound method and limit analysis lower bound
method promoted the application of limit analysis method
in geotechnical and rock mechanics. Fraldi and Guarracino
[5–8] used the variational method to analyze the collapse
loads of circular and rectangular caverns by introducing the
modified Hoek-Brown (H-B) criterion and Greenberg’s
optimization method pioneering. Atkinson and Potts [9],
Davis et al. [10], and Subrin and Wong [11] have done a lot
of work on the stability of soil tunnels. Fraldi used a vari-
ational approach, pioneering the introduction of the mod-
ified Hoek-Brown (H-B) criterion and Greenberg’s
optimization method to analyze the collapse load of circular
and rectangular caverns.

For underground engineering, in practical engineering,
people are not most concerned about the specific size and
distribution of internal stress field and displacement field,
but about the stability of surrounding rock and the safety of
supporting structure after excavation. +erefore, the max-
imum load acting on the supporting structure when the
surrounding rock reaches the limit state is more concerned
in the structural design. For such problems, the ultimate load
and failure modes corresponding to the failure of reaching
the critical state of the rock and soil can be obtained by the
method of limit analysis in plastic mechanics [12]. On this
basis, according to the law of conservation of work, the
virtual work equation and the virtual power equation are
established to solve the physical quantity obtained. +ere-
fore, for the calculation of surrounding rock pressure in
shallow tunnels, the use of the limit analysis method is an
effective means.

2. Limit Analysis Upper-Bound Method for
Solving Surrounding Rock Pressure

When applying the limit analysis upper-bound method, the
following three basic assumptions are made:

(1) +e surface is assumed to be a horizontal plane. +e
surrounding rock of the tunnel is assumed to be an
ideal elastoplastic body, and the structural plane
obeys the surface contact slip constitutive model

(2) +e tunnel vault is subjected to the vertical uniform
pressure q, and the tunnel sidewall is subjected to the
average cloth pressure e. Due to the poor applica-
bility of the optimized solution engineering involved
in the unknown number, in order to reduce the
difficulty of the solution and reduce the unknown
number, suppose that q is in a proportional rela-
tionship with e, and the scale factor is k; that is, e� kq

(3) We do not consider the influence of the construction
process and the tunnel bottom drum

In this paper, the minimum buried depth corresponding
to the circular loose zone is used as the boundary standard
between deep and shallow burial of underground caverns.

2.1. Destruction Mode and Velocity Field. For the under-
ground cavern with the loose zone as the open type, as shown
in Figure 1, the tangential line is made at the top of the tunnel.
+e tunnel section is approximated by a rectangularDEFG.+e
boundary curve of the loose zone is y� axb, H is the tunnel
depth, and T is the height of the tunnel. Point C is located on
the centerline of the tunnel excavation face.+e height of point
NA from the point C to the ground surface is H0. +e line of
GAm is a horizontal line connecting CA and GAm. +e ∠ACAm
is divided into m parts, and the angle is β. ∠AmGF is divided
into n equal parts, the angle size is ε, and the intersections of the
boundary curves of the two sides of each angle and the loose
zone areA,A1,A2, ...Am. . .Am+n-1, respectively. Assume that the
roof and sidewalls of the cave are uniformly stressed, re-
spectively, q and e.

According to the associated flow rule, the velocity vector
direction on the velocity discontinuity line between the rigid
sliders should be φJ angle with the discontinuity line, and
each velocity vector should satisfy the vector closure con-
dition. +e velocity field corresponding to the failure of the
tunnel under the failure mode shown in Figure 2 is obtained.
Because of the symmetry, the right side is taken. Within the
range allowed by the error, AA1. . .AiAi+1. . .Am+n-1F on the
curve are connected by a straight line, and the shape of each
triangular rigid slider is determined by β, ε, and αi. +e speed
of△ANC isV0, the direction is vertical downward, the speed
of△CDG is Vm+n+1, the direction is vertical downward, and
the speed of the triangular block at the slip line is V1. . .Vm+n
from top to bottom. +e relative speeds of the respective
sliding blocks are V0,1. . .Vm+n-1,m+n, Vm+n,m+n+1.

For the underground cavern with the loose zone as the ring
type, a similar treatment method is adopted. As shown in
Figure 3, the tangential line is made at the top of the tunnel
hole. +e tunnel section is approximated by a rectangular
DEFG, and the boundary curve function of the loose zone is in
the form of y� 1/(a + bx). H is the tunnel depth and T is the
tunnel height. Point C is located on the centerline of the tunnel
excavation face. +e height from point C to the ground surface
is H0. +e GAm line is a horizontal straight line connecting CB
and CAm. +e ∠BCAm is divided into m parts, the angle is β,
and the ∠AmGF is equally divided into n equal parts, the angle
size is ε, and the intersections of the boundary curves of the two
sides of each corner and the loose zone are A, A1, A2,
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...Am. . .Am+n-1, respectively. It is assumed that the vertical and
horizontal forces received by the roof and the sidewall of the
cavern are evenly distributed, respectively, q and e. Due to the
aliquot angle, the boundary equation y� 1/(a+bx) of the loose
region can be obtained. It can be known that the unknown
quantity is only H0. +erefore, as long as the calculation for-
mula of the surrounding rock pressure represented by H0 is
obtained, the extremum point can be obtained by deriving H0.
In turn, the minimum value of the surrounding rock pressure
calculated by the upper limit method can be obtained, and
finally, it is necessary to verify whether the speed vector field
satisfies the closing condition. Similarly, according to the as-
sociated flow rule, the velocity vector direction on the velocity
discontinuity line between the rigid sliders should be φJ angle
with the discontinuity line, and each velocity vector should
satisfy the vector closure condition. +e velocity field corre-
sponding to the failure of the tunnel under the failure mode
shown in Figure 3 is obtained (Figure 4). Due to the symmetry,
the right side is taken. Within the range allowed by the error,

AA1. . .AiAi+1. . .Am+n-1F on the curve are connected by a
straight line, and the shape of each triangular rigid slider is
determined by β, ε, and ai. +e velocity of △BCA is V0. If the
value of m is large enough, the BA segment is approximately
horizontal, and then, the angle between V0 and the vertical
direction is infinitely close to φJ. +is paper assumes the
horizontal of the BA segment; the velocity of△CDG is Vm+n+1,
and the direction is vertical. Downward, the velocity of the
triangular block at the slip line is V1. . .Vm+n from top to
bottom, and the relative speed of each sliding block is
V0,1. . .Vm+n-1,m+n, Vm+n,m+n+1.

2.2. Derivation Process of Loosening Pressure of Underground
Cavern in Open-Type Loose Area. When the stratum above
the vault is heterogeneous, the geometrical resolution of the
boundary of the rupture zone is y� axb. +e surrounding
rock pressure is calculated by the limit theoretical upper
limit method.
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Figure 1: +e failure mode schematic of the ringent trumpet-shaped loosening zone.

