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In this paper, we consider the parameter estimation problem of linear regression model when the auxiliary information can be
denoted by moment restrictions. We use the weighted least squares method to estimate the model parameters and to obtain the
weights based on the auxiliary information by using the empirical likelihood method. /e limiting distribution of the estimator is
established, and the simulation studies are carried out to demonstrate the feasibility of our theoretical results.

1. Introduction

Suppose (X1, Y1), (X2, Y2), . . . , (Xn, Yn)􏼈 􏼉 is an indepen-
dent and identically distributed random sample from the
following regression model:

Yi � ατXi + εi, i � 1, 2, . . . , n, (1)

where Xi is p × 1 random vector and Yi is a scalar response
variable; α � (α1, . . . , αp)τ is a p × 1 vector of regression
coefficients, and the error εi is a sequence of i.i.d. random
variables with Eεi � 0 and Eε2i � σ2. Moreover, we assume
that Xi, i � 1, 2, . . . ,􏼈 􏼉 is independent of εi, i � 1, 2, . . . ,􏼈 􏼉.

Linear regression model is widely used in empirical work
in economics, medicine, and many other disciplines due to
its simple form. In this paper, we consider the parameter
estimating problem of linear regression model when aux-
iliary information is available. We care about how to de-
crease the estimation bias by using the auxiliary information
based on the empirical likelihood method. /e customary
design-based estimator does not make use of auxiliary
population information at the estimation stage. Observe that
auxiliary information can be used to increase the precision of
estimators in sample surveys. /erefore, Chambers and
Dunstan [1] propose a simple method for estimating the

population distribution functions which allows auxiliary
population information to be directly incorporated into the
estimation process. Rao et al. [2] obtain the ratio and dif-
ference estimators of a population distribution function
under a general sampling design by using auxiliary pop-
ulation information. Chen and Qin [3] show that the em-
pirical likelihood method can be naturally applied to finite
population inference problems bymaking effective use of the
auxiliary information. Zhang [4] employs the method of
empirical likelihood to construct confidence intervals for
M-functionals in the presence of auxiliary information.
Zhong and Rao [5] show that making effective use of
auxiliary population information can lead to efficient esti-
mators for making inferences on finite population param-
eters. GarćıA and Cebrián [6] derive confidence intervals for
medians in a finite population by using multiauxiliary in-
formation through a multivariate regression-type estimator
of the population distribution function. By assuming aux-
iliary information on the unknown distribution of the data,
Crudu and Porcu [7] introduce a weighted Z-estimator for
moment condition models. Moreover, Tang and Leng [8]
propose a weighted least squares estimation which incor-
porates auxiliary information to the efficiency of the esti-
mator. Hellerstein and Imbens [9] analyze the estimation of
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coefficients in regression models under moment restrictions
in which the moment restrictions are derived from auxiliary
data. But the moment restriction does not include nuisance
parameter. We further consider the parameter estimation
problem of linear regression model when the auxiliary in-
formation can be denoted by moment restrictions which
include nuisance parameter based on the empirical likeli-
hood method. Specifically, the auxiliary information can be
expressed as moment constraint E(g(Xi, θ0)) � 0, where
g(Xi, θ) � (g1(Xi, θ), . . . , gr(Xi, θ)), θ ∈ Rd and r≥ d. It is
worth mentioning that θ can be different from α. /erefore,
moment constraint E(g(Xi, θ0)) � 0 can denote a broad
class of information. We will use the least squares method to
estimate the model parameter and apply empirical likeli-
hood method to obtain the weights by using the auxiliary
information.

As a nonparametric method, empirical likelihood
method is widely used in statistical inference of various
models. Empirical likelihood method is first proposed by
Owen [10–12] and is further generalized by Qin and Lawless
[13]. Empirical likelihood method is used for statistical
inference of various models (see Chen and Keilegom [14]
and Nordman and Lahiri [15]). In addition, some statisti-
cians have also begun to pay attention to the statistical
inference of semiparametric regression model with con-
straints (see Amini and Roozbeh [16], Roozbeh and Hamzah
[17], and Roozbeh et al. [18]).

/is paper proceeds as follows. We first introduce the
methodology and the main results. Next, we will undertake a
simulation study to illustrate the feasibility of our method.
Lastly, we give the proofs of the main results.

