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(e periodic nonuniform sampling plays an important role in digital signal processing and other engineering fields. In this paper,
we introduce the Gaussian regularization method to accelerate the convergence rate of periodic nonuniform sampling series. We
prove that the truncation error of the Gaussian regularized periodic nonuniform sampling series decays exponentially. Numerical
experiments are presented to demonstrate our result.

1. Introduction

In signal processing, the Paley–Wiener space is defined by

Bδ(R) ≔ 􏼨f(x) ∈ C(R)∩L2(R):

f(x) �
1
���
2π

√ 􏽚
σ

− σ
e

iwt 􏽢f(w)dw􏼩.

(1)

For each f ∈Bδ(R) with δ ≤ π, the periodic nonuni-
form sampling formula is of the form [1, 2]

f(t) � 􏽘
∞

n�− ∞
􏽘

M

m�1
f τm,n􏼐 􏼑ψm,n(t), (2)

where

ψm,n(t) ≔
M􏽑

M
k�1sin (π/M) t − τk,n􏼐 􏼑􏼐 􏼑

π t − τm,n􏼐 􏼑􏽑
M
k�1,k≠m sin (π/M) tm − tk( 􏼁( 􏼁,

(3)

τm,n ≔ tm + nM, 0≤ t1 < t2 < · · · < tM <M, n ∈ Z. (4)

Unlike Lagrangian nonuniform sampling, periodic
nonuniform sampling does not require 1/4 condition (see
[3]). (e engineering background of periodic nonuniform
sampling is Time-interleaved Analog-to-Digital Converters

(TIADC) [4], which uses several low sampling rate analog-
to-digital converters for parallel sampling to achieve high-
speed data acquisition. TIADC is widely used in radar,
communications, and other fields. Because the system has
the mismatch error of the sampling clock, it leads to the
generation of periodic nonuniform sampling data. Periodic
nonuniform sampling has attracted considerable attention
both in applied mathematics [5–9] and engineering [10–16].

We are concerned with the practical situation when only
finitely many sample data are available. To reconstruct the
values f(t) for t ∈ [− M, M], we shall use the localized data
τm,n, n≤N. Truncating the periodic nonuniform sampling
series leads to a convergence rate of the order O(1/

��
N

√
) [6].

In order to improve the convergence rate, the case of
oversampling is considered (namely, bandwidth δ is strictly
less than π); Strohmer and Tanner [9] proposed the Gevrey
regularized periodic nonuniform sampling series which
achieves a truncation error of the order O(exp(− λN1/α)),
where λ is some positive constant and α> 1. (is method
provides high-order accuracy to approximate band-limited
functions. However, most of Gevrey functions are hardly
expressed explicitly, and the decay of the truncation error is
not strictly exponential.

On the contrary, the Gaussian regularization method has
been successfully used in Shannon sampling [17–21] and
Hermite sampling [22–24]. (anks to its simplicity and high
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convergence rates. In this note, we apply the Gaussian regu-
larization method to the periodic nonuniform sampling series:

Sf,N(t) ≔ 􏽘
N

n�− N

􏽘

M

m�1
f τm,n􏼐 􏼑ψm,n(t)gN t − τm,n􏼐 􏼑, (5)

where

gN(t) ≔ exp
− (π − δ)t2

2(N − 1)M
􏼠 􏼡. (6)

(e following theorem shows the corresponding trun-
cation error is exponentially decaying as the number of
sample data increases to infinity.

Theorem 1. Let 0< δ < π, f ∈Bδ(R), M, N ∈ N, then

sup
t∈[− M,M]

f(t) − Sf,N(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 ≤ CδM
����
NM

√
μ

· exp
− M(π − δ)(N − 1)

2
􏼠 􏼡‖f‖L2(R),

(7)
where Cδ is some constant which depends on δ and

μ � max
1≤m≤M

1
􏽑

M
k�1,k≠msin (π/M) tm − tk( 􏼁( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (8)

From the above estimate, we can see that if the sampling
points are too close, which means the data degradation occurs,
the error will become very large.

We give the proof in Section 2. (e original proof (based
on Fourier analysis [18] or complex analysis [25]) for
Gaussian regularized Shannon sampling may not be directly
extended to this problem. We give an elementary proof that
applies not only to Gaussian regularized periodic nonuni-
form sampling but also to other Gaussian regularization
sampling methods such as Gaussian regularized Lagrangian
nonuniform sampling. In Section 3, some numerical ex-
periments are performed to illustrate our result.