αm+1 – ε + φ2 – π/2
αm+2 – 2ε + φ2 – π/2

αm+j – jε + φ2 – π/2

αm+n–1 (n–1) – ε + φ2 – π/2
αm+n – nε + φ2 – π/2

α1 – (m – 1)β + θ3 + φ1 – π/2
α2 – (m – 2) β + θ3 + φ1 – π/2
αi – (m–i)β + θ3 + φ1 – π/2
αi+1 – (m – i – 1)β + θ3 + φ2 – π/2
αm + θ3 + φ2 – π/2

π/2 – β – φ2

π – α1 – β – 2φ1

π – αm+n – β – 2φ2

π – αm – β – 2φ2
π – αi+1 + θ2

π – αm+n–1 – β – 2φ2

π – αm+2 – β – 2φ2

π – αm+1 – β – 2φ2

π – αm+j – β – 2φ2 π – α2 – β – 2φ1

π – αi – β – 2φ1

π – αi+1 – β – 2φ1

V0,1

V1V2

V1,2

ViVi+1Vm
Vm+1

Vm+2

Vm+j

Vm+n+1

Vm+n

Vm+n–1,m+n

Vm+n–2,m+n–1

Vm+n–j,m+j

Vm+1,m+2

Vm,m+1

Vm–1,m
Vi,i+1Vi–1,i

Vm+n+1Vm+n,m+n+1

Figure 2: +e velocity field schematic diagram of the ringent trumpet-shaped loosening zone.
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Taking the failure mode (i+1) as an example (the failure
mode shown in Figure 5), when the intersection of the upper
soft layer and the lower hard layer boundary and the fracture
boundary curve is between Ai and Ai+1, the upper limit method
in the limit analysis theory is used to calculate this. Surrounding
rock pressure under normal conditions. In the failure mode
(i+1), the bulk density of the upper softer formation is c1, the
internal friction angle is φJ1, the cohesive force is CJ1, the bulk
density of the lower hard formation is c2, the internal friction
angle is φJ2, and the cohesion is CJ2. F is the origin of the
coordinate, and a Cartesian coordinate system is established.

+e horizontal right is positive and the vertical upward is
positive. +e analytical formula of the FA curve is y� axb. +e
corresponding velocity field at this time is shown in Figure 6.

(1) Solving the Geometric Quantities in the Failure
Mode
Use Pr3 � 􏽐

i
k�1 SΔ􏼈 AkCAk+1 · c1 · Vk · cos[αk − (m −

k)β + θ3 + φJ1 − (π/2)]} as the origin of coordinates.
Establish a Cartesian coordinate system with a
positive horizontal to positive and positive vertical.
+e analytical formula of the FA curve is y� axb.
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Let | BC | =H0, | BO | = h, and tunnel span W; then,

|OC| � h − H0,

|AC| �

����������������������

H
2
0 +

H + T

a
􏼒 􏼓

(1/b)

+
W

2
􏼢 􏼣

2

􏽶
􏽴

,

MAm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 �

T

a
􏼒 􏼓

(1/b)

+
W

2
,

(1)

From tan θ1 � (|AB|/H0), tan θ3 � (|CM|/|MA5|),
tan θ4 � (|CM|/|MG|), and θ1, θ3, θ4 expression

OO1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � |OC|tan θ5 OO1
􏼌􏼌􏼌􏼌
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W h − H0( 􏼁
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. (2)
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π
2

− β − φJ2 > 0,

π − αi+1 + θ2 > 0,

π − αs − β − 2φJ1 > 0, (s � 1 . . . i),

π − αt − β − 2φJ2 > 0, [s � i . . . (m + n)],

αk − (m − k)β + θ3 + φJ1 −
π
2
> 0, (k � 1 . . . i),
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π
2
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π
2
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are

O1
W h − H0( 􏼁

2 H − H0( 􏼁
−

W

2
, T + H − h􏼢 􏼣. (4)

+e slope of |CR| � H − H0,

|BC| � V1 − H + H0
􏼨 and tan θ1 �

(W/2(H − H0)) is tan θ3 � (2(H − H0)/L); then,

θ1 � arctan
W

2 H − H0( 􏼁
􏼢 􏼣,

θ3 � arctan
2 H − H0( 􏼁

L
􏼢 􏼣.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(5)

+e analytical expression is

y � x +
W

2
􏼒 􏼓 × tan

π
2

− θ1 − β􏼒 􏼓 + T + H − H0. (6)

Similarly, the analytical formula of the CAi line can be
obtained:

y � x +
W

2
􏼒 􏼓 × tan

π
2

− θ1 − iβ􏼒 􏼓 + T + H − H0. (7)

+e CA1 linear equation is connected with the FA
equation y� axb of the slip line, and the coordinate
A1(x1,y1) of the A1 point can be obtained. Similarly,
A2(x2,y2), Ai (xi,yi), Ai+1(xi+1,yi+1), and Am (xm,ym) can
be obtained.
+e equation of the upper soft layer and the lower hard
layer boundary line OOm-i+3 is y �T +H-h, which is in
line with the linear equation of the CAi+1 linear
equation, and the coordinates of the Om-i+2 point are
Om-i+2 [((H0 − h)/(tan((π/2) − θ1 − (i + 1)β)))−

(W/2), T + H − h].
+e equation of the upper soft layer and the lower hard
layer boundary line OOm-i+3 is y�T+H-h, which is in
conjunction with the FA equation y� axb of the slip
line, and the coordinates of the Om-i+3 point can be
obtained as Om-i+3 [((T + H − h)/a)(1/b), T + H − h],
from O3 coordinates:
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By Sine theorem, it is available that
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sin αe − (e − m)ε + φJ2 +(π/2)􏽨 􏽩

sin (3π/2) − αe − ε − 3φJ2􏼐 􏼑
Ve− 1,

[e � (m + 1) . . . (m + n)],

αi � arcsin
CAi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

Ai− 1Ai

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
sin β􏼠 􏼡, (i � 2 . . . m).

(12)

By Sine theorem, it is available from |GAm| �

(T/a)(1/b), |AmAm+1|, ε that

αm+1 � arcsin
GAm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

AmAm+1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
sin ε􏼠 􏼡. (13)

(2) Calculation of Velocity Field
From Figure 3, the speed vector size of each slider is
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Vk �
sin (m + 1 − k)β − θ3 + φJ1 +(π/2)􏽨 􏽩

sin π − αk − β − 2φJ1􏼐 􏼑
Vk− 1,

(k � 2 . . . i),

Vk− 1,k �
sin (m − i)β + θ3 + φJ1 − (π/2)􏽨 􏽩

sin π − αk − β − 2φJ1􏼐 􏼑
Vk− 1,

(k � 2 . . . i),

Vl �
sin (m + 1 − l)β − θ3 + φJ2 +(π/2)􏽨 􏽩

sin π − αl − β − 2φJ2􏼐 􏼑
Vl− 1,

[l � (i + 1) . . . m],

Vl− 1,l �
sin (m − l)β + θ3 + φJ2 − (π/2)􏽨 􏽩

sin π − αl − β − 2φJ2􏼐 􏼑
Vl− 1,

[l � (i + 1) . . . m],

Ve �
sin β +(e − m)ε + φJ2 +(π/2)􏽨 􏽩

sin π − αe − β − 2φJ2􏼐 􏼑
Ve− 1,

[e � (m + 1) . . . (m + n)],

Ve− 1,e �
sin αe − (e − m)ε + φJ2 − (π/2)􏽨 􏽩

sin π − αe − β − 2φJ2􏼐 􏼑
Ve− 1,

[e � (m + 1) . . . (m + n)],

Vm+n+1 �
sin π − αm− 1 + θ2􏼂 􏼃

sin (π/2) − ε − φJ2􏼐 􏼑
Vm+n,

Vm+n,m+n+1 �
sin αm+n + θ3 + φJ2 − θ2 − (π/2)􏽨 􏽩

sin (π/2) − ε − φJ2􏼐 􏼑
Vm+n.