/e symbols “⟶d ” and “⟶
p

” denote convergence in
distribution and convergence in probability, respectively.
Convergence “almost surely” is written as “a.s.” Further-
more, A⊗B denotes the Kronecker product of matrices A

and B, ‖ · ‖ denotes Euclidean norm of the matrix or vector,
Aτ denotes the transposition of the matrix or the column
vector A, op(1) denotes a random variable that converges to
zero in probability, and Op(1) denotes a random variable
that is bounded in probability.

2. Methods and Main Results

In this section, we will introduce our method and give the
main results of this paper. Firstly, we obtain the weights of
the weighed least squares estimator based on the moment
constraint E(g(Xi, θ0)) � 0 by using the empirical likeli-
hood method (see Owen [12]). Specifically, let

L(θ) � sup 􏽙
n

i�1
ωi : ωi ≥ 0, 􏽘

n

i�1
ωi � 1, 􏽘

n

i�1
ωig Xi, θ( 􏼁 � 0

⎧⎨

⎩

⎫⎬

⎭,

(2)

where θ is unknown. Combining with the least squares
method, we can obtain the following weighed least squares
estimator:

􏽢α � argmin
α

􏽘

n

i�1
ωi Yi − ατXi( 􏼁

2
. (3)

Introducing Lagrange multipliers λθ0 ∈ Rr in L(θ0), we
obtain the following weights:

ωi θ0( 􏼁 �
1
n

1
1 + λτθ0g Xi, θ0( 􏼁

, (4)

where λθ0 satisfies

1
n

􏽘

n

i�1

g Xi, θ0( 􏼁

1 + λτθ0g Xi, θ0( 􏼁
� 0. (5)

/erefore, by (3) and (4), we know that

􏽢α � 􏽘
n

i�1
ωi θ0( 􏼁XiX

τ
i

⎛⎝ ⎞⎠

− 1

􏽘

n

i�1

ωi θ0( 􏼁YiXi. (6)

In order to obtain the limiting distribution of 􏽢α, we
assume that the following conditions hold:

(A1) E(X1X
τ
1) � W, and W> 0.

(A2) E(g(Xi, θ0)gτ(Xi, θ0)) � Σ> 0. /ere exists a
neighborhood of θ0 and an integrable function 􏽥W(x)

such that, in this neighborhood, zg(x, θ)/zθ is con-
tinuous, ‖zg(x, θ)/zθ‖≤ 􏽥W(x), ‖g(x, θ)‖3 ≤ 􏽥W(x), and
the rank of E(zg(X1, θ )/zθ) is d.

Condition (A2) can be found in a study by Qin and
Lawless [13]. /e following theorem presents the asymptotic
properties of 􏽢α.

Theorem 1. Under (A1) and (A2) and assuming that
EX4

1 <∞, if α0 is the true value of α, then
�
n

√
􏽢α − tα0( 􏼁⟶

d
N 0, W

− 1 Λ − Λ12Σ
− 1 θ0( 􏼁Λτ12􏼐 􏼑W

− 1
􏼐 􏼑,

(7)

where Λ � E( X1X
τ
1(Y1 − Xτ

1α0)
2 ) and Λ12 � E(X1g

τ(X1,

θ0)(Y1 − Xτ
1α0)).

We know that the asymptotic variance of the least
squares estimator 􏽥α � (􏽐

n
i�1 XiX

τ
i )− 1 􏽐

n
i�1 YiXi is

W− 1ΛW− 1. Note that matrix Σ− 1(θ0) is nonnegative defi-
nite. Hence, /eorem 1 implies that the weighted least
squares estimator has a smaller asymptotic variance com-
pared with the least squares estimator. /at is to say, using
the moment restrictions does improve the effectiveness of
the estimation.