Proof of 9eorem 1. We begin with a decomposition

f(t) − Sf,N(t) ≔ E1(t) + E2(t), (9)

where

E1(t) ≔ f(t) − 􏽘

∞

n�− ∞
􏽘

M

m�1
f τm,n􏼐 􏼑ψm,n(t)gN t − τm,n􏼐 􏼑,

E2(t) ≔ 􏽘
|n|>N

􏽘

M

m�1
f τm,n􏼐 􏼑ψm,n(t)gN t − τm,n􏼐 􏼑.

(10)
For t ∈ [− M, M], observe that

E2(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤Mμ‖f‖L2(R) 􏽘
|n|>N

gN((n − 1)M)

≤Mμ‖f‖L2(R) 􏽚
∞

(N− 1)M
gN(x)dx

≤
Mμ‖f‖L2(R)

π − δ
e

− ((N− 1)M(π− δ))/2
,

(11)

where we have used the Cauchy–Schwartz inequality

f(t)≤
1
���
2π

√ ‖􏽢f‖L1([− π,π]) ≤ ‖􏽢f‖L2([− π,π]) � ‖f‖L2(R), (12)

and elementary inequality

􏽚
∞

a
exp

− x2

2
􏼠 􏼡dx≤

e − a2/2( )

a
, a> 0. (13)

Next, we estimate E1(t), our estimate is different from
[18]. Let

GN(t) �
1
���
2π

√ 􏽚
π− δ

δ− π

���������

(N − 1)M

π − δ

􏽳

e
− (N− 1)Mw2( )/2(π− δ)

e
iwtdw.

(14)

Since GN(t) ∈Bπ− δ(R), by equation (2), we have

f(t)GN(t − x) � 􏽘
∞

n�− ∞
􏽘

M

m�1
f τm,n􏼐 􏼑ψm,n(t)GN τm,n − x􏼐 􏼑,

(15)

choosing x � t and GN is even function, then

f(t)GN(0) � 􏽘
∞

n�− ∞
􏽘

M

m�1
f τm,n􏼐 􏼑ψm,n(t)GN t − τm,n􏼐 􏼑

≔ Vf,N(t).

(16)

Since

gN(t) �
1
���
2π

√ 􏽚
∞

− ∞

���������

(N − 1)M

π − δ

􏽳

e
− (N− 1)Mw2( )/2(π− δ)

e
iwtdw.

(17)

We have

GN(t) − gN(t) � −
2
���
2π

√ 􏽚
∞

π− δ

���������

(N − 1)M

π − δ

􏽳

e
− (N− 1)Mw2( )/2(π− δ)

· cos(wt)dw,

(18)

f(t)GN(0) − f(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 1 − GN(0)( 􏼁‖f‖L2(R) ≲ e
− ((N− 1)M(π− δ))/2

· ‖f‖L2(R).

(19)

We write A ≲ B if A≤ cδB for some positive constant cδ
depends on δ. Note that

E1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ f(t)GN(0) − f(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + Sf,N(t) − Vf,N(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (20)

To this end, we compute
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Sf,N(t) − Vf,N(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 ≲
���������
(N − 1)M

􏽰
􏽘

∞

n�− ∞
􏽘
m�1

M

f τm,n􏼐 􏼑ψm,n(t) × 􏽚
∞

π− δ
e

− (N− 1)Mw2( )/2(π− δ)cos w t − τm,n􏼐 􏼑􏼐 􏼑dw

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
���������
(N − 1)M

􏽰
􏽘

|n|≥3
􏽘

M

m�1

f τm,n􏼐 􏼑ψm,n(t)

t − τm,n

× 􏽚
​ ∞

π− δ
− e

− (N− 1)Mw2( )/2(π− δ)
􏼒 􏼓

′sin w t − τm,n􏼐 􏼑􏼐 􏼑dw􏼒

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ e
− (N− 1)M(π− δ)2/2sin (π − δ) t − τm,n􏼐 􏼑􏼐 􏼑􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ 5