(14)

(3) Gravity power calculation
+e area of each rigid block is

SΔABC �
H0

2
×

H + T

a
􏼒 􏼓

(1/b)

+
W

2
􏼢 􏼣,

SΔAkCAk+1
�
1
2

AkC
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 · CAk+1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 · sin β (k � 1 . . . m),

SΔOm− i+2Om− i+3Ai+1
�

Om− i+2Om− i+3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

2
× T + H − h − yi+1( 􏼁,

SΔAiCOm− i+2Om− i+3
� SΔCAiAi+1

− SΔOm− i+2Om− i+3Ai+1
,

SΔAeGAe+1
�
1
2

GAe

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 · GAe+1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 · sin ε[e � m . . . (m

+ n − 2)],

SΔAm+n− 1GF �
1
2

GAm+n− 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 · T · sin ε,

SΔCGAm
�

|CG|

2
·
W

2
· sin θ2 + θ3( 􏼁,

SΔCGM �
H − H0( 􏼁

2
·
W

2
,

SΔCGAmAi+1
� SΔCAmAi+1

+ SΔCAmG.

(15)

+e gravity power of each sliding block of the damage
mode (i+ 3) is

αm+1 – ε + 2φJ2 – π
αm+1 – 2ε + 2φJ2 – π

αm+j – jε + 2φJ2 – π
αm+n–1 – (n – 1)ε + 2φJ2 – π

αm+n – nε + 2φJ2 – π

α1 – (m – 1)β + θ3 + φJ1 – π/2
α2 – (m – 2)β + θ3 + φJ1 – π/2
αi – (m – i)β + θ3 + φJ2 – π/2
αi+1 – (m – i – 1)β + θ3 + φJ2 – π/2
αm + θ3 + φJ2 – π/2

π/2 – β – φJ2

π – α1 – β – 2φJ1
π – α2 – β – 2φJ1

π – αi – β – 2φJ1

π – αi+1 – β – 2φJ2

π – αm – β – 2φJ2
π – αi+1 + θ2 Vm+n+1Vm+n,m+n+1

π – αm+n – β – 2φJ2

π – αm+n–1 – β – 2φJ2

π – αm+2 – β – 2φJ2

π – αm+1 – β – 2φJ2

π – αm+j – β –2φJ2
V0,1

V1V2

V1,2

ViVi+1Vm
Vm+1

Vm+2

Vm+j

Vm+n+1

Vm+n

Vm+n–1,m+n

Vm+n–2,m+n–1

Vm+n–j,m+j

Vm+1,m+2 Vm,m+1 Vm–1,m
Vi,i+1

Vi–1,i

Figure 6: +e velocity field schematic diagram of the (i+ 1)-th failure.
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Pr1 � SΔABC · c1 · V0,

Pr2 � SΔACA1
· c1 · V1 · cos α1 − (m − 1)β + θ3 + φJ1 −

π
2

􏼔 􏼕,

Pr3 � 􏽘

i

k�1
SΔAkCAk+1

· c1 · Vk · cos αk − (m − k)β + θ3 + φJ1 −
π
2

􏼔 􏼕􏼚 􏼛,

Pr4 � SΔAiCOm− i+2Om− i+3
· c1 · Vi+1 · cos αi+1 − (m − i − 1)β + θ3􏼂

+ φJ1 −
π
2

􏼕,

Pr5 � SΔOm− i+3Om− i+2Ai+1
· c2 · Vi+1 · cos αi+1 − (m − i − 1)β + θ3􏼂

+ φJ2 −
π
2

􏼕,

Pr6 � 􏽘
m− 1

k�i+1
SΔAkCAk+1

· c2 · Vk · cos αk − (m − k)β + θ3 + φJ2 −
π
2

􏼔 􏼕􏼚 􏼛,

Pr7 � SΔAm− 1CGAm
· c2 · Vm · cos αm + θ3 + φJ2 −

π
2

􏼔 􏼕,

Pr8 � 􏽘

m+n− 1

e�m

SΔAeGAe+1
· c2 · Ve · cos αe+1 − (e − m)ε + φJ2 −

π
2

􏼔 􏼕􏼚 􏼛,

Pr9 � SΔAm+n− 1GF · c2 · Vm+n · cos αm+n − nε + φJ2 −
π
2

􏼔 􏼕.

(16)

From the above, the damage mode shown by the
damage mode (i+ 3) is half of the gravity power.

Pr � 􏽘

14

c�1
Prc. (17)

(4) Internal energy dissipation power
Half of the energy dissipation in the damage mode (i
+ 3) is

PW � CJ1 · cosφJ1 􏽘

i

k�1
AAk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 · Vk􏼐 􏼑 +|AC| · V0,1⎡⎣

+ 􏽘
i

k�1
AkC

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 · Vk,k+1⎤

⎦ + CJ2 cosφJ2 Om− i+2C
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 · Vi+1,i+2􏽨

+ 􏽘
m+n− 1

e�i+1
Ae− 1Ae

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 · Ve􏼐 􏼑 + 􏽘

m

k�i+1
AkC

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 · Vk,k+1

+ Am+n− 1F
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 · Vm+n + 􏽘
m+n− 1

e�m

AeG
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 · Ve,e+1⎤
⎦.

(18)

(5) Supporting reaction power

PF � W · q · Vm+n+1 − T · k · q · Vm+n · sin αm+n + φJ2􏼐 􏼑.

(19)

+e undetermined parameter k is the ratio of the
horizontal support reaction force to the vertical
support reaction force, k� e/q.

(6) Calculation of surrounding rock pressure
+e virtual power equation:

Pr + PF � PW⟺􏽚
Ω∗

W
∗υ∗dΩ∗ + 􏽚

A∗
T
∗υ∗dA

∗

� 􏽚
Ω∗
σ∗ij _ε∗ijdΩ

∗
+ 􏽚

S∗
τJ − σnJ tanφJ􏼐 􏼑Δv∗t dS

∗
,

(20)

kPa top plate vertical support reaction force:

q �
Pr − PW

W · V0 + T · k · sin αm+n + φJ2􏼐 􏼑 · Vm+n

. (21)

In the above formula, q is a function of the variable H0;
that is,

q � f H0( 􏼁. (22)

It is known from the upper limit theorem that the
vertical support reaction force of the top plate is the min-
imum value of q� f (H0). When q� f (H0) takes the mini-
mum value, the following conditions should be met:

dq

dH0
� 0. (23)

+rough equation (22), the value of H0 when q takes the
extreme value can be obtained. It is also necessary to verify
whether the obtained H0 satisfies the constraint condition
corresponding to the failure mode:

π
2

− β − φJ2 > 0,

π − αi+1 + θ2 > 0,

π − αs − β − 2φJ1 > 0, (s � 1 . . . i),

π − αt − β − 2φJ2 > 0, [s � i . . . (m + n)],

αk − (m − k)β + θ3 + φJ1 −
π
2
> 0, (k � 1 . . . i),

π − αv − ε − 2φJ2 > 0, [v � (m + 1) . . . (m + n)],

αl − (m − l)β + θ3 + φJ2 −
π
2
> 0, [l � (i + 1) . . . m],

αe − (e − m)ε + φJ2 −
π
2
> 0, [e � (m + 1) . . . (m + n)].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)
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If the above constraint is satisfied, the value of H0 when
the extreme value is obtained is substituted into equation
(21) to obtain the maximum value of the upper limit solution
of the vertical support reaction force of the top plate.