􏽢α contains unknown parameters. 2erefore, we need to
further estimate the unknown parameter θ. Let
􏽢θ � argmaxθ L(θ) in (2). Using results in a study by Qin and
Lawless [13], we know that

ωi(
􏽢θ) �

1
n

1
1 + λτ􏽢θg

τ
Xi,

􏽢θ􏼐 􏼑
, (8)

where λ􏽢θ satisfies
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1
n

􏽘

n

t�1

g
τ

Xi,
􏽢θ􏼐 􏼑

1 + λτ􏽢θg
τ

Xi,
􏽢θ􏼐 􏼑

� 0, (9)

and (λ􏽢θ,
􏽢θ) solves

1
n

􏽘

n

t�1

( zg
τ

Xi,
􏽢θ􏼐 􏼑/zθτ )λ􏽢θ

1 + λτ􏽢θg
τ

Xi,
􏽢θ􏼐 􏼑

� 0. (10)

Let

􏽢α′ � argmin
β

􏽘

n

t�1
ωt(

􏽢θ) Yi − ατXi( 􏼁
2
. (11)

2ere are no unknown parameters in 􏽢α′, so it can be used
to estimate unknown parameters α in practice. Next, we
investigate the limiting properties of 􏽢α′. For convenience sake,
let Γ( θ0 ) � E( zgτ( Xi, θ0 )/zθ ), Ω(θ0) � (Γ(θ0)Σ− 1 (θ0)Γτ
(θ0))

− 1 and B � Σ− 1(θ0)(I − Γ(θ0)Ω( θ0)Γτ(θ0)Σ− 1 (θ0)),
where I is the unit matrix. 2e following theorem gives the
limiting property of 􏽢α′.

Theorem 2. Under (A1) and (A2) and assuming that
EX4

1 <∞, if α0 is the true value of α, then
�
n

√
􏽢α′ − α0( 􏼁⟶

d
N 0, W

− 1 Λ − Λ12BΛ
τ
12( 􏼁W

− 1
􏼐 􏼑. (12)

Similarly, since matrix B is nonnegative definite, the
weighted least squares estimator 􏽢α′ also has a smaller as-
ymptotic variance compared with the least squares
estimator.

3. Simulation Studies

In this section, we study the finite sample properties of the
above estimator by simulation. We consider the following
models:

Model 1. Yi � α1 + α2Xi + εi, i � 1, 2, . . . , n, where the
distribution of Xi􏼈 􏼉 is exponential with unit mean and
the distribution of εi􏼈 􏼉 is standard normal.
Model 2. Yi � α1 + α2Xi + εi, i � 1, 2, . . . , n, where the
distribution of Xi􏼈 􏼉 is exponential with unit mean.
εi � λiξi + (1 − λi)ζ i, where the distribution of ξi is
standard normal, the distribution function of ζ i is
N(0,9), and the probability distribution of λi is
P(λi � 1) � 1 − P(λi � 0) � 1 − p.

Model 3. Yi � α1X1i + α2X2i + εi, i � 1, 2, . . . , n, where
the distribution of X1i is exponential with mean 0.5, the
distribution of X2i is exponential with unit mean, and
the distribution of εi􏼈 􏼉 is standard normal.

In order to illustrate the feasibility of our proposed
method, we compute the mean absolute deviation ratio of
the estimator given by (11) to the least squares estimator. For
model 1 and model 2, we use g(Xi, θ) � (θ1(Xi − 1),

θ1(X2
i − 2), θ2(Xi − 1)) as moment restrictions. For model 3,

we use g(X2i, θ) � (θ1(X2i − 1), θ1(X2
2i − 2), θ2(X2i − 1)) as

moment restrictions.

For each experiment, we conduct 1000 repetitions, and
three alternative sample sizes (n� 30,100 and 300) are
considered. /e simulation results for model 1 are sum-
marized in Table 1. For model 2, we take different pollution
level p � 0.2, 0.4, and the simulation results are presented in
Tables 2 and 3, respectively. Moreover, the simulation results
for model 3 are summarized in Table 4.

It can be seen from Tables 1–4 that the ratio of the mean
absolute deviations of the least squares estimation with
moment restrictions to that of the ordinary least squares
estimation is very small. /is implies that, for the different
sample sizes, the different error, and the different param-
eters, the least squares estimation with moment restrictions
is a more precise estimator. Hence, utilizing the auxiliary
information indeed improves the efficiency of estimation.

4. Proofs of the Main Results

In order to prove /eorem 1, we first present several
lemmas.

