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/is paper aims to further increase the prediction accuracy of the greymodel based on the existing discrete greymodel, DGM(1,1). Herein,
we begin by studying the connection between forecasts and the first entry of the original series./e results comprehensively show that the
forecasts are independent of the first entry in the original series. On this basis, an effectivemethod of inserting an arbitrary number in front
of the first item of the original series to extract messages is applied to produce a novel grey model, which is abbreviated as FDGM(1,1) for
simplicity. Incidentally, the proposedmodel can even forecast future data using only three historical data. To demonstrate the effectiveness
of the proposed model, two classical examples of the tensile strength and life of the product are employed in this paper. /e numerical
results indicate that FDGM(1,1) has a better prediction performance than most commonly used grey models.

1. Introduction

Professor Deng [1] pioneered the grey system theory in 1982;
it was regarded as an appreciative approach for dealing with
poor information and small samples./e grey systemmodel,
which is a crucial fraction of grey system theory, has been
widely used in numerous fields, particularly in energy field.
For example, to forecast quarterly hydropower production
of China,Wang et al. [2] proposed a grey forecasting method
based on a data grouping approach. In 2016, Zeng and Li [3]
studied a self-adapting intelligent grey model to accurately
forecast the natural gas demand in China. Ding et al. [4]
investigated a rolling grey model based on the optimization
of the initial condition for forecasting China’s electricity
consumption. Wang et al. [5] used an optimized NGBM(1,1)
model to forecast the qualified discharge rate of industrial
wastewater in China. In particular, the traditional grey
model was considered as a standard model for most ap-
plications, which is often abbreviated as GM(1,1) where the
first “1” represents the first-order and the second “1” rep-
resents the univariate. Based on this, most researchers fo-
cused on the number of variables and proposed the
multivariate grey model, for example, Ma et al. [6–8], Zeng
et al. [9, 10] and others [11]. Additionally, the research
results related to the multivariate grey model appeared
continuously.

In most applications thus far, the primary character-
istics of the grey system theory are known to be the ac-
cumulative generating operation (AGO) [12]. In other
words, the AGO is essential in the whole grey system, which
helps transform the nonnegative smooth discrete function
into a series obeying the pure exponential law or an ap-
proximate one [13]. It reduces the randomness of the
original data and strengthens the statistical rule hidden in
the original data. In most of the existing literature, it is easy
to see these models apply the integer-order accumulative
generating operation, the first-order accumulative gener-
ating operation (1-AGO) in particular, which results in a
less flexible-model time series in real applications. First,
Wu et al. [14] pointed out the novel grey systemmodel with
fractional order accumulation. Further, the numerical re-
sults demonstrated in their work significantly contributed
to an improved prediction performance in the grey system
model and theory. Moreover, their study was applied in
various fields and further improved. More recently, Wu
et al. [15] investigated a novel conformable fractional
nonhomogeneous grey model which is based on the new
definitions of the conformable fractional accumulation and
difference for forecasting carbon dioxide emissions of
BRICS countries. Similarly, the results of research con-
ducted using the fractional grey systemmodel are emerging
continually.
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Meanwhile, the discrete grey system model is always the
focus. Xie and Liu [16] initially proposed the discrete grey
model DGM(1,1), which is based on the traditional grey
model GM(1,1). Further, he analyzed the relationship be-
tween DGM(1,1) and GM(1,1). Subsequently, Ma and Liu
[17] applied their thought to GM(1,1), consequently pro-
posing a discrete GM(1,1) model. Additionally, Tien [18]
reported the appealed research results, which state that
modeling data and forecasts are independent of the first
entry of the original series. /us, the first entry by the
GM(1,1) and GM(1,n) models separately is inefficient, im-
plying the existence of a fairly good approach to increase
prediction performance by inserting an arbitrary number
before the first entry to extract the messages.

On these theoretical bases, we propose a novel discrete
grey system model, FDGM(1,1). /e main contributions of
this paper are summarized as follows:

(1) /e relation between forecasts and the first entry of
the original series is studied.

(2) Proof of the forecasts from DGM(1,1) being inde-
pendent of the first entry of the original series is
presented.

(3) /e novel discrete grey system model FDGM(1,1) is
discussed.

(4) /e two empirical examples are used to confirm the
accuracy of the proposed model.

/e remainder of this paper is organized as follows.
Section 2 describes the modeling procedure of the existing
discrete grey system model. Section 3 gives a detailed
analysis of the connection between forecasts and the first
entry of the original series and presents a novel grey
modeling method. /e modeling evaluation criteria and
detailed computational steps are detailed in Section 4.
Section 5 confirms the effectiveness and applicability of the
proposed model compared with other commonly used grey
system models, and the main conclusions and future re-
search potential are listed in the last section.