Horizontal support reaction is

e � kq. (25)

2.3. Detonation Pressure Detonation Process of Underground
Cavern inAnnular LooseZone. In the failure mode shown in
Figure 3, the BC spacing H0 is unknown. Considering the
layer stratification, the values of the external force power and
the internal energy loss power are different depending on the
thickness of the softer upper layer, due to the calculation of
the upper limit method. Both are related to the value of the
formation bulk density, the value of the internal friction
angle, and the value of the cohesion force, so the final
calculation formula of the surrounding rock pressure must
be different.

Taking the failure mode (i+ 1) as an example (Figure 7),
the intersection of the upper softer layer and the lower
harder layer boundary line and the fracture boundary curve
is located between Ai and Ai+1. Let the upper softer for-
mation have a bulk density of c1, an internal friction angle of
φJ1, a cohesive force of CJ1, a lower hard formation density of
c2, an internal friction angle of φJ2, and a cohesive force of
CJ2. F is the origin of the coordinate, and a Cartesian co-
ordinate system is established. +e horizontal right is pos-
itive and the vertical upward is positive. +e FA curve
analytical expression is y� 1/(a+ bx). +e corresponding
velocity field at this time is shown in Figure 8.

(1) Figure 7 shows the solution of each geometric
quantity in the loose failure mode.
As shown in Figure 7, the vertex of the boundary
curve of the loose zone is taken as the coordinate
origin, and a Cartesian coordinate system is estab-
lished, with the horizontal rightward being positive
and the vertical upward being positive. +e analytical
formula of the BF curve is y� 1/(a+ bx), the points B
and R are located on the central axis of the tunnel, the
loose failure mode is the axis of symmetry of the BR,
and the right part of the BR is analyzed.
From | BO | = h, | CR | =V1, | NmAm| = L, and tunnel
span W, then

|CR| � H − H0,

|BC| � V1 − H + H0.
􏼨 (26)

From tan θ1 � (W/2(H − H0)) and tan θ3 � (2(H−

H0)/L), the following can be obtained:

θ1 � arctan
W

2 H − H0( 􏼁
􏼢 􏼣,

θ3 � arctan
2 H − H0( 􏼁

L
􏼢 􏼣.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(27)

From θ2 � π/2-θ1-θ3, the following can be obtained:

β �
(π/2) + θ3

m
,

ε �
π
2n

.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(28)

+e coordinates of point C are C[0, (H-H0-V1)], and the
slope of the line CA is cotβ; then, the straight-line
equation of CA is y� x cot β+ (H-H0-V1). Similarly, the
linear equations of CA1, CA2, CAi, and CAi+1 are y� x
cot(2β) + (H-H0-V1), y� x cot(3β)+(H-H0-V1), y� xcot
[(i + 1)β] + (H-H0-V1), y� x cot[(i + 2)β] + (H-H0-V1),
and y� x cot β+ (H-H0-V1).
Let(V1+H0-H)� H∗; the linear equation of the si-
multaneous CA and the boundary equation of the loose
zone can get the coordinates of the point.

A x0, y0( 􏼁⇔A
bH
∗

− a cot β +

����

ξ(β)

􏽱

2b cot β
,

2b cot β

bH
∗

+ a cot β +

����

ξ(β)

􏽱
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦.

(29)

In the formula, ξ(β) � (a cot ß+ bH∗)2 + 4b cot ß.
In the same way, the coordinates of A1 and Ai can be
obtained:

A1 x1, y1( 􏼁⇔A1

bH
∗

− a cot β +

�����

ξ(2β)

􏽱

2b cot(2β)
,

2b cot(2β)

bH
∗

+ a cot(2β) +

�����

ξ(2β)

􏽱
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦,

Ai xi, yi( 􏼁⇔Ai

bH
∗

− a cot[(i + 1)β] +

���������

ξ[(i + 1)β]

􏽱

2b cot[(i + 1)β]
,

2b cot[(i + 1)β]

bH
∗

+ a cot[(i + 1)β] +

���������

ξ[(i + 1)β]

􏽱
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦.

(30)
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In the formula,

ξ(2β) � a cot(2β) + bH
∗

􏼂 􏼃
2

+ 4b cot(2β),

ξ(3β) � a cot(3β) + bH
∗

􏼂 􏼃
2

+ 4b cot(3β),

ξ[(i + 1)β] � a cot[(i + 1)β] + bH
∗

􏼈 􏼉
2

+ 4b cot[(i + 1)β],

ξ[(i + 2)β] � a cot[(i + 2)β] + bH
∗

􏼈 􏼉
2

+ 4b cot[(i + 2)β].

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(31)

+e straight-line equation of the interface between the
upper softer stratum and the lower harder stratum is
y�H-V1-h� h∗, and the coordinates of the O1 point
can be obtained in conjunction with the CA straight
line equation, O1[(h∗ +H∗)/cosβ, h∗]. Similarly, y� h∗

and the linear equations of CA1, CA2, and CAi can be
used to obtain the coordinates of O2, O3, and Oi+1
points: O2[(h∗ +H∗)/cos 2β, h∗], O3[(h∗ +H∗)/cos3β,
h∗], andOi+1[(h∗ +H∗)/cos (i+ 1)β. y� h∗ is associated

y
B x

H0

V1

W

L

N1

N2

Ni

Nm

Nj

Ni+1

Nm+1

Nm+2

Nm+n+1

α1 A1

A2

Ai

Ai+1

Am

Am+1

α2

αi

αi+1

αm

αm+1

Am+2

αm+2

Aj

Am+n–1

αm+j

αm+n–1

αm+nFE

e e

q
T

H

y = 1/(a/bx) 

β β β
β

β

β
θ1θ2

θ3

C

D

D R G

Vm+n+1

Vm+n+1Vm+n,m+n+1
ε
εεεε

Vm+1

Vm+2

Vm+jVm+n

Vm+n

Vm+n–1

V
m

+n–1,m
+n

V
m

+n–2,m
+n–1

V
m+j–1,m+j

V
m+1,m+2

Figure 7: +e (i+ 1)-th failure mode.