Lemma 1. If (A1) and (A2) hold, then

max
1≤i≤n

g Xi, θ0( 􏼁
����

���� � op n
(1/2)

􏼐 􏼑. (13)

Proof. Let

Σn θ0( 􏼁 �
1
n

􏽘

n

i�1
g Xi, θ0( 􏼁g

τ
Xi, θ0( 􏼁. (14)

From the law of large numbers, we know that

Σn θ0( 􏼁⟶
a

.s. Σ(θ), as n⟶∞. (15)

Using the method of the proof of Lemma 2 in [19], we
can prove that (13) holds. Lemma 1 is established. □

Lemma 2. Under (A1) and (A2) and assuming that
EX4

1 <∞, if α0 is the true value of α, then

1
�
n

√ 􏽘

n

i�1
X

τ
i α0, g

τ
Xi, θ0( 􏼁( 􏼁

τ⟶d N(0, M), (16)

where

M �
Λ Λ12
Λτ12 Σ

􏼠 􏼡. (17)

Proof. According to the central limit theorem of indepen-
dent and identical distribution, it is easy to know that
Lemma 2 holds. □

Lemma 3. Under (A1) and (A2) and assuming that
EX4

1 <∞, we have

λθ0 � Op n
− (1/2)

􏼐 􏼑. (18)
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Table 2: /e simulation results for model 2 (p � 0.2).

(α1, α2) n� 30 n� 100 n� 300

(0, 1) (0.7218, 0.1631) × 10− 3 (0.2068, 0.3868) × 10− 3 (0.4816, 0.0390) × 10− 3

(0, 2) (0.0023, 0.0004) (0.0730, 0.0198) (0.0016, 0.0002)
(0, 3) (0.5612, 0.2035) × 10− 4 (0.4688, 0.0697) × 10− 3 (0.2909, 0.0131)
(0, 4) (0.0044, 0.0003) (0.7965, 0.0492) × 10− 3 (0.0090, 0.0002)
(0, 5) (0.4604, 0.1192) × 10− 3 (0.4088, 0.0280) (0.1139, 0.0025)
(3, 1) (0.0015, 0.0068) (0.0044, 0.0139) (0.1750, 0.0806) × 10− 3

(3, 2) (0.0129, 0.0143) (0.0013, 0.0020) (0.5347, 0.9881) × 10− 3

(3, 3) (0.0011, 0.0009) (0.0095, 0.0068) (0.0025, 0.0036)
(3, 4) (0.2909, 0.3911) × 10− 3 (0.0011, 0.0009) (0.8104, 0.8536) × 10− 3

(3, 5) (0.1006, 0.0220) × 10− 3 (0.7710, 0.6039) × 10− 3 (0.0047, 0.0028)
(6, 1) (0.0005, 0.0032) (0.0283, 0.3442) × 10− 3 (0.0002, 0.0001)
(6, 2) (0.0262, 0.3567) × 10− 3 (0.0566, 0.3088) × 10− 3 (0.0006, 0.0021)
(6, 3) (0.1006, 0.0679) × 10− 3 (0.0009, 0.0023) (0.0009, 0.0022)
(6, 4) (0.2790, 0.5487) × 10− 3 (0.1418, 0.2085) × 10− 3 (0.0029, 0.0045)
(6, 5) (0.0007, 0.0011) (0.4147, 0.5056) × 10− 3 (0.0713, 0.3029) × 10− 3

Table 3: /e simulation results for model 2 (p � 0.4).

(α1, α2) n� 30 n� 100 n� 300

(0, 1) (0.0097, 0.4296) × 10− 3 (0.0010, 0.0008) (0.1758, 0.1850) × 10− 3

(0, 2) (0.9817, 0.3201) × 10− 3 (0.4836, 0.0195) × 10− 3 (0.0011, 0.0000)
(0, 3) (0.0072, 0.0065) (0.0027, 0.0010) (0.0037, 0.0001)
(0, 4) (0.0116, 0.0014) (0.0012, 0.0002) (0.3652, 0.0319)
(0, 5) (0.0027, 0.0003) (0.0064, 0.0007) (0.0059, 0.0001)
(3, 1) (0.1768, 0.5159) × 10− 3 (0.0020, 0.0059) (0.0303, 0.0777)
(3, 2) (0.0081, 0.0105) (0.0025, 0.0038) (0.0104, 0.0211)
(3, 3) (0.0101, 0.0088) (0.0011, 0.0008) (0.0517, 0.1450) × 10− 3