2. The Description of DGM(1,1)

Suppose
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is a nonnegative series, and the first-order accumulative
generating operator (1-AGO) series is
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is called the basic DGM(1,1). Additionally, the system pa-
rameters β1 and β2 could be estimated by using the least
square method, which are
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/en, the recursive function of (3) could be written as
follows, given that the initial condition is x(1)(1) � x(0)(1):
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Using the first-order inverse accumulative generating
operation (IAGO), the restored values of x(0)(k) are ob-
tained as follows:
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3. Methodology

3.1. Study on the Connection between Forecasts and the First
Entry of Original Series. To investigate the connection be-
tween forecasts and the first entry of the original series,
according to [12], we added an arbitrary constant c to the
first entry, i.e., and we further obtained x(0)(1) + c. Cor-
respondingly, matrices B and Y became
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/e assumption that the forecasts are independent of the
first entry of the original series will hold if forecasts obtained
using x(0)(1) + c equal to those obtained using x(0)(1). We
incidentally introduced the product theory of the deter-
minant as a lemma because we need it to complete this
computational process.

Lemma 1 (see [19]). If A 0
− I C

􏼢 􏼣 and I A

0 I
􏼢 􏼣 are both

partitioned matrices, where A and C are two matrices of the
orders p × q and q × p, respectively, then, the following
equations hold true:
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/erefore, the adjoint matrix of DΤD was written as
(DΤD)∗. /e multiplier (DΤD)− 1 could be written as
(DΤD)− 1 � (DΤD)∗/|DΤD|. Further, (4) could be rewritten as
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According to Lemma 1, |DΤD| can be changed to
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Naturally, the system parameters c1 and c2 could be
rewritten, respectively, as
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where Γ1 and Γ2 are corresponding determinants obtained
by replacing the first and second row of |DΤD| by YR. /en,
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By solving these equations, we obtained

c1 � β1,

c2 � β2 + c − cβ1.
(15)

From (6), we know that

c
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􏼠 􏼡 � 􏽢x
(0)

(k). (16)

Forecasts obtained using x(0)(1) + c equal those ob-
tained using the first entry; this implies that forecasts are
independent of the first entry of original series.

3.2. 0e Presentation of FDGM(1,1). Based on the above
proof, we could use the method proposed by Tien, to rebuild
the novel discrete grey model, FDGM(1,1), by inserting an
arbitrary number (generally, 0 is considered for simplicity)
before the first entry of the original series to extract messages
ultimately enhancing the prediction ability of the grey
model. We consider that this model shares a similar
modeling procedure as DGM(1,1) with some modification.
/us, we only list the modified fraction of the model. First,
the modeling data become
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(n)􏽮 􏽯. (17)

Remember that the traditional grey model requires at
least four data to model; however, we insert a constant in
front of the first entry of the original series herein. /is
implies that the novel grey model only requires three data to
build the prediction model.

Correspondingly, the matrices B and Y should become
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respectively. Consequently, the recursive function also
changed to

􏽢x
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1 x

(0)
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􏼠 􏼡 +
β2

1 − β1
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4. Model Evaluation Indices and
Computational Steps

To assess the prediction accuracies of prediction models, two
statistical indices are used in this paper, including the mean
absolute percentage error (MAPE) and root mean squared
error (RMSE), which are defined as

MAPE �
1

n − 1
􏽘

n

i�2

|e(i)|

x(0)(i)
× 100%,

RMSE �

�������������

1
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􏽘

n

i�2
(e(i))

2

􏽶
􏽴

,

(20)

respectively, where e(i) � 􏽢x(0)(i) − x(0)(i) represents the
simulative residual at time i. Further, we also give the MAPE
criteria for measuring forecasting levels of grey models, as
listed in Table 1.

/e detailed computational steps can be conducted as
follows:

Step 1: obtain the original series X(0) and its 1-AGO
series X(1).
Step 2: compute the system parameters using the least
square method from matrices B and Y mentioned in
Subsection 3.2.
Step 3: compute simulative values of X(1), 􏽢X

(1), using
(19).
Step 4: calculate restored values of X(1), 􏽢X

(1), using
IAGO.

5. Validation of FDGM(1,1)

/is section provides two classical examples for verifying the
effectiveness and applicability of FDGM(1,1). In addition,
comparative models such as GM(1,1), DGM(1,1), and
FGM(1,1) are built in this section.

5.1. Case 1. We consider an example presented by [18]. In
this case, it should be noticed that when temperature in-
creases, the hardness and strength of materials have
changeable trend with monotonically increasing charac-
teristics. /e experimental data on tensile strength from
400°C to 1100°C are shown in Table 2. Empirically, the first
six data are used to build prediction models and the
remaining data are used to evaluate the prediction accuracies
of these models.

/e simulated and predicted values are listed in Table 3.
Ignoring the first-fitted value, in Table 3, the GM(1,1) has

the worst prediction performance because the largest MAPE
was 0.46% and the largest RMSE was 43.28 in the training
stage. Additionally, it has the worst prediction accuracy by
examining the statistical indices in the verification stage./e
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MAPE (0.37% and 0.65%) and RMSE values (35.28 and
33.77) of the FDGM(1,1) are smaller than those of the others
in the training or the veri­cation stages.�is implies that the
FDGM(1,1) performs the best among the commonly used
grey models. �e relative error generated from these grey
models is plotted in Figure 1, revealing the same ­nding.