αm+1 – ε + 2φJ2 – π
αm+1 – 2ε + 2φJ2 – π

αm+j – jε + 2φJ2 – π
αm+n–1 – (n – 1)ε + 2φJ2 – π

αm+n – nε + 2φJ2 – π

α1 – (m – 1)β + θ3 + 2φJ1 – π
α2 – (m – 2)β + θ3 + 2φJ1 – π
αi – (m – i)β + θ3 + 2φJ2 – π
αi+1 – (m – i – 1)β + θ3 + 2φJ2 – π
αm + θ3 + 2φJ2 – π

π – β – 2φJ2

3π/2 – α1 – β – 3φ1J1
3π/2 – α2 – β – 3φ1J1

3π/2 – αi – β – 3φJ1

3π/2 – αi+1 – β – 3φJ2

Vm+n+1Vm+n,m+n+1

3π/2 – αm – β – 2φJ2
π – αi+1 + θ2

3π/2 – αm+n – ε – 3φJ2

3π/2 – αm+n–1 – ε – 3φJ2

3φj2 – αm+2 – ε – 3J2

3φj2 – αm+1 – ε – 3J2

3π/2 – αm+j – ε – 3φJ2
V0,1

V1 V0V2

V1,2

ViVi+1Vm
Vm+1

Vm+2

Vm+j

Vm+n+1

Vm+n

Vm+n–1,m+n

Vm+n–2,m+n–1

Vm+n–j,m+j

Vm+1,m+2 Vm,m+1Vm–1,m Vi,i+1
Vi–1,i

Figure 8: +e velocity field schematic diagram of the (i+ 1)-th failure mode.
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with the boundary curve equation of the loose zone and
the coordinates of theOi+2 point: Oi+2 [(1− ab)/bh∗, h∗].
+e distance between the points can be obtained from
the coordinates of the above points. +e coordinate of
pointG isG(W/2, − V1), the slope of the line ofGAm+1 is
-tanε, and the equation of the line of GAm+1 is
y� y� (− tanε) (x− W/2)− V1. Similarly, the linear

equations for GAm+2, GAm+ j, and GAm+n-1 are y�

[− tan(2ε)](x− W/2)− V1, y� [− tan(jε)](x− W/2)-V1, and
y� {− tan[(m+ n− 1)ε)](x− W/2)− V1.

Let bW− 2a� W∗; the line equation of the simultaneous
GAm+1 and the boundary curve equation of the loose
zone can get the coordinates of the Am+1 point:

Am+1

W
∗ tan ε − 2bV1 +

����

η(ε)
􏽱

4b tan ε
,

4 tan ε

4a tan ε + W
∗ tan ε − 2bV1 +

����

η(ε)
􏽱

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦. (32)

In the formula, η(ε)� b2V1
2 + (a2 + b2W2/4 + abW)

tan2ε− (b2V1
2W+ 2abV1 + 4b)tan ε.

Similarly, the coordinates of Am+2, Am+j, and Am+n-1
can be obtained:

Am+2

W
∗ tan(2ε) − 2bV1 +

�����

η(2ε)
􏽱

4b tan(2ε)
,

4 tan(2ε)

4a tan(2ε) + W
∗ tan(2ε) − 2bV1 +

�����

η(2ε)
􏽱

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦,

Am+j

W
∗ tan(jε) − 2bV1 +

�����

η(jε)
􏽱

4b tan(jε)
,

4 tan(jε)

4a tan(jε) + W
∗ tan(jε) − 2bV1 +

�����

η(jε)
􏽱

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦,

Am+n− 1

W
∗ tan[(m + n − 1)ε] − 2bV1 +

�������������

η[(m + n − 1)ε]
􏽱

4b tan[(m + n − 1)ε]
,

4 tan[(m + n − 1)ε]

4a tan[(m + n − 1)ε] + W
∗ tan[(m + n − 1)ε] − 2bV1 +

�������������

η[(m + n − 1)ε]
􏽱

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦.

(33)

In the formula, η(2ε), η(jε), and η[(m+ n− 1)ε] are

η(2ε) � b
2
V

2
1 +

a
2

+ b
2
W

2

4 + abW
􏼠 􏼡tan2(2ε) − b

2
V

2
1W + 2abV1 + 4b􏼐 􏼑tan(2ε),

η(jε) � b
2
V

2
1 +

a
2

+ b
2
W

2

4 + abW
􏼠 􏼡tan2(jε) − b

2
V

2
1W + 2abV1 + 4b􏼐 􏼑tan(jε),

η[(m + n − 1)ε] � b
2
V

2
1 +

a
2

+ b
2
W

2

4 + abW
􏼠 􏼡tan2[(m + n − 1)ε] − b

2
V

2
1W + 2abV1 + 4b􏼐 􏼑tan[(m + n − 1)ε].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34)
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+e distance between AA1 can be obtained from A(x0,
y0) and A1(x1, y1):

AA1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �

�������������������

x1 − x0( 􏼁
2

+ y1 − y0( 􏼁
2

􏽱

. (35)

+e same is available:

|BA| �

������������

x
2
0 + y1 −

1
a

􏼒 􏼓
2

􏽳

,

|CB| �

����������������������

x
2
0 +

1
a

− H − H0 − V1( 􏼁􏼔 􏼕
2

􏽳

,

CAi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 �

������������

x
2
i + yi −

1
a

􏼔 􏼕
2

􏽳

, (i � 1 . . . m),

GAj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 �

�������������������

xj −
W

2
􏼒 􏼓

2
+ yj + V1􏽨 􏽩

2

􏽳

, [j � m . . . (m + n − 1)],

AiAi+1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �

���������������������

xi+1 − xi( 􏼁
2

+ yi+1 − yi( 􏼁
2

􏽱

, [i � 1 . . . (m + n − 1)],

Am+n− 1F
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �

��������������������������������

xm+n− 1 −
W

2
􏼒 􏼓

2
+ ym+n− 1 + V1 + T( 􏼁􏼂 􏼃

2

􏽳

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(36)

Using the sine theorem, we can find α, α1. . .αm+ n:

α � arcsin
|CB|

|AB|
sin β􏼠 􏼡,

α1 � arcsin
|CA|

AA1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
sin β􏼠 􏼡,

αi � arcsin
CAi− 1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

Ai− 1Ai

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
sin β􏼠 􏼡, (i � 2 . . . m),

αj � arcsin
GAj− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

Gj− 1Aj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
sin ε⎛⎝ ⎞⎠, [j � (m + 1) . . . (m + n − 1)],

αm+n � arcsin
GAm+n− 1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

FAm+n− 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
sin ε􏼠 􏼡.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(37)

(2) Speed field calculation
From Figure 3, the sine theorem can be used to find
the velocity vector size of each slider:

Vk �
sin (m + 1 − k)β − θ3 + φJ1 +(π/2)􏽨 􏽩

sin (3π/2) − αk − β − 3φJ1􏼐 􏼑
Vk− 1, (k � 1 . . . i),

Vl �
sin (m + 1 − l)β − θ3 + φJ2 +(π/2)􏽨 􏽩

sin (3π/2) − αl − β − 3φJ2􏼐 􏼑
Vl− 1, [l � (i + 1) . . . m],

Ve �
sin ε +(e − m)ε + φJ2 +(π/2)􏽨 􏽩

sin (3π/2) − αe − ε − 3φJ2􏼐 􏼑
Ve− 1, [e � (m + 1) . . . (m + n)],

Vm+n+1 �
sin π − αm− 1 + θ2􏼂 􏼃

sin (3π/2) − ε − 2φJ2􏼐 􏼑
Vm+n,

Vk− 1,k �
sin (m − i)β + θ3 + φJ1 +(π/2)􏽨 􏽩

sin (3π/2) − αk − β − 3φJ1􏼐 􏼑
Vk− 1, (k � 1 . . . i),

Vl− 1,l �
sin (m − l)β + θ3 + φJ2 +(π/2)􏽨 􏽩

sin (3π/2) − αl − β − 3φJ2􏼐 􏼑
Vl− 1, [l � (i + 1) . . . m],

Ve− 1,e �
sin αe − (e − m)ε + φJ2 +(π/2)􏽨 􏽩

sin (3π/2) − αe − ε − 3φJ2􏼐 􏼑
Ve− 1, [e � (m + 1) . . . (m + n)],

Vm+n,m+n+1 �
sin αm+n + θ3 + φJ2 − θ2 +(π/2)􏽨 􏽩

sin (3π/2) − ε − φJ2􏼐 􏼑
Vm+n.