(3, 4) (0.6036, 0.3940) × 10− 3 (0.0017, 0.0012) (0.0036, 0.0027)
(3, 5) (0.0019, 0.0011) (0.0033, 0.0020) (0.0058, 0.0028)
(6, 1) (0.0008, 0.0020) (0.0007, 0.0056) (0.0007, 0.0056)
(6, 2) (0.0726, 0.1935) × 10− 3 (0.3039, 0.8903) × 10− 3 (0.0006, 0.0020)
(6, 3) (0.3542, 0.1108) × 10− 3 (0.4838, 0.2409) × 10− 4 (0.0006, 0.0011) × 10− 3

(6, 4) (0.0008, 0.0012) (0.0056, 0.0102) (0.0013, 0.0020)
(6, 5) (0.1707, 0.2671) × 10− 3 (0.3853, 0.4861) × 10− 3 (0.2360, 0.2885) × 10− 3

Table 1: /e simulation results for model 1.

(α1, α2) n� 30 n� 100 n� 300

(0, 1) (0.1503, 0.0962) × 10− 3 (0.4429, 0.0805) × 10− 3 (0.3574, 0.0265) × 10− 3

(0, 2) (0.0013, 0.0001) (0.5059, 0.1128) × 10− 3 (0.6640, 0.0125) × 10− 3

(0, 3) (0.0018, 0.0001) (0.0014, 0.0001) (0.0018, 0.0000)
(0, 4) (0.3198, 0.0327) × 10− 3 (0.0066, 0.0002) (0.8846, 0.0121)
(0, 5) (0.0234, 0.0012) (0.0094, 0.0001) (0.2887, 0.0035)
(3, 1) (0.0016, 0.0037) (0.1341, 0.4235) × 10− 3 (0.5841, 0.8164) × 10− 3

(3, 2) (0.6284, 0.6922) × 10− 3 (0.0013, 0.0016) (0.0009, 0.0012)
(3, 3) (0.0622, 0.1554) (0.6129, 0.5704) × 10− 3 (0.2794, 0.2578) × 10− 3

(3, 4) (0.0028, 0.0018) (0.2891, 0.1785) × 10− 3 (0.0013, 0.0009)
(3, 5) (0.0027, 0.0014) (0.1241, 0.0512) × 10− 3 (0.1882, 0.1078) × 10− 3

(6, 1) (0.0589, 0.9486) × 10− 3 (0.0003, 0.0021) (0.0692, 0.4257) × 10− 3

(6, 2) (0.0003, 0.0011) (0.0529, 0.2192) × 10− 3 (0.1971, 0.6406) × 10− 3

(6, 3) (0.1244, 0.2126) × 10− 3 (0.3027, 0.7651) × 10− 3 (0.2588, 0.9244) × 10− 3

(6, 4) (0.0604, 0.1164) × 10− 3 (0.2382, 0.3704) × 10− 3 (0.2163, 0.3758) × 10− 3

(6, 5) (0.2337, 0.3729) × 10− 3 (03247, 0.5159) × 10− 4 (0.1075, 0.1288) × 10− 3
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Proof. Let λθ0 � ξβ0, where ‖β0‖ � 1, ξ � ‖λθ0‖. By (5), we
know that

0 �
βτ0
n

􏽘

n

i�1

g Xi, θ0( 􏼁

1 + ξβτ0g Xi, θ0( 􏼁

�
βτ0
n

􏽘

n

i�1
g Xi, θ0( 􏼁 −

ξ
n

􏽘

n

i�1

βτ0g Xi, θ0( 􏼁( 􏼁
2

1 + ξβτ0g Xi, θ0( 􏼁

≤
βτ0
n

􏽘

n

i�1
g Xi, θ0( 􏼁

−
ξ

1 + ξmax
1≤i≤n

g Xi, θ0( 􏼁
����

����
βτ0Σn θ0( 􏼁β0.

(19)

/erefore, we have

ξβτ0Σn θ0( 􏼁β0 − max
1≤i≤n

g Xi, θ0( 􏼁
����

����
βτ0
n

􏽘

n

i�1
g Xi, θ0( 􏼁

≤
βτ0
n

􏽘

n

i�1
g Xi, θ0( 􏼁.

(20)

Note that

βτ0
n

􏽘

n

i�1
g Xi, θ0( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

1
n

􏽘

n

i�1
g Xi, θ0( 􏼁

���������

���������

� OP n
− (1/2)

􏼐 􏼑.