5.2. Case 2. We consider an example presented by [20] to
further demonstrate the e�ectiveness of FDGM(1,1), where
the raw data describe the failure time during the product. As
mentioned in Case 1, we divide raw data into two groups: the
­rst nine data are used to build models, and the others are
used to evaluate the prediction accuracies of these models. In
this case, the results are given in Table 4.

In Table 4, it is easy to know that the MAPE values of
these models are 4.05%, 5.27%, 4.06%, and 3.97%, respec-
tively. �e RMSE values of them are 0.92, 0.96, 0.93, and
0.97, respectively. By the MAPE criteria given in Table 1,
these four grey models all work quite well in this case.
Nonetheless, we can ­nd that FDGM(1,1) still has the best
prediction performance with the lowest MAPE values either
in the training period or in testing period, meaning
FDGM(1,1) could be regarded as a fairly appropriate model
to predict lifetime of product in this case.

Table 4 shows theMAPE values of these models at 4.05%,
5.27%, 4.06%, and 3.97%, respectively; the corresponding
RMSE values are 0.92, 0.96, 0.93, and 0.97, respectively. �e
MAPE criteria given in Table 1 imply that the four grey

models work quite well in this case. Nonetheless, FDGM(1,1)
has the best prediction performance with the lowest MAPE
values in the training or testing periods, which implies that
FDGM(1,1) could be regarded as optimal for predicting the
lifetime of the product in this case.

5.3. Further Discussion. As can be observed from the
aforementioned studies, inserting an arbitrary number be-
fore the ­rst entry to extract messages could enhance the
forecasting ability of the grey system model to some extent.
However, in some situations, forecasts do not depend on the
­rst entry of the original series. Owing to the high prediction
accuracy of the proposed model, we could use it to further
predict future data in the next two or more periods. �e
proposed model could be employed in other ­elds, such as
industry, energy, and economics. �is could help engi-
neering planning decision-makers obtain more valuable

Table 1: MAPE criteria for modeling examination.

MAPE < 10 10∼20 20∼50 >50
Forecasting ability Excellent Good Reasonable Weak

Table 2: Raw data of tensile strength from 400°C to 1100°C.

Temperature Strength (MPa) Temperature Strength (MPa)
400 1931 800 1207
500 1724 900 1069
600 1517 1000 952
700 1345 1100 848

Table 3: Fitted and predicted values obtained by di�erent grey
system models.

Raw data GM(1,1) FGM(1,1) DGM(1,1) FDGM(1,1)
1931
1724 1715.06 1714.10 1716.98 1715.76
1517 1522.70 1522.32 1524.19 1523.58
1345 1351.92 1352.01 1353.04 1352.93
1207 1200.29 1200.74 1201.12 1201.39
1069 1065.67 1066.40 1066.25 1066.83
MAPE 0.46 0.38 0.45 0.37
RMSE 43.28 37.06 41.57 35.28
952 946.15 947.09 946.52 947.34
848 840.03 841.13 840.24 841.23
MAPE 0.77 0.67 0.75 0.65
RMSE 48.81 35.61 45.10 33.77
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Figure 1: Relative percentage errors generated from di�erent grey
models.

Table 4: Fitted and predicted values obtained by di�erent grey
system models.

Raw data GM(1,1) FGM(1,1) DGM(1,1) FDGM(1,1)
7
9.4 10.52 10.18 10.56 10.23
12.5 12.21 11.90 12.25 11.95
14.0 14.17 13.90 14.22 13.96
15.9 16.44 16.25 16.50 16.32
19.3 19.09 18.99 19.15 19.07
24.1 22.15 22.19 22.23 22.29
25.8 25.71 25.93 25.80 26.04
28.7 29.84 30.30 29.94 30.43
MAPE 4.05 5.27 4.06 3.97
RMSE 0.92 0.96 0.93 0.97
39.6 34.63 35.41 34.75 35.57
42.2 40.19 41.38 40.33 41.56
MAPE 8.67 6.26 8.33 5.85
RMSE 3.79 3.02 3.67 2.88
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information and design better strategies to face changes in
advance.

6. Conclusion and Future Research

/is paper presents a novel grey model by inserting an
arbitrary number before the first entry of an original series to
extract messages to increase the prediction accuracy of the
existing DGM(1,1). However, forecasts do not depend on the
first entry of the original series. /erefore, we start by
studying the connection between forecasts and the first
entry. Nevertheless, forecasts are independent of the first
entry; therefore, we propose the novel grey model, which is
written as FDGM(1,1) for simplicity. /en, two classical
examples were used to evaluate the prediction performance
of the proposed model. /e numerical results imply that the
proposed model has better prediction performance than
other commonly used models.

/us far, we have discussed the advantage of FDGM(1,1);
however, some issues must be solved in future research. For
instance, the discrete-time response function is an ap-
proximate solution to DGM(1,1), which means there is some
scope to increase prediction accuracy. However, the rolling
grey model shows an appreciative forecasting ability in some
cases, which is the another respective we should consider in
the future work.
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