���������
(N − 1)M

􏽰
Mμ‖f‖L2(R) 􏽚

∞

π− δ
e

− (N− 1)Mw2( )/2( )(π− δ)dw

≲M
���������
(N − 1)M

􏽰
e

− ((N− 1)M(π− δ))/2μ‖f‖L2(R),

(21)

where we use the fact 􏽐|n|≥3􏽐
M
m�1(|ψm,n(t)|/t − τm,n)<∞ for

|t|≤M. Combining (10) and (18)–(20) proves(eorem 1. □

2. Numerical Experiments

(e band-limited function under investigation takes the form

fδ(t) �
2sin δt

t
+
sin δ(t − 5)

t − 5
, δ < π. (22)

(e truncation error of the Gaussian regularized peri-
odic nonuniform sampling series is measured by

E1,δ,N,t[M]
≔ max

|j|≤100M
fδ

j

100
􏼒 􏼓 − Sfδ ,N

j

100
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (23)

where t[M] stands for (t1, t2, . . . , tM) which is defined in (4).
(e truncation error of the periodic nonuniform sampling
series is measured by

E2,δ,N,t[M]
≔ max

|j|≤100M
fδ

j

100
􏼒 􏼓 − 􏽘

N

n�− N

􏽘

M

m�1
fδ τm,n􏼐 􏼑ψm,n

j

100
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(24)

(e following error is the theoretical estimate in
(eorem 1:

Eδ,N,M � M
����
NM

√
exp

− M(π − δ)(N − 1)

2
􏼠 􏼡. (25)

We omit Cδ, ‖f‖L2(R) and µ here. (e above errors for
different choices of δ and t[M] are listed in Tables 1–3. (e
numerical experiments show that the truncation error ac-
cords with our theoretical estimation. Figure 1 shows the
truncation error of the entire sampling interval when
N � 15.

Table 1: δ � 0.6π, M � 3, t[M] � (0, 1.101, 1.523).

N E1,δ,N,t[M]
E2,δ,N,t[M]

Eδ,N,M

5 1.1184E − 05 0.002609644 0.006175379
6 1.1354E − 06 0.001248875 0.001027137
7 1.246E − 07 8.4595E − 05 0.000168452
8 1.4392E − 08 0.000623966 2.734E − 05
9 1.7291E − 09 0.000858093 4.4034E − 06
10 2.1409E − 10 0.000723839 7.0477E − 07
11 2.7075E − 11 0.000387667 1.1223E − 07
12 3.4960E − 12 1.99208E − 05 1.7798E − 08
13 4.5764E − 13 0.000255964 2.8128E − 09
14 6.2616E − 14 0.000372274 4.4321E − 10
15 1.1102E − 14 0.000332194 6.9657E − 11

Table 2: δ � 0.8π, M � 4, t[M] � (0, 1.221, 1.505, 2.668).

N E1,δ,N,t[M]
E2,δ,N,t[M]

Eδ,N,M

6 5.499E − 05 0.003396916 0.036594255
7 1.2193E − 05 0.000724752 0.011249566
8 2.9539E − 06 0.002792515 0.003422797
9 6.77669E − 07 0.003210469 0.001033254
10 1.69413E − 07 0.00248397 0.000309981
11 4.15186E − 08 0.001187713 9.25296E − 05
12 1.02189E − 08 0.00015787 2.75058E − 05
13 2.65649E − 09 0.00105366 8.14808E − 06
14 6.54824E − 10 0.001367498 2.40656E − 06
15 1.72059E − 10 0.001151512 7.0897E − 07
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3. Conclusion

�e convergence order [18, 25–27] of Gaussian regulari-
zation of the Shannon sampling series is the best among
other known regularization methods [28–32] because of the
good time-frequency concentration of the Gaussian func-
tion. In this paper, we proposed the Gaussian regularized
periodic nonuniform sampling series and proved that this
series is strictly exponentially decaying. �us, its truncation
error is superior to [9]. More important, our method is much
simpler. �e approximation algorithm for some discrete
model is discussed in [33]. �e distance between its discrete
model and Paley–Wiener space is given in [34] (see Cor-
ollary 2 and 3), from which we can know that there is no way
to compare the results in [33, 34] and ours. Moreover, the
maximum distance between sampling points only needs to
be less than M (see (4)) for periodic nonuniform sampling,
while�eorem 1 in [34] tells us that the maximum sampling
distance required for the more general nonuniform sam-
pling they discussed is less than 1.
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