(38)
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(3) Gravity power calculation
+e area of each rigid block is

SΔABC �
1
2

|CB| · |CA| · sin β,

SΔACA1
�
1
2

|AC| · CA1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 · sin β,

SΔAkCAk+1
�
1
2

AkC
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 · CAk+1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 · sin β, (k � 1 . . . m),

SΔCOO1
�
1
2

|OC| · OO1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 · sin β,

SΔCO1O2
�
1
2

|OC| · O1O2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 · sin β,

SΔCO2O3
�
1
2

|OC| · O2O3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 · sin β,

SΔCO3Oi+1
�
1
2

|OC| · O3Oi+1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 · sin β,

SΔOi+1AiOi+2
�
1
2

yi − h
∗

( 􏼁 · Oi+1Oi+2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 · sin β,

SΔBOO1A � SΔCBA − SΔCOO1
,

SΔAO1O2A1
� SΔCAA1

− SΔCO1O2
,

SΔA1O2O3A2
� SΔCA1A2

− SΔCO2O3
,

SΔA2O3Oi+1Ai
� SΔCA2Ai

− SΔCO3Oi+1
,

SΔOi+1CAi+1Oi+2
� SΔCAiAi+1

− SΔAiOi+1Oi+2
,

SΔCGAm
�
1
4

|CR| · (L − W),

SΔCRG �
1
4

|CR| · W,

SΔGAjAj+1
�
1
2

GAj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · GAj+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · sin ε[j � m . . . (m + n − 1)].

(39)

+e weight of each sliding block of the damage mode
(i+ 1) is

Pr1 � S▱BOO1A · c1 · V0 cos α + β − φJ1􏼐 􏼑,

Pr2 � SΔCOO1
· c2 · V0 cos α + β − φJ2􏼐 􏼑,

Pr3 � S▱AO1O2A1
· c1 · V1 cos α1 + 2β − φJ1􏼐 􏼑,

Pr4 � SΔCO1O2
· c2 · V1 cos α1 + 2β − φJ2􏼐 􏼑,

Pr5 � S▱A1O2O3A2
· c1 · V2 cos α2 + 3β − φJ1􏼐 􏼑,

Pr6 � SΔCO2O3
· c2 · V2 cos α2 + 3β − φJ2􏼐 􏼑,

Pr7 � S▱A2O3Oi+1Ai
· c1 · Vi cos αi +(i + 1)β − φJ1􏽨 􏽩,

Pr8 � SΔCO3Oi+1
· c2 · Vi cos αi +(i + 1)β − φJ2􏽨 􏽩,

Pr9 � SΔAiOi+1Oi+2
· c1 · Vi+1 cos αi+1 +(i + 2)β − φJ1􏽨 􏽩,

Pr10 � S▱Oi+1CAi+1Oi+2
· c2 · Vi+1 cos αi+1 +(i + 2)β − φJ2􏽨 􏽩,

Pr11 � SΔCAi+1Am
· c2 · Vm cos αm +(m + 1)β − φJ2􏽨 􏽩,

Pr12 � 􏽘
m+n− 1

e�m

SΔAeGAe+1
· c2 · Ve+1 · cos αe+1 +(e + 1 − m)ε − φJ2􏽨 􏽩􏽮 􏽯,

Pr13 � SΔGFAm+n− 1
· c2 · Vm+n cos αm+n + nε − φJ2􏼐 􏼑,

Pr14 � SΔCRG · c2 · Vm+n+1.

(40)

Half of the damage mode gravity power shown by the
upper damage mode (i+ 1) is

Pr � 􏽘
14

c�1
Prc. (41)

(4) Internal energy dissipation power
Half of the energy dissipation power in the failure
mode (i+ 1) is

PW � CJ1 · cosφJ1 􏽘

i

k�1
AAk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 · Vk􏼐 􏼑 + 􏽘

i

t�1
OtAt− 1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 · Vt− 1,t +|BA| · V0 + AiOi+2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 · Vi+1

⎛⎝ ⎞⎠ + CJ2 cosφJ2 􏽘

i+1

t�1
COt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 · Vt− 1,t

⎡⎣

+ 􏽘
m

p�i+1
CAp

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · Vp− 1,p + Ai+1Oi+2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 · Vi+1 + 􏽘
m

q�i+1
AqAq+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · Vq+1 + 􏽘
m+n− 1

e�m+1
Ae− 1Ae

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 · Ve􏼐 􏼑 +|mm + n − 1F| · Vm+n

+ 􏽘
m+n− 1

e�m

AeG
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 · Ve,e+1 +|CR| · Vm+n+1 +|CG| · Vm+n,m+n+1⎤
⎦.

(42)
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(5) Support reaction power
+e undetermined parameter k is the ratio of the
horizontal support reaction force to the vertical
support reaction force, k� e/q. +e sum of the
powers of the vertical support reaction force q and
the horizontal support reaction force e of the tunnel
roof is PF.

PF � W · q · Vm+n+1 − T · k · q · Vm+n

· sin αm+n + φJ2􏼐 􏼑.
(43)

(6) Calculation of surrounding rock pressure
Virtual power equation:

Pr + PF � PW⇔􏽚
Ω∗

W
∗υ∗dΩ∗

+ 􏽚
A∗

T
∗υ∗dA

∗

� 􏽚
Ω∗
σ∗ij _ε∗ijdΩ

∗
+ 􏽚

S∗
τJ − σnJ tanφJ􏼐 􏼑Δv∗t dS

∗
,

V0,1 �
sin α1 − 4β + θ3 + φ1 − (π/2)􏼂 􏼃

sin π − α1 − β − 2φ1( 􏼁
V0.

(44)

Roof vertical support reaction:

q �
Pr − PW

W · V0 + T · k · sin αm+n + φJ2􏼐 􏼑 · Vm+n

. (45)

In the above formula, q is a function of the variable H0,
which is

q � f H0( 􏼁. (46)

It is known from the upper limit theorem that the
vertical support reaction force of the top plate is the
minimum value of q� f (H0). When q� f (H0) takes the
minimum value, the following conditions should be
met:

dq

dH0
� 0. (47)

+rough equation (47), the value of H0 when q takes
the extreme value can be obtained. It is also nec-
essary to verify whether the obtained H0 satisfies the
constraint condition corresponding to the failure
mode:

π − αi+1 + θ2 > 0,

π − β − 2φJ2 > 0,

3π
2

− αs − β − 3φJ1 > 0, (s � 1 . . . i),

3π
2

− αt − β − 3φJ2 > 0, [s � (i + 1) . . . m],

3π
2

− αu − ε − 3φJ2 > 0, [u � (m + 1) . . . (m + n)],

αk − (m − k)β + θ3 + 2φJ1 − π > 0, (k � 1 . . . i),

αl − (m − l)β + θ3 + 2φJ2 − π > 0, [i � (i + 1) . . . m],

αe − (e − m)ε + 2φJ2 − π > 0, [e � (m + 1) . . . (m + n − 1)].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(48)

If the above constraint condition is satisfied, the value
of H0 when the extreme value is obtained is substituted
into equation (45) to obtain the maximum value of the
upper limit solution of the vertical support reaction
force of the top plate.
Horizontal support reaction:

e � kq. (49)

3. Case Analysis and Engineering Application

Based on two specific engineering cases, this paper uses 6
classic solutions before and after correction and the upper
limit method of limit analysis based on the boundary of the
loose zone for the shallow tunnel [13, 14] combined with the
field measured data. A total of 7 methods are used to cal-
culate the vertical pressure and horizontal pressure of the
tunnel. +e method is used to calculate the vertical pressure
and horizontal pressure of the tunnel. For the deep-buried
tunnel combined with the field measured data, the Platts
pressure arch theory method, the standard method, the limit
analysis upper limit method based on the loose zone
boundary, and the Fraldi limit analysis method are used,
respectively. +e method calculates the vertical pressure and
horizontal pressure of the tunnel.

3.1. Engineering Application Background

3.1.1. Qingdao Jiangxi Road Metro Station. +e geology of
Qingdao city is a typical upper soft and hard rock formation.
+is section uses the Jiangxi Road metro station as an ex-
ample to calculate the surrounding rock pressure and safety
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factor of a single-arched large-span metro station excavated
in such a stratum.

Jiangxi Road metro station [15] is located in Qingdao
city, and the station is constructed by shallow tunneling
method, with a width of 20.6m and a height of 15.5m. +e
ground level of the metro station is about 11.71m. +e
overlying strongly weathered 1d granite has a calculated
depth of 5.5m, and the harder stratum is the late Yanshanian
granite.+emid-weathered rock face has a large undulation,
and the calculated depth is 6.5m. +e tunnel depth is 12m.
+e values of physical and mechanical parameters of the
softer stratum in the upper part are taken according to the
parameters of the surrounding rock of Grade IV. +e values
of the physical and mechanical parameters of the lower hard
stratum are taken according to the parameters of the sur-
rounding rock of the V-class, and the pressure coefficients of
the stratum are 0.56 and 0.58, respectively. Using C45
concrete to form the second lining, the thickness of the top
arch is 0.65m, the thickness of the inverted arch is 0.70m,
and the thickness of the sidewall is 0.70m. +e concrete has
an elastic modulus of 32.5 GPa, a Poisson’s ratio of 0.2, and a
bulk density of 25 kN/m3. +e physical and mechanical
parameters of the rock mass are shown in Table 1.

3.1.2. Zhifang Tunnel of Lanzhou-Chongqing Railway.
Zhifang tunnel of Lanzhou-Chongqing Railway [16] is a
double-line tunnel in a carbonaceous slate. +e tunnel has a
total length of 5135m, aminimum buried depth of 45m, and
a maximum buried depth of 248m. In this paper, two
sections of DK202 + 390 ∼DK202 + 540 are taken, the buried
depth is 65m and 70m, respectively, and the thickness of the
softer upper layer is 25m. +e tunnel section height is 12.4
6m, and the maximum span is 14.06m. When calculating,
the horizontal joint spacing is 0.6m, the inclined transfixion
joint spacing is 0.6m, and the inclination angle is 60°. +e
values of the physical and mechanical parameters of the
softer stratum in the upper part are taken according to the
parameters of the surrounding rock of Grade IV, and the
values of the physical and mechanical parameters of the

lower hard stratum are taken according to the parameters of
the surrounding rock of the V-class. +e second lining
adopts C35 waterproof concrete, the thickness of the top
arch is 0.70m, the thickness of the inverted arch is 0.80m,
the thickness of the sidewall is 0.70m, the elastic modulus of
the concrete is 30GPa, Poisson’s ratio is 0.2, and the bulk
density is 25 kN/m3. +e physical and mechanical param-
eters of the rock mass are shown in Table 2.

3.2. Loose Pressure Calculation Results and Difference
Analysis. According to the standard of deep and shallow
burial, the Qingdao Metro Station is a shallow tunnel.
According to the structural dimensions of the cavern and the
physical and mechanical parameters of the stratum, the
calculation results are shown in Table 3.

It is known from Table 3 that when k� 0.8–1.0, for the
vertical pressure value, the calculation result of the upper-
bound theorem of limit analysis is similar to the weighted
Terzaghi formula, the weighted Bierbäumer formula, and the
weighted Jiaxiao Xie formula. When k� 1.2–1.4, for the
vertical pressure value, the calculation result of the upper-
bound theorem of limit analysis is similar to the field
measured data. Since k takes different values, the calculation
result of the upper-bound theorem of limit analysis can be
consistent with the calculation results of the classical cal-
culation method and can be consistent with the field
measured data, so the limit analysis method is available and
effective.

Compared with the vertical pressure of the tunnel, based
on various factors including the joint production, the cal-
culated geometrical quantities of each feature such as the
sliding angle of the loose area and the length of the loose rock
of the dome are corrected. +e calculation result of the
classical method is larger than the calculation result of the
classical method before the correction.

According to the standard of deep and shallow burial, the
two-buried-depth (65m, 70m) Zhifang tunnel of Lanzhou-
Chongqing Railway belongs to the category of the deep-
buried tunnel. According to the structural size of the cavern

Table 1: Physical and mechanical parameters of the rock mass of Jiangxi Road metro station.

Rock formation
Bulk
weight

Modulus of
deformation Cohesion Internal friction

angle
Horizontal bed

coefficient
Vertical bed
coefficient

Poisson’s
ratio

(kN/m3) (GPa) (MPa) (o) (MPa/m) (MPa/m)
Strongly weathered
granite 18.5 1.3 0.2 22 230 180 0.33

Moderately
weathered granite 21.0 6.5 0.4 31 550 500 0.38

Table 2: Physical and mechanical parameters of the rock mass of Zhifang tunnel.

Surrounding rock category Elastic modulus ES
(GPa)

Poisson’s
ratio

Lateral pressure
coefficient

Cohesion
(KPa)

Internal friction
angle (o)

Bulk weight c

(kN/m3)
Strongly weathered
carbonaceous slate 0.8 0.40 1.0 55 20 17.5

Moderately weathered
carbonaceous slate 3.0 0.31 1.0 135 30 23.5

Mathematical Problems in Engineering 15



and the physical and mechanical parameters of the stratum,
the Platts pressure arch theory algorithm before and after the
correction and the limit analysis upper-bound method and
the Fraldi limit analysis method based on the loose zone
boundary [5–8] are used to calculate the loose pressure of the
top and sidewalls of the tunnel. +e calculation results are
shown in Tables 4 and 5. Except for the newmethod proposed
in this paper, the other four methods cannot consider the
influence of the buried depth of the cavern, so the calculation
results in the corresponding two tables are the same. It is

known from Tables 4 and 5 that when k� 1.2 to 1.4, for the
vertical pressure value, the calculation result of the limit
analysis upper limit method is similar to the calculation result
of the stress transfer method based on the loose zone
boundary and the field measured data.