(21)

Furthermore, by Lemma 1, we obtain

max
1≤i≤n

g Xi, θ0( 􏼁
����

����
βτ0
n

􏽘

n

i�1
g Xi, θ0( 􏼁 � oP(1). (22)

By the law of large numbers for independent and
identically distributed random variables, we have

βτ0Σn θ0( 􏼁β0⟶
a

.s. βτ0Σ θ0( 􏼁β0. (23)

Combining with (21) and (22), we know that Lemma 3
holds. □

Proof of /eorem 1.
By (5), we know that

λθ0 � Σn θ0( 􏼁( 􏼁
− 11

n
􏽘

n

i�1
g Xi, θ0( 􏼁 + Σn θ0( 􏼁( 􏼁

− 1
Rn θ0( 􏼁,

(24)

where

Rn θ0( 􏼁 �
1
n

􏽘

n

i�1
g
τ

Xi, θ0( 􏼁
λτθ0g Xi, θ0( 􏼁􏼐 􏼑

2

1 + λτθ0g Xi, θ0( 􏼁
. (25)

By Lemmas 1–3, we know that

Rn θ0( 􏼁 � oP n
− (1/2)

􏼐 􏼑. (26)

By using Taylor’s formula for (1/1 + λτθ0g(Xi, θ0)), we
have

1
1 + λτθ0g Xi, θ0( 􏼁

� 1 − λτθ0g Xi, θ0( 􏼁 + o λτθ0g Xi, θ0( 􏼁􏼐 􏼑.

(27)

So, we have

ωi �
1
n

1 − λτθ0g Xi, θ0( 􏼁 + o λτθ0g Xi, θ0( 􏼁􏼐 􏼑􏼐 􏼑. (28)

By Lemma 1 and Lemma 3, we have

max
1≤i≤n

λτθ0g Xi, θ0( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � oP(1). (29)

/erefore, we have that uniformly for i,

o λτθ0g Xi, θ0( 􏼁􏼐 􏼑

λτθ0g Xi, θ0( 􏼁
� oP(1). (30)

Note that
�
n

√
􏽢α − tα0( 􏼁 � T

− 1
n Sn, (31)

where

Table 4: /e simulation results for model 3.

(α1, α2) n� 30 n� 100 n� 300

(0, 1) (0.5517, 0.0218) × 10− 3 (0.7855, 0.1065) × 10− 3 (0.6022, 0.0350) × 10− 3

(0, 2) (0.0015, 0.0001) (0.0028, 0.0001) (0.6271, 0.0008) × 10− 3

(0, 3) (0.0024, 0.0000) (0.4016, 0.0078) × 10− 3 (0.0041, 0.0000)
(0, 4) (0.0042, 0.0001) (0.0073, 0.0001) (0.0118, 0.0002)
(0, 5) (0.0026, 0.0000) (0.0088, 0.0001) (0.0131, 0.0001)
(3, 1) (0.0113, 0.5320) × 10− 3 (0.0175, 0.2675) × 10− 3 (0.0306, 0.5866)
(3, 2) (0.0671, 0.1866) × 10− 3 (0.0302, 0.3476) × 10− 3 (0.0799, 0.6932) × 10− 3

(3, 3) (0.1395, 0.5421) × 10− 3 (0.0174, 0.1121) × 10− 3 (0.0232, 0.2970) × 10− 3

(3, 4) (0.1309, 0.3677) × 10− 3 (0.1905, 0.1747) × 10− 3 (0.0129, 0.0251)
(3, 5) (0.0390, 0.2233) × 10− 3 (0.0205, 0.3749) × 10− 3 (0.6382, 0.1322) × 10− 4

(6, 1) (0.0057, 0.2006) × 10− 3 (0.1223, 0.2038) × 10− 3 (0.0544, 0.1760) × 10− 3

(6, 2) (0.0140, 0.3297) × 10− 3 (0.0864, 0.4524) × 10− 3 (0.0568, 0.7259) × 10− 3

(6, 3) (0.0060, 0.2511) × 10− 3 (0.0181, 0.2149) × 10− 3 (0.0092, 0.2824) × 10− 3

(6, 4) (0.0143, 0.2344) × 10− 3 (0.0378, 0.2712) × 10− 3 (0.2272, 0.0901) × 10− 3

(6, 5) (0.0078, 0.1755) × 10− 3 (0.0235, 0.2951) × 10− 3 (0.7367, 0.3097) × 10− 3
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Tn � 􏽘
n

i�1
ωi θ0( 􏼁XiX

τ
i ,

Sn �
�
n

√
􏽘

n

i�1
ωi θ0( 􏼁Xi Yi − ατ0Xi( 􏼁.