4. Conclusion

+is paper discusses the research status, basic principles, and
application of the plastic limit analysis principle in

Table 3: +e relaxation pressures of Jiangxi Road metro station.

Calculation method q/kPa e1/kPa e2/kPa e0/kPa e0/q Remark
Weighted Terzaghi’s formula 181.80 90.12 175.76 135.96 0.75

q is the vertical load of the tunnel; e1 is the load at the top of the
sidewall; e2 is the load at the bottom of the sidewall; e0 is the mean
value of the top and bottom loads of the sidewall, e0�(e1 + e2)/2。

Modified Terzaghi’s formula 162.84 98.41 211.23 130.63 0.80
Weighted Bierbäumer’s
formula 198.03 101.26 186.66 149.65 0.76

Modified Bierbäumer’s formula 168.37 119.53 233.81 143.95 0.85
Weighted Jiaxiao Xie’s formula 174.63 72.51 157.68 123.57 0.71
Modified Jiaxiao Xie’s formula 153.19 76.32 189.40 114.76 0.75
Field measured data 135.65 78.12 192.01 106.89 0.79

Upper-bound
theorem of limit
analysis

k� 0.40 269.41 107.76 0.40
+e upper-bound theorem of limit analysis assumes that the

sidewall load is a uniform load e1 � e2 � e0, where k is the ratio of
the horizontal support reaction force to the vertical support

reaction force, k� e0/q.

k� 0.60 217.82 130.69 0.60
k� 0.80 179.16 143.33 0.80
k� 1.00 159.67 159.67 1.00
k� 1.20 146.31 175.57 1.20
k� 1.40 138.20 193.48 1.40

Table 4: +e relaxation pressures of Zhifang tunnel when the depth of the tunnel is 65m.

Calculation method q/kPa e1/kPa e2/kPa e0/kPa e0/q Remark
Platts pressure arch theory 240.23 70.19 101.69 85.94 0.36

q is the vertical load of the tunnel; e1 is the load at the top of the
sidewall; e2 is the load at the bottom of the sidewall; e0 is the mean
value of the top and bottom loads of the side wall, e0 � (e1 + e2)/2。

Modified Platts pressure arch
theory 225.46 82.34 113.58 97.96 0.43

Railway specification method 301.91 90.57 150.96 120.76 0.40
Fraldi limit analysis method 310.25 115.28 160.32 137.80 0.44
Field measured data 200.10 66.38 95.20 80.79 0.40

Upper-bound
theorem of limit
analysis

k� 0.40 368.97 147.59 0.40
+e upper-bound theorem of limit analysis assumes that the

sidewall load is a uniform load e1 � e2 � e0, where k is the ratio of
the horizontal support reaction force to the vertical support

reaction force, k� e0/q。

k� 0.60 323.64 194.18 0.60
k� 0.80 284.36 227.49 0.80
k� 1.00 248.79 248.79 1.00
k� 1.20 220.56 264.67 1.20
k� 1.40 204.68 286.55 1.40

Table 5: +e relaxation pressures of Zhifang tunnel when the depth of the tunnel is 75m.

Calculation method q/kPa e1/kPa e2/kPa e0/kPa e0/q Remark
Platts pressure arch theory 240.23 70.19 101.69 85.94 0.36

q is the vertical load of the tunnel; e1 is the load at the top of the
sidewall; e2 is the load at the bottom of the sidewall; e0 is the mean
value of the top and bottom loads of the sidewall, e0 � (e1 + e2)/2。

Modified Platts pressure arch
theory 225.46 82.34 113.58 97.96 0.43

Railway specification method 301.91 90.57 150.96 120.76 0.40
Fraldi limit analysis method 310.25 115.28 160.32 137.80 0.44
Field measured data 210.56 68.38 98.20 83.29 0.40

Upper-bound
theorem of limit
analysis

k� 0.40 379.56 151.82 0.40
+e upper-bound theorem of limit analysis assumes that the

sidewall load is a uniform load e1 � e2 � e0, where k is the ratio of
the horizontal support reaction force to the vertical support

reaction force, k� e0/q。

k� 0.60 333.01 199.81 0.60
k� 0.80 294.76 235.81 0.80
k� 1.00 259.87 259.87 1.00
k� 1.20 231.51 277.81 1.20
k� 1.40 215.34 301.48 1.40
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geotechnical engineering. It is proposed to calculate the
loose rock pressure of underground caverns in upper soft
and hard rock strata by using the principle of plastic limit
analysis upper-bound method. We get the following
conclusions:

(1) One of the advantages of using the limit analysis
method is that the determined loose rock failure
mode can minimize the damage process under un-
supported conditions after tunnel excavation

(2) In the derivation process of the calculation formula
of the loose surrounding rock pressure, the pa-
rameters in the shear-sliding constitutive model of
the structural plane are used, and the associated flow
law is used to give the objective function for cal-
culating the loose surrounding rock pressure. In the
process of analysis and derivation, in order to avoid
the complexity of solving the objective function, the
vertical line where the central axis of the under-
ground cavern is located is the axis of symmetry,
with a point on the axis of symmetry as the center of
rotation, and the ray from the center of rotation to
the boundary of the loose area, and the method of
making the angle between each rigid block boundary
and the center of rotation equal. With this method,
the calculation method can determine the maximum
value by simply calculating the maximum value in
mathematics and finally obtain the surrounding rock
pressure, avoiding the use of various optimization
methods to determine the upper limit solution,
which greatly simplifies the calculation process. Fi-
nally, the theoretical formula for calculating the
surrounding rock pressure is derived. +e numerical
example is given to calculate the loose pressure using
the limit analysis upper-bound method. It is also
proved that the limit analysis method is also suitable
for calculating the surrounding rock loosening
pressure of underground caverns

(3) Although the calculation process does not involve the
optimization solution of the optimization method to
solve the objective function, the relative derivation
process is still complicated. In the layered formation,
the corresponding failure mode changes with the
change of the softer upper layer thickness. +e
analysis process is cumbersome, and it is necessary to
use MATLAB or other types of commercial mathe-
matical software to solve the equation.+e calculation
formula of the surrounding rock pressure is only
applicable to the case where the height of each layer of
the formation is constant, and the versatility is poor

(4) As we all know, the supporting force of the sidewall is
very important for the stability of the underground
cavern. In the process of derivation in this paper, in
order to simplify the number of unknowns, it is
assumed that the horizontal force and the vertical
force have a proportional force relationship. On the
one hand, this assumption can reflect the relation-
ship between vertical force and horizontal force of

the lining and highlight the effect of horizontal
pressure on the lining; on the other hand, in practical
applications, when taking different values of k, the
corresponding values of q and e are obtained, which
can be compared with the calculation results of other
methods, and the experience of k value is further
obtained
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