(32)

Firstly, we prove that

Tn⟶
P

W. (33)

After simple algebra calculation, we have

Tn �
1
n

􏽘

n

i�1
1 − λτθ0g Xi, θ0( 􏼁􏼐 􏼑 1 + oP(1)( 􏼁XiX

τ
i

�
1
n

􏽘

n

i�1
XiX

τ
i −

1
n

􏽘

n

i�1
XiX

τ
i

⎛⎝ ⎞⎠

⊗ Σn θ0( 􏼁( 􏼁
− 1

Rn θ0( 􏼁􏼐 􏼑
τ
g Xi, θ0( 􏼁 1 + oP(1)( 􏼁􏼐 􏼑

−
1
n

􏽘

n

i�1
XiX

τ
i ⊗ Σn θ0( 􏼁( 􏼁

− 1
×

1
n

􏽘

n

i�1
g Xi, θ0( 􏼁( 􏼁

τ
g Xi, θ0( 􏼁 1 + oP(1)( 􏼁

≜U1 − U2 − U3.

(34)

By the law of large numbers for independent and
identically distributed random variables, we have

U1⟶
P

W. (35)

Furthermore, by (26) and Lemma 2, we know that

U2 � oP(1), (36)

U3 � oP(1). (37)

Combined with (36) and (37), this establishes (33).
In the following, we consider Sn. By (26) and (26), we

know that

Sn �
1
�
n

√ 􏽘

n

i�1
1 − λτθ0g( Xi, θ0􏼐 􏼑

×(1 + oP( 1 )))Xi(Yi − ατ0Xi)

�
1
�
n

√ 􏽘

n

i�1
Xi Yi − ατ0Xi( 􏼁

−
1
n

􏽘

n

i�1
Yi − ατ0Xi( 􏼁Xig

τ
Xi, θ0( 􏼁 Σn θ0( 􏼁( 􏼁

− 1

×
1
�
n

√ 􏽘

n

i�1
g Xi, θ0( 􏼁

+ oP(1).

(38)

By the law of large numbers for independent and
identically distributed random variables, we know that

1
n

􏽘

n

i�1
Yi − ατ0Xi( 􏼁Xig

τ
Xi, θ0( 􏼁⟶

a
.s. Λ12. (39)

Furthermore, by Lemma 2, we know that

Sn⟶
d

N 0,Λ12Σ
− 1Λτ12􏼐 􏼑. (40)

Combined with (31), we know that /eorem 1
holds. □

Proof of /eorem 2
Using the results in [13], we know that

λ􏽢θ � B
1
n

􏽘

n

i�1
g
τ

Xi, θ0( 􏼁 + oP n
− (1/2)

􏼐 􏼑. (41)

After simple algebra calculation, we have
�
n

√
􏽢α′ − α0( 􏼁 � 􏽥T

− 1
n

􏽥Sn, (42)

where 􏽥Tn � 􏽐
n
i�1 ωi(

􏽢θ)XiX
τ
i , 􏽥Sn �

�
n

√
􏽐

n
i�1 ωi(

􏽢θ)Xi(Yi−

ατ0Xi). Similar to the proof of /eorem 1, we know that

􏽥Tn⟶
P

W, 􏽥Sn⟶
d

N 0,Λ − Λ12BΛ
τ
12( 􏼁. (43)

/us, /eorem 2 is established. □

5. Conclusions

In this paper, we discuss how to use auxiliary information to
improve the efficiency of regression model parameter esti-
mation when auxiliary information exists. First of all, we use
the auxiliary information to establish the estimation equa-
tion. Based on this estimation equation, we use empirical
likelihood method to obtain the weight of weighted least
squares estimation of regression model parameters and then
give the weighted least squares estimation of model pa-
rameters. Secondly, it is noticed that the auxiliary infor-
mation contains unknown parameters, so the weighted least
squares estimator also contains unknown parameters.
/erefore, we use the maximum empirical likelihood esti-
mation to further estimate the unknown parameters con-
tained in the auxiliary information. /erefore, we then
obtain the weighted least squares estimation that can be used
in practice. Finally, we use simulation analysis to illustrate
the feasibility of our method